RESUMO
Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.
Assuntos
AMP Cíclico , Capacitação Espermática , Espermatozoides , Proteína com Valosina , Animais , Masculino , Capacitação Espermática/efeitos dos fármacos , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Espermatozoides/metabolismo , Camundongos , AMP Cíclico/metabolismo , Fosforilação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genéticaRESUMO
To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro.
RESUMO
Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.
Assuntos
Canais de Cálcio/metabolismo , Espermatozoides/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Sinalização do Cálcio , AMP Cíclico/metabolismo , Feminino , Fertilização in vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Transdução de Sinais , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidoresRESUMO
Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.
Assuntos
Reação Acrossômica , Sinalização do Cálcio , Exocitose , Potenciais da Membrana , Capacitação Espermática , Espermatozoides/fisiologia , Humanos , Masculino , FosforilaçãoRESUMO
In order to acquire fertilizing potential, mammalian sperm must undergo a process known as capacitation , which relies on the early activation of Protein Kinase A (PKA). Frequently, PKA activity is assessed in whole-cell experiments by analyzing the phosphorylation status of its substrates in a western-blot. This technique faces two main disadvantages: it is not a direct measure of the kinase activity and it is a time-consuming approach. However, since PKA can be readily obtained from sperm extracts, in vitro assays such as the "radioactive assay" can be performed using the native enzyme. Unlike western-blot, the radioactive assay is a straightforward technique to evaluate PKA activity by quantification of incorporated 32P into a peptidic substrate. This approach easily allows the analysis of different agonists or antagonists of PKA. Since mouse sperm is a rich source of soluble PKA, this assay allows a simple fractionation that renders PKA usable both for in vitro testing of drugs on PKA activity and for following changes of PKA activity during the onset of capacitation.
RESUMO
Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.
Assuntos
Acrossomo/metabolismo , Citoesqueleto de Actina/metabolismo , Espermatozoides/metabolismo , Animais , Exocitose , Masculino , Camundongos , Imagem MolecularRESUMO
Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3- ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .
Assuntos
Canais de Cálcio/genética , Cálcio/farmacologia , Capacitação Espermática/genética , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Citometria de Fluxo , Técnicas de Inativação de Genes , Genitália Feminina/metabolismo , Genitália Feminina/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/crescimento & desenvolvimentoRESUMO
Protein kinase A (PKA) is a broad-spectrum Ser/Thr kinase involved in the regulation of several cellular activities. Thus, its precise activation relies on being localized at specific subcellular places known as discrete PKA signalosomes. A-Kinase anchoring proteins (AKAPs) form scaffolding assemblies that play a pivotal role in PKA regulation by restricting its activity to specific microdomains. Because one of the first signaling events observed during mammalian sperm capacitation is PKA activation, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. Here, we demonstrate that the anchoring of PKA to AKAP is not only necessary but also actively regulated during sperm capacitation. However, we find that once capacitated, the release of PKA from AKAP promotes a sudden Ca2+ influx through the sperm-specific Ca2+ channel CatSper, starting a tail-to-head Ca2+ propagation that triggers the acrosome reaction. Three-dimensional super-resolution imaging confirmed a redistribution of PKA within the flagellar structure throughout the capacitation process, which depends on anchoring to AKAP. These results represent a new signaling event that involves CatSper Ca2+ channels in the acrosome reaction, sensitive to PKA stimulation upon release from AKAP.
Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Reação Acrossômica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mapas de Interação de Proteínas , Capacitação Espermática , Espermatozoides/citologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/análise , Exocitose , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Espermatozoides/metabolismoRESUMO
STUDY QUESTION: Is image-based flow cytometry a useful tool to study intracellular events in human sperm such as protein tyrosine phosphorylation or signaling processes? SUMMARY ANSWER: Image-based flow cytometry is a powerful tool to study intracellular events in a relevant number of sperm cells, which enables a robust statistical analysis providing spatial resolution in terms of the specific subcellular localization of the labeling. WHAT IS KNOWN ALREADY: Sperm capacitation is required for fertilization. During this process, spermatozoa undergo numerous physiological changes, via activation of different signaling pathways, which are not completely understood. Classical approaches for studying sperm physiology include conventional microscopy, flow cytometry and Western blotting. These techniques present disadvantages for obtaining detailed subcellular information of signaling pathways in a relevant number of cells. This work describes a new semi-automatized analysis using image-based flow cytometry which enables the study, at the subcellular and population levels, of different sperm parameters associated with signaling. The increase in protein tyrosine phosphorylation during capacitation is presented as an example. STUDY DESIGN SIZE, DURATION: Sperm cells were isolated from seminal plasma by the swim-up technique. We evaluated the intensity and distribution of protein tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h under different experimental conditions. We used an antibody against FER kinase and pharmacological inhibitors in an attempt to identify the kinases involved in protein tyrosine phosphorylation during human sperm capacitation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen samples from normospermic donors were obtained by masturbation after 2-3 days of sexual abstinence. We used the innovative technique image-based flow cytometry and image analysis tools to segment individual images of spermatozoa. We evaluated and quantified the regions of sperm where protein tyrosine phosphorylation takes place at the subcellular level in a large number of cells. We also used immunocytochemistry and Western blot analysis. Independent experiments were performed with semen samples from seven different donors. MAIN RESULTS AND THE ROLE OF CHANCE: Using image analysis tools, we developed a completely novel semi-automatic strategy useful for segmenting thousands of individual cell images obtained using image-based flow cytometry. Contrary to immunofluorescence which relies on the analysis of a limited sperm population and also on the observer, image-based flow cytometry allows for unbiased quantification and simultaneous localization of post-translational changes in an extended sperm population. Interestingly, important data can be independently analyzed by looking to the frame of interest. As an example, we evaluated the capacitation-associated increase in tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h. As previously reported, protein tyrosine phosphorylation increases in a time-depending manner, but our method revealed that this increase occurs differentially among distinct sperm segments. FER kinase is reported to be the enzyme responsible for the increase in protein tyrosine phosphorylation in mouse sperm. Our Western blot analysis revealed for the first time the presence of this enzyme in human sperm. Using our segmentation strategy, we aimed to quantify the effect of pharmacological inhibition of FER kinase and found a marked reduction of protein tyrosine phosphorylation only in the flagellum, which corresponded to the physical localization of FER in human sperm. Our method provides an alternative strategy to study signaling markers associated with capacitation, such as protein tyrosine phosphorylation, in a fast and quantitative manner. LARGE SCALE DATA: None. LIMITATIONS REASONS FOR CAUTION: This is an in vitro study performed under controlled conditions. Chemical inhibitors are not completely specific for the intended target; the possibility of side effects cannot be discarded. WIDER IMPLICATIONS OF THE FINDINGS: Our results demonstrate that the use of image-based flow cytometry is a very powerful tool to study sperm physiology. A large number of cells can be easily analyzed and information at the subcellular level can be obtained. As the segmentation process works with bright-field images, it can be extended to study expression of other proteins of interest using different antibodies or it can be used in living sperm to study intracellular parameters that can be followed using fluorescent dyes sensitive to the parameter of interest (e.g. pH, Ca2+). Therefore, this a versatile method that can be exploited to study several aspects of sperm physiology. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported DGAPA (IN203116 to C. Treviño), Fronteras-CONACyT No. 71 and Eunice Kennedy Shriver National Institute of Child Health and Human Development NIH (RO1 HD38082) to P.E. Visconti and by a Lalor Foundation fellowship to M.G. Gervasi. A. Matamoros is a student of the Maestría en Ciencias Bioquímicas-UNAM program supported by CONACyT (416400) and DGAPA-UNAM. A. Moreno obtained a scholarship from Red MacroUniversidades and L. Giojalas obtained a schloarhip from CONICET and Universidad Nacional de Cordoba. The authors declare there are not conflicts of interest.
Assuntos
Citometria de Fluxo/métodos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Tirosina/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Quinase 2 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/metabolismo , Immunoblotting , Masculino , Fosforilação/efeitos dos fármacos , Quinolonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática , Motilidade dos Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologiaRESUMO
Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3- is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3- is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3- -entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation. J. Cell. Physiol. 232: 1404-1414, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Álcalis/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Potenciais da Membrana , Capacitação Espermática , Reação Acrossômica/efeitos dos fármacos , Benzoatos/metabolismo , Movimento Celular/efeitos dos fármacos , Cloretos/metabolismo , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoquinolinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiazolidinas/metabolismoRESUMO
Physiological changes that endow mammalian sperm with fertilizing capacity are known as sperm capacitation. As part of capacitation, sperm develop an asymmetrical flagellar beating known as hyperactivation and acquire the ability to undergo the acrosome reaction. Together, these processes promote fertilizing competence in sperm. At the molecular level, capacitation involves a series of signal transduction events which include activation of cAMP-dependent phosphorylation pathways, removal of cholesterol, hyperpolarization of the sperm plasma membrane, and changes in ion permeability. In recent years, new technologies have aided in the study of sperm signaling molecules with better resolution, at both spatial and temporal levels, unraveling how different cascades integrate and cooperate to render a fertilizing sperm. Despite this new information, the molecular mechanisms connecting capacitation with acrosomal exocytosis and hyperactivation are not well understood. This review brings together results obtained in mammalian species in the field of sperm capacitation with special focus on those pathways involved in the preparation to undergo the acrosomal reaction.
