Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 650
Filtrar
1.
Chemosphere ; 239: 124667, 2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31499299

RESUMO

Exposure to air pollution can have both short-term and long-term effects on health. However, the relationships between specific pollutants and their effects can be obscured by characteristics of both the pollution and the exposed population. One way of elucidating the relationships is to link exposures and internal changes at the level of the individual. To this end, we combined personal exposure monitoring (59 individuals, Oxford Street II crossover study) with mass-spectrometry-based analyses of putative serum albumin adducts (fixed-step selected reaction monitoring). We attempted to infer adducts' identities using data from another, higher-resolution mass spectrometry method, and were able to detect a semi-synthetic standard with both methods. A generalised least squares regression method was used to test for associations between amounts of adducts and pollution measures (ambient concentrations of nitrogen dioxide and particulate matter), and between amounts of adducts and short-term health outcomes (measures of lung health and arterial stiffness). Amounts of some putative adducts (e.g., one with a positive mass shift of ∼143 Da) were associated with exposure to pollution (11 associations), and amounts of other adducts were associated with health outcomes (eight associations). Adducts did not appear to provide a link between exposures and short-term health outcomes.

2.
BMC Med ; 17(1): 178, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31547832

RESUMO

BACKGROUND: Metabolomics is a promising molecular tool to identify novel etiologic pathways leading to cancer. Using a targeted approach, we prospectively investigated the associations between metabolite concentrations in plasma and breast cancer risk. METHODS: A nested case-control study was established within the European Prospective Investigation into Cancer cohort, which included 1624 first primary incident invasive breast cancer cases (with known estrogen and progesterone receptor and HER2 status) and 1624 matched controls. Metabolites (n = 127, acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, sphingolipids) were measured by mass spectrometry in pre-diagnostic plasma samples and tested for associations with breast cancer incidence using multivariable conditional logistic regression. RESULTS: Among women not using hormones at baseline (n = 2248), and after control for multiple tests, concentrations of arginine (odds ratio [OR] per SD = 0.79, 95% confidence interval [CI] = 0.70-0.90), asparagine (OR = 0.83 (0.74-0.92)), and phosphatidylcholines (PCs) ae C36:3 (OR = 0.83 (0.76-0.90)), aa C36:3 (OR = 0.84 (0.77-0.93)), ae C34:2 (OR = 0.85 (0.78-0.94)), ae C36:2 (OR = 0.85 (0.78-0.88)), and ae C38:2 (OR = 0.84 (0.76-0.93)) were inversely associated with breast cancer risk, while the acylcarnitine C2 (OR = 1.23 (1.11-1.35)) was positively associated with disease risk. In the overall population, C2 (OR = 1.15 (1.06-1.24)) and PC ae C36:3 (OR = 0.88 (0.82-0.95)) were associated with risk of breast cancer, and these relationships did not differ by breast cancer subtype, age at diagnosis, fasting status, menopausal status, or adiposity. CONCLUSIONS: These findings point to potentially novel pathways and biomarkers of breast cancer development. Results warrant replication in other epidemiological studies.

3.
Int J Epidemiol ; 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31549173

RESUMO

BACKGROUND: DNA methylation changes in peripheral blood have recently been identified in relation to lung cancer risk. Some of these changes have been suggested to mediate part of the effect of smoking on lung cancer. However, limitations with conventional mediation analyses mean that the causal nature of these methylation changes has yet to be fully elucidated. METHODS: We first performed a meta-analysis of four epigenome-wide association studies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample Mendelian randomization analysis, using genetic instruments for methylation at CpG sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methylation at these sites on lung cancer. RESULTS: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomization provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR where methylation is strongly associated with both smoke exposure and lung cancer risk. CONCLUSIONS: The results contrast with previous observational and mediation analysis, which have made strong claims regarding the causal role of DNA methylation. Thus, previous suggestions of a mediating role of methylation at sites identified in peripheral blood, such as cg05575921-AHRR, could be unfounded. However, this study does not preclude the possibility that differential DNA methylation at other sites is causally involved in lung cancer development, especially within lung tissue.

4.
Eur J Epidemiol ; 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342230

RESUMO

At the crossroads between sciences, epidemiology brings together the social and the biological to examine social inequalities in health. The concept of biological capital represents the accumulated history of biological experiences, alongside the other forms of accumulated capital, notably cultural, economic and social. The ability to access the three other forms of individual capital and therefore position in life depends on inherited biological health/skills, epigenetic imprinting and the accumulation of embodied biological changes that make an individual more or less successful in life. We present results from analyses carried out within the Lifepath consortium, showing that the socioeconomic environment, from early life and over the lifecourse, is an important risk factor for health and partly works through its effects on biological mechanisms. We show that socially stratified pre-disease states related to ageing may be examined using biomarkers, and help underline areas and mechanisms to promote healthy ageing.

5.
Environ Int ; 131: 104988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323486

RESUMO

BACKGROUND: Swimming in pools is a healthy activity that entails exposure to disinfection by-products (DBPs), some of which are irritant and genotoxic. OBJECTIVES: We evaluated exposure to DBPs during swimming in a chlorinated pool and the association with short-term changes in genotoxicity and lung epithelium permeability biomarkers. METHODS: Non-smoker adults (N = 116) swimming 40 min in an indoor pool were included. We measured a range of biomarkers before and at different times after swimming: trihalomethanes (THMs) in exhaled breath (5 min), trichloroacetic acid (TCAA) in urine (30 min), micronuclei in lymphocytes (1 h), serum club cell protein (CC16) (1 h), urine mutagenicity (2 h) and micronuclei in reticulocytes (4 days in a subset, N = 19). Several DBPs in water and trichloramine in air were measured, and physical activity was extensively assessed. We estimated interactions with polymorphisms in genes related to DBP metabolism. RESULTS: Median level of chloroform, brominated and total THMs in water was 37.3, 9.5 and 48.5, µg/L, respectively, and trichloramine in air was 472.6 µg/m3. Median exhaled chloroform, brominated and total THMs increased after swimming by 10.9, 2.6 and 13.4, µg/m3, respectively. Creatinine-adjusted urinary TCAA increased by 3.1 µmol/mol. Micronuclei in lymphocytes and reticulocytes, urine mutagenicity and serum CC16 levels remained unchanged after swimming. Spearman correlation coefficients showed no association between DBP exposure and micronuclei in lymphocytes, urine mutagenicity and CC16. Moderate associations were observed for micronuclei in reticulocytes and DBP exposure. CONCLUSIONS: The unchanged levels of the short-term effect biomarkers after swimming and null associations with personal estimates of exposure to DBPs suggest no measurable effect on genotoxicity in lymphocytes, urine mutagenicity and lung epithelium permeability at the observed exposure levels. The moderate associations with micronuclei in reticulocytes require cautious interpretation given the reduced sample size.

6.
Sci Rep ; 9(1): 8790, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217447

RESUMO

Living in deprived neighbourhoods may have biological consequences, but few studies have assessed this empirically. We examined the association between neighbourhood deprivation and allostatic load, a biological marker of wear and tear, taking into account individual's socioeconomic position. We analysed data from three cohort studies (CoLaus-Switzerland; EPIPorto-Portugal; Whitehall II-UK) comprising 16,364 participants. We defined allostatic load using ten biomarkers of dysregulated metabolic, cardiovascular, and inflammatory systems (body mass index; waist circumference; total, high and low density lipoprotein cholesterol; triglycerides; glucose; systolic and diastolic blood pressure; C-reactive protein). Mixed Poisson regression models were fitted to examine associations with neighbourhood deprivation (in quintiles, Q1-least deprived as reference). After adjustment for confounding variables, participants living in the most deprived quintile had 1.13 times higher allostatic load than those living in the least deprived quintile (Relative Risk, RR, for Q2 RR = 1.06, 95% CI 1.03-1.09; Q3 = 1.06, 1.03-1.10; Q4 = 1.09, 1.06-1.12; Q5 = 1.13, 1.09-1.16). This association was partially modified by individual's socioeconomic position, such that the relative risk was higher in participants with low socioeconomic position (Q5 vs Q1 1.16, 1.11-1.22) than those with high socioeconomic position (Q5 vs Q1 1.07, 1.01-1.13). Neighbourhood deprivation is associated with biological wear and tear, suggesting that neighbourhood-level interventions may yield health gains.