Assuntos
Reação Acrossômica/fisiologia , Membrana Celular/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/fisiologia , Animais , Permeabilidade da Membrana Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Transporte de Íons , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Mamíferos , Fosforilação , Transdução de Sinais , Espermatozoides/citologiaRESUMO
Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.
Assuntos
Reação Acrossômica/fisiologia , Cofilina 1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exocitose , Quinases Lim/metabolismo , Capacitação Espermática/fisiologia , Actinas/metabolismo , Animais , Cruzamentos Genéticos , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Fosforilação , Transdução de Sinais , Espermatozoides/metabolismoRESUMO
Plasma membrane hyperpolarization is crucial for mammalian sperm to acquire acrosomal responsiveness during capacitation. Among the signaling events leading to mammalian sperm capacitation, the immediate activation of protein kinase A plays a pivotal role, promoting the subsequent stimulation of protein tyrosine phosphorylation that associates with fertilizing capacity. We have shown previously that mice deficient in the tyrosine kinase cSrc are infertile and exhibit improper cauda epididymis development. It is therefore not clear whether lack of sperm functionality is due to problems in epididymal maturation or to the absence of cSrc in sperm. To further address this problem, we investigated the kinetics of cSrc activation using anti-Tyr(P)-416-cSrc antibodies that only recognize active cSrc. Our results provide evidence that cSrc is activated downstream of PKA and that inhibition of its activity blocks the capacitation-induced hyperpolarization of the sperm plasma membrane without blocking the increase in tyrosine phosphorylation that accompanies capacitation. In addition, we show that cSrc inhibition also blocks the agonist-induced acrosome reaction and that this inhibition is overcome by pharmacological hyperpolarization. Considering that capacitation-induced hyperpolarization is mediated by SLO3, we evaluated the action of cSrc inhibitors on the heterologously expressed SLO3 channel. Our results indicate that, similar to SLO1 K(+) channels, cSrc blockers significantly decreased SLO3-mediated currents. Together, these results are consistent with findings showing that hyperpolarization of the sperm plasma membrane is necessary and sufficient to prepare the sperm for the acrosome reaction and suggest that changes in sperm membrane potential are mediated by cSrc activation.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Potenciais da Membrana/genética , Quinases da Família src/metabolismo , Acrossomo/metabolismo , Animais , Membrana Celular/genética , Polaridade Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Camundongos , Transdução de Sinais/genética , Capacitação Espermática/genética , Espermatozoides/metabolismo , Quinases da Família src/genéticaRESUMO
Cyclic adenosine 3',5'-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cyclases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Assuntos
Adenilil Ciclases/fisiologia , AMP Cíclico/fisiologia , Espermatozoides/fisiologia , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Hidrólise , Masculino , Transdução de Sinais , Espermatozoides/enzimologiaRESUMO
Animals with external fertilization, as amphibians, store their sperm in a quiescent state in the testis. When spermatozoa are released into natural fertilization media, the hypotonic shock triggers activation of sperm motility. Rhinella (Bufo) arenarum sperm are immotile in artificial seminal plasma (ASP, resembling testicular plasma tonicity) but acquire in situ flagellar beating upon dilution. However, if components from the egg shelly coat are added to this medium, motility shifts to a progressive pattern. Recently, we have shown that the signal transduction pathway required for in situ motility activation involves a rise in intracellular cAMP through a transmembrane adenylyl cyclase and activation of PKA, mostly in the midpiece and in the sperm head. In this report, we demonstrate that activation of calcineurin (aka PP2B and PPP3) is required for the shift from in situ to progressive sperm motility. The effect of calcineurin is manifested by dephosphorylation of PKC substrates, and can be promoted by intracellular calcium rise by Ca(2+) ionophore. Both phosphorylated PKC substrates and calcineurin localized to the flagella, indicating a clear differentiation between compartmentalization of PKA and calcineurin pathways. Moreover, no crosstalk is observed between these signaling events, even though both pathways are required for progressive motility acquisition as discussed.
Assuntos
Proteínas de Anfíbios/metabolismo , Bufo arenarum/metabolismo , Calcineurina/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatozoides/enzimologia , Animais , Inibidores de Calcineurina , Ionóforos de Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Flagelos/enzimologia , Masculino , Pressão Osmótica , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Peça Intermédia do Espermatozoide/enzimologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Cauda do Espermatozoide/enzimologia , Espermatozoides/efeitos dos fármacos , Especificidade por SubstratoRESUMO
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/protein kinase A (PKA) pathway and involves increases in intracellular Ca(2+), pH, Cl(-), protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole-cell patch-clamp recordings from testicular mouse sperm now reveal a Cl(-) selective component to membrane current that is ATP-dependent, stimulated by cAMP, cGMP, and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTR(inh) -172, two well-known CFTR antagonists. Furthermore, the Cl(-) current component activated by cAMP and inhibited by CFTR(inh) -172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss-of-function mutation, indicating that CFTR is responsible for this component. A Cl(-) selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTR(inh) -172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Espermatozoides/metabolismo , Animais , Benzoatos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fenômenos Eletrofisiológicos , Feminino , Genisteína/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Técnicas de Patch-Clamp , Capacitação Espermática/fisiologia , Tiazolidinas/farmacologia , ortoaminobenzoatos/farmacologiaRESUMO
Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation.
Assuntos
Adenilil Ciclases/metabolismo , Bufo arenarum/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Inibidores de Adenilil Ciclases , Animais , Membrana Celular/enzimologia , AMP Cíclico/metabolismo , Ativação Enzimática , Soluções Hipotônicas/farmacologia , Masculino , Fosforilação , Espermatozoides/efeitos dos fármacos , Espermatozoides/enzimologiaRESUMO
Sperm from the toad Bufo arenarum must penetrate the egg jelly before reaching the vitelline envelope (VE), where the acrosome reaction is triggered. When the jelly coat is removed, sperm still bind to the VE, but acrosomal exocytosis is not promoted. Our previous work demonstrated that diffusible substances of the jelly coat, termed "egg water" (EW), triggered capacitation-like changes in B. arenarum sperm, promoting the acquisition of a transient fertilizing capacity. In the present work, we correlated this fertilizing capacity with the ability of the sperm to undergo the acrosome reaction, further substantiating the role of the jelly coat in fertilization. When sperm were exposed to the VE, only those preincubated in EW for 5 or 8 min underwent an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which led to acrosomal exocytosis. Responsiveness to the VE was not acquired on preincubation in EW for 2 or 15 min or in Ringer solution regardless of the preincubation time. In contrast, depletion of intracellular Ca(2+) stores (induced by thapsigargin) promoted [Ca(2+)](i) rise and the acrosome reaction even in sperm that were not exposed to EW. Acrosomal exocytosis was blocked by the presence of Ca(2+) chelators independent of whether a physiological or pharmacological stimulus was used. However, Ni(2+) and mibefradil prevented [Ca(2+)](i) rise and the acrosome reaction of sperm exposed to the VE but not of sperm exposed to thapsigargin. These data suggest that the acrosomal responsiveness of B. arenarum sperm, present during a narrow period, is acquired during EW incubation and involves the modulation of a voltage-dependent Ca(2+) channel.
Assuntos
Reação Acrossômica/fisiologia , Bufo arenarum/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Membrana Vitelina/fisiologia , Zona Pelúcida/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Masculino , Modelos Biológicos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Tapsigargina/farmacologia , Membrana Vitelina/efeitos dos fármacos , Membrana Vitelina/metabolismoRESUMO
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a "capacitating" activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (egg water) for 90-180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO(3) and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.
Assuntos
Bufo arenarum/metabolismo , Espermatozoides/metabolismo , Reação Acrossômica , Animais , Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Fertilização , Masculino , Oócitos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Capacitação Espermática , Interações Espermatozoide-Óvulo , beta-Ciclodextrinas/metabolismoRESUMO
The mechanisms involved in the regulation of mammalian sperm motility are not well understood. Calcium ions (Ca(2+)) have been suggested to play a key role in the maintenance of motility; nevertheless, how Ca(2+) modulates this process has not yet been completely characterized. Ca(2+) can bind to calmodulin and this complex regulates the activity of multiple enzymes, including Ca(2+)/calmodulin-dependent protein kinases (CaM kinases). Results from this study confirmed that the presence of Ca(2+) in the incubation medium is essential for maintaining human sperm motility. The involvement of CaM kinases in Ca(2+) regulation of human sperm motility was evaluated using specific inhibitors (KN62 and KN93) or their inactive analogues (KN04 and KN92 respectively). Sperm incubation in the presence of KN62 or KN93 led to a progressive decrease in the percentage of motile cells; in particular, incubation with KN62 also reduced sperm motility parameters. These inhibitors did not alter sperm viability, protein tyrosine phosphorylation or the follicular fluid-induced acrosome reaction; however, KN62 decreased the total amount of ATP in human sperm. Immunological studies showed that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is present and localizes to the human sperm flagellum. Moreover, CaMKIV activity increases during capacitation and is inhibited in the presence of KN62. This report is the first to demonstrate the presence of CaMKIV in mammalian sperm and suggests the involvement of this kinase in the regulation of human sperm motility.