7.
Sci Rep ; 9(1): 8818, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217483

RESUMO

We aim to investigate to what extent a set of immune markers mediate the association between air pollution and adult-onset asthma. We considered long-term exposure to multiple air pollution markers and a panel of 13 immune markers in peripheral blood samples collected from 140 adult cases and 199 controls using a nested-case control design. We tested associations between air pollutants and immune markers and adult-onset asthma using mixed-effects (logistic) regression models, adjusted for confounding variables. In order to evaluate a possible mediating effect of the full set of immune markers, we modelled the relationship between asthma and air pollution with a partial least square path model. We observed a strong positive association of IL-1RA [OR 1.37; 95% CI (1.09, 1.73)] with adult-onset asthma. Univariate models did not yield any association between air pollution and immune markers. However, mediation analyses indicated that 15% of the effect of air pollution on risk of adult-onset asthma was mediated through the immune system when considering all immune markers as a latent variable (path coefficient (ß) = 0.09; 95% CI: (-0.02, 0.20)). This effect appeared to be stronger for allergic asthma (22%; ß = 0.12; 95% CI: (-0.03, 0.27)) and overweight subjects (27%; ß = 0.19; 95% CI: (-0.004, 0.38)). Our results provides supportive evidence for a mediating effect of the immune system in the association between air pollution and adult-onset asthma.

8.
Environ Health Perspect ; 127(5): 57012, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.

9.
Am J Public Health ; 109(7): 978-980, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31166731
10.
Epigenetics ; 14(10): 977-988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31179817

RESUMO

The biological mechanisms through which adherence to Mediterranean Diet (MD) protects against colon cancer (CC) are poorly understood. Evidence suggests that chronic inflammation may be implicated in the pathway. Both diet and CC are related to epigenetic regulation. We performed a nested case-control study on 161 pairs from the Italian component of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, in which we looked for the methylation signals in DNA extracted from leucocytes associated with both CC and MD in 995 CpGs located in 48 inflammation genes. The DNA methylation signals detected in this analysis were validated in a subgroup of 47 case-control pairs and further replicated (where validated) in 95 new pairs by means of pyrosequencing. Among the CpG sites selected a-priori in inflammation-related genes, seven CpG sites were found to be associated with CC status and with MD, in line with its protective effect. Only two CpG sites (cg17968347-SERPINE1 and cg20674490-RUNX3) were validated using bisulphite pyrosequencing and, after replication, we found that DNA methylation of cg20674490-RUNX3 may be a potential molecular mediator explaining the protective effect of MD on CC onset. The use of a 'meet-in-the-middle' approach to identify the overlap between exposure and predictive markers of disease is innovative in studies on the relationship between diet and cancer, in which exposure assessment is difficult and the mechanisms through which the nutrients exert their protective effect is largely unknown.

11.
Int J Cancer ; 2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31077355

RESUMO

Since 1960, incidence of non-Hodgkin's lymphoma (NHL) has been increasing in most industrialized countries, but causes of this trend remain unclear. A role of the decreased exposure to infectious agents during childhood has been proposed. Our study evaluates the association between common childhood infectious diseases and the risk of NHL and its major subtypes by a reanalysis of the Italian multicenter case-control study. After exclusion of next-of-kin interviews, 1,193 cases, diagnosed between 1990 and 1993, and 1,708 population-based controls were included in the analyses. OR estimates were obtained by logistic regression, adjusting for gender, age, residence area, education, smoking habit and exposure to radiations, pesticides and aromatic hydrocarbons. Among B-cell lymphomas (n = 1,102) an inverse association was observed for rubella (OR = 0.80, 95% CI: 0.65-0.99), pertussis (OR = 0.74, 95% CI: 0.62-0.88) and any infection (OR = 0.75, 95% CI: 0.61-0.93). A negative trend by number of infections was observed, which was more evident among mature B-cell lymphoma (OR = 0.66 for three infections or more, 95% CI: 0.48-0.90). Our results indicate a potential protective role of common childhood infections in the etiology of B-cell NHL.

12.
Clin Epigenetics ; 11(1): 66, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039828

RESUMO

BACKGROUND: It is well established that estrogens and other hormonal factors influence breast cancer susceptibility. We hypothesized that a woman's total lifetime estrogen exposure accumulates changes in DNA methylation, detectable in the blood, which could be used in risk assessment for breast cancer. METHODS: An estimated lifetime estrogen exposure (ELEE) model was defined using epidemiological data from EPIC-Italy (n = 31,864). An epigenome-wide association study (EWAS) of ELEE was performed using existing Illumina HumanMethylation450K Beadchip (HM450K) methylation data obtained from EPIC-Italy blood DNA samples (n = 216). A methylation index (MI) of ELEE based on 31 CpG sites was developed using HM450K data from EPIC-Italy and the Generations Study and evaluated for association with breast cancer risk in an independent dataset from the Generations Study (n = 440 incident breast cancer cases matched to 440 healthy controls) using targeted bisulfite sequencing. Lastly, a meta-analysis was conducted including three additional cohorts, consisting of 1187 case-control pairs. RESULTS: We observed an estimated 5% increase in breast cancer risk per 1-year longer ELEE (OR = 1.05, 95% CI 1.04-1.07, P = 3 × 10-12) in EPIC-Italy. The EWAS identified 694 CpG sites associated with ELEE (FDR Q < 0.05). We report a DNA methylation index (MI) associated with breast cancer risk that is validated in the Generations Study targeted bisulfite sequencing data (ORQ4_vs_Q1 = 1.77, 95% CI 1.07-2.93, P = 0.027) and in the meta-analysis (ORQ4_vs_Q1 = 1.43, 95% CI 1.05-2.00, P = 0.024); however, the correlation between the MI and ELEE was not validated across study cohorts. CONCLUSION: We have identified a blood DNA methylation signature associated with breast cancer risk in this study. Further investigation is required to confirm the interaction between estrogen exposure and DNA methylation in the blood.

13.
Environ Int ; 128: 193-200, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059914

RESUMO

Traffic-related air pollution (TRAP) is a complex mixture of compounds that contributes to the pathogenesis of many diseases including several types of cancer, pulmonary, cardiovascular and neurodegenerative diseases, and more recently also diabetes mellitus. In search of an early diagnostic biomarker for improved environmental health risk assessment, recent human studies have shown that certain extracellular miRNAs are altered upon exposure to TRAP. Here, we present a global circulating miRNA analysis in a human population exposed to different levels of TRAP. The cross-over study, with sampling taking place during resting and physical activity in two different exposure scenarios, included for each subject personal exposure measurements of PM10,PM2.5, NO, NO2, CO, CO2, BC and UFP. Next-generation sequencing technology was used to identify global circulating miRNA levels across all subjects. We identified 8 miRNAs to be associated with the mixture of TRAP and 27 miRNAs that were associated with the individual pollutants NO, NO2, CO, CO2, BC and UFP. We did not find significant associations between miRNA levels and PM10 or PM2.5. Integrated network analysis revealed that these circulating miRNAs are potentially involved in processes that are implicated in the development of air pollution-induced diseases. Altogether, this study demonstrates that signatures consisting of circulating miRNAs present a potential novel biomarker to be used in health risk assessment.

14.
Breast Cancer Res ; 21(1): 62, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101124

RESUMO

BACKGROUND: Environmental and genetic factors play an important role in the etiology of breast cancer. Several small blood-based DNA methylation studies have reported risk associations with methylation at individual CpGs and average methylation levels; however, these findings require validation in larger prospective cohort studies. To investigate the role of blood DNA methylation on breast cancer risk, we conducted a meta-analysis of four prospective cohort studies, including a total of 1663 incident cases and 1885 controls, the largest study of blood DNA methylation and breast cancer risk to date. METHODS: We assessed associations with methylation at 365,145 CpGs present in the HumanMethylation450 (HM450K) Beadchip, after excluding CpGs that did not pass quality controls in all studies. Each of the four cohorts estimated odds ratios (ORs) and 95% confidence intervals (CI) for the association between each individual CpG and breast cancer risk. In addition, each study assessed the association between average methylation measures and breast cancer risk, adjusted and unadjusted for cell-type composition. Study-specific ORs were combined using fixed-effect meta-analysis with inverse variance weights. Stratified analyses were conducted by age at diagnosis (< 50, ≥ 50), estrogen receptor (ER) status (+/-), and time since blood collection (< 5, 5-10, > 10 years). The false discovery rate (q value) was used to account for multiple testing. RESULTS: The average age at blood draw ranged from 52.2 to 62.2 years across the four cohorts. Median follow-up time ranged from 6.6 to 8.4 years. The methylation measured at individual CpGs was not associated with breast cancer risk (q value > 0.59). In addition, higher average methylation level was not associated with risk of breast cancer (OR = 0.94, 95% CI = 0.85, 1.05; P = 0.26; P for study heterogeneity = 0.86). We found no evidence of modification of this association by age at diagnosis (P = 0.17), ER status (P = 0.88), time since blood collection (P = 0.98), or CpG location (P = 0.98). CONCLUSIONS: Our data indicate that DNA methylation measured in the blood prior to breast cancer diagnosis in predominantly postmenopausal women is unlikely to be associated with substantial breast cancer risk on the HM450K array. Larger studies or with greater methylation coverage are needed to determine if associations exist between blood DNA methylation and breast cancer risk.

15.
Paediatr Perinat Epidemiol ; 33(3): 226-237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31090081

RESUMO

BACKGROUND: Social inequalities in the prevalence of childhood overweight and obesity are well-established, but less is known about when the social gradient first emerges and how it evolves across childhood and adolescence. OBJECTIVE: This study examines maternal education differentials in children's body mass trajectories in infancy, childhood and adolescence using data from four contemporary European child cohorts. METHODS: Prospective data on children's body mass index (BMI) were obtained from four cohort studies-Generation XXI (G21-Portugal), Growing Up in Ireland (GUI) infant and child cohorts, and the Millennium Cohort Study (MCS-UK)-involving a total sample of 41,399 children and 120,140 observations. Children's BMI trajectories were modelled by maternal education level using mixed-effect models. RESULTS: Maternal educational inequalities in children's BMI were evident as early as three years of age. Children from lower maternal educational backgrounds were characterised by accelerated BMI growth, and the extent of the disparity was such that boys from primary-educated backgrounds measured 0.42 kg/m2 (95% CI 0.24, 0.60) heavier at 7 years of age in G21, 0.90 kg/m2 (95% CI 0.60, 1.19) heavier at 13 years of age in GUI and 0.75 kg/m2 (95% CI 0.52, 0.97) heavier in MCS at 14 years of age. The corresponding figures for girls were 0.71 kg/m2 (95% CI 0.50, 0.91), 1.31 kg/m2 (95% CI 1.00, 1.62) and 0.76 kg/m2 (95% CI 0.53, 1.00) in G21, GUI and MCS, respectively. CONCLUSIONS: Maternal education is a strong predictor of BMI across European nations. Socio-economic differentials emerge early and widen across childhood, highlighting the need for early intervention.

17.
Aging (Albany NY) ; 11(7): 2045-2070, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31009935

RESUMO

Differences in health status by socioeconomic position (SEP) tend to be more evident at older ages, suggesting the involvement of a biological mechanism responsive to the accumulation of deleterious exposures across the lifespan. DNA methylation (DNAm) has been proposed as a biomarker of biological aging that conserves memory of endogenous and exogenous stress during life.We examined the association of education level, as an indicator of SEP, and lifestyle-related variables with four biomarkers of age-dependent DNAm dysregulation: the total number of stochastic epigenetic mutations (SEMs) and three epigenetic clocks (Horvath, Hannum and Levine), in 18 cohorts spanning 12 countries.The four biological aging biomarkers were associated with education and different sets of risk factors independently, and the magnitude of the effects differed depending on the biomarker and the predictor. On average, the effect of low education on epigenetic aging was comparable with those of other lifestyle-related risk factors (obesity, alcohol intake), with the exception of smoking, which had a significantly stronger effect.Our study shows that low education is an independent predictor of accelerated biological (epigenetic) aging and that epigenetic clocks appear to be good candidates for disentangling the biological pathways underlying social inequalities in healthy aging and longevity.

18.
J Epidemiol Community Health ; 73(8): 693-702, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30944170

RESUMO

Social position is known to play a role in the quality of ageing, notably through the stimulation/dysregulation of key physiological systems in response to external stresses. Using data from one wave of Understanding Society including 9088 participants, we defined, as an extension of the allostatic load, a synthetic Biological Health Score (BHS) capturing the wear-and-tear of four physiological systems (endocrine, inflammatory, cardiovascular and metabolic systems) and two organs (liver and kidney). We used 16 established blood-derived biomarkers of these systems to calculate the BHS and explored the relative contribution of socioeconomic position to the BHS and its main components across age groups. We identified a systematic decreasing education-related gradient of the BHS (p<0.001) leading to lower biological risk in participants with longer education. Education-related differences in the BHS were detected early in life, and were not attributable to lifestyle and behavioural factors. We found a consistent contribution of the inflammatory and metabolic systems to the overall score throughout from early adulthood onwards, while the contribution of the other four systems seems to vary across age groups and gender. Our findings highlight the social-to-biological processes ultimately leading to health inequalities, and suggest that such disparities can already be detected in the 20-40 years old age group and cannot be fully explained by lifestyle and behavioural factors. This may define early adulthood social condition as a precursor to accelerated biological ageing and as an important target for public health policies.

19.
Environ Int ; 126: 494-503, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849577

RESUMO

To assess environmental exposures at the individual level, new assessment methods and tools are required. We developed an exposure assessment system (ExpoApp) for smartphones. ExpoApp integrates: (i) geo-location and accelerometry measurements from a waist attached smartphone, (ii) data from portable monitors, (iii) geographic information systems, and (iv) individual's information. ExpoApp calculates time spent in microenvironments, physical activity level, inhalation rate, and environmental exposures and doses (e.g., green spaces, inhaled ultrafine particles- UFP). We deployed ExpoApp in a panel study of 158 adults from five cities (Amsterdam and Utrecht- the Netherlands, Basel- Switzerland, Norwich- UK, and Torino- Italy) with an UFP monitor. To evaluate ExpoApp, participants also carried a reference accelerometer (ActiGraph) and completed a travel-activity diary (TAD). System reliability and validity of measurements were evaluated by comparing the monitoring failure rate and the agreement on time spent in microenvironments and physical activity with the reference tools. There were only significant failure rate differences between ExpoApp and ActiGraph in Norwich. Agreement on time in microenvironments and physical activity level between ExpoApp and reference tools was 86.6% (86.5-86.7) and 75.7% (71.5-79.4), respectively. ExpoApp estimated that participants inhaled 16.5 × 1010 particles/day of UFP and had almost no contact with green spaces (24% of participants spent ≥30 min/day in green spaces). Participants with more contact with green spaces had higher inhaled dose of UFP, except for the Netherlands, where the relationship was the inverse. ExpoApp is a reliable system and provides accurate individual's measurements, which may help to understand the role of environmental exposures on the origin and course of diseases.

20.
Psychoneuroendocrinology ; 104: 64-73, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30818253

RESUMO

Individuals of lower socio-economic position (SEP) carry a heavier burden of disease and morbidity and live shorter lives on average compared with their more advantaged counterparts. This has sparked research interest in the processes and mechanisms via which social adversity gets biologically embedded. The present study directly compares the empirical worth of two candidate mechanisms: Allostatic Load (AL) and the Epigenetic Clock(s) for advancing our understanding of embodiment using a sub-sample of 490 individuals from the Irish Longitudinal Study (TILDA) who were explicitly selected for this purpose based on their inter-generational life course social class trajectory. A battery of 14 biomarkers representing the activity of 4 different physiological systems: Immunological, Cardiovascular, Metabolic, and Renal was used to construct the AL score. Biomarkers were dichotomised into high and low risk groups according to sex-specific quartiles of risk and summed to create a count ranging from 0-14. Three measures of epigenetic age acceleration were computed according to three sets of age-associated Cytosine-phosphate-Guanine (CpG) sites described by Horvath, Hannum and Levine. AL was strongly socially patterned across a number of measures of SEP, while the epigenetic clocks were not. AL partially mediated the association between measures of SEP and an objective measure of physiological functioning: performance on the Timed Up and Go (TUG test). We conclude that AL may represent the more promising candidate for understanding the pervasive link between SEP and health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA