Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Plant J ; 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33220113

RESUMO

Plants regulate their reproductive cycles under the influence of environmental cues such as day length, temperature, and water availability. In potato, vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR, StCDF1 was shown to regulate tuberization. We now show that StCDF1, together with a lncRNA counterpart named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water limiting conditions. Conversely, elevated expression of StFLORE both by overexpression of StFLORE or down regulation of StCDF1, results in an increased tolerance to drought through reducing water loss. While StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family members, as well as StCO genes through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.

2.
Genes (Basel) ; 11(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137951

RESUMO

A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties. Known mutations in fruit size and shape genes could well explain the fruit size variation, and fruit colour variation could be well explained by known mutations in key genes of the carotenoid and flavonoid pathway. The presence and phenotype of several plant architecture affecting mutations, such as self-pruning (sp), compound inflorescence (s), jointless-2 (j-2), and potato leaf (c) were also confirmed. This study provides valuable phenotypic information on important plant growth- and quality-related traits in this collection. The allelic distribution of known genes that underlie these traits provides insight into the role and importance of these genes in tomato domestication and breeding. This resource can be used to support (precision) breeding strategies for tomato crop improvement.

3.
Front Plant Sci ; 11: 569876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193500

RESUMO

One of the biggest problems in cucumber cultivation is cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis. Whereas DM in cucumber was previously efficiently controlled by the dm-1 gene from Indian cucumber accession PI 197087, this resistance was broken by new DM strains, prompting the search for novel sources of resistance. A promising source of resistance is the wild cucumber accession PI 197088. It was previously shown that DM resistance in this genotype inherits polygenically. In this paper, we put the focus on one of the QTL, DM4.1 that is located on chromosome 4. QTL DM4.1 was shown to consist of three subQTL: DM4.1.1 affected pathogen-induced necrosis, DM4.1.2 was shown to have an additive effect on sporulation, and DM4.1.3 had a recessive effect on chlorosis as well as an effect on sporulation. Near-isogenic lines (NILs) were produced by introgressing the subQTLs into a susceptible cucumber line (HS279) with good horticultural traits. Transcriptomic analysis revealed that many genes in general, and defense pathway genes in particular, were differentially expressed in NIL DM4.1.1/.2 compared to NIL DM4.1.3 and the susceptible parent HS279. This indicates that the resistance from subQTL DM4.1.1 and/or subQTL DM4.1.2 likely involves defense signaling pathways, whereas resistance due to subQTL DM4.1.3 is more likely to be independent of known defense pathways. Based on fine-mapping data, we identified the RLK gene CsLRK10L2 as a likely candidate for subQTL DM4.1.2, as this gene was found to have a loss-of-function mutation in the susceptible parent HS279, and was strongly upregulated by P. cubensis inoculation in NIL DM4.1.1/.2. Heterologous expression of this gene triggered necrosis, providing further evidence that this gene is indeed causal for subQTL DM4.1.2.

4.
Front Plant Sci ; 11: 545306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013967

RESUMO

The whitefly-transmitted tomato yellow leaf curl virus (TYLCV) is one of the most destructive viral pathogens of cultivated tomato. To combat TYLCV, resistance gene Ty-2 has been introduced into cultivated tomato (Solanum lycopersicum) from wild tomato species Solanum habrochaites by interspecific crossing. Introgression lines with Ty-2 contain a large inversion compared with S. lycopersicum, which causes severe suppression of recombination and has hampered the cloning of Ty-2 so far. Here, we report the fine-mapping and cloning of Ty-2 using crosses between a Ty-2 introgression line and several susceptible S. habrochaites accessions. Ty-2 was shown to encode a nucleotide-binding leucine-rich repeat (NLR) protein. For breeding purposes, a highly specific DNA marker tightly linked to the Ty-2 gene was developed permitting marker-assisted selection. The resistance mediated by Ty-2 was effective against the Israel strain of TYLCV (TYLCV-IL) and tomato yellow leaf curl virus-[China : Shanghai2] (TYLCV-[CN : SH2]), but not against tomato yellow leaf curl Sardinia virus (TYLCSV) and leafhopper-transmitted beet curly top virus (BCTV). By co-infiltration experiments we showed that transient expression of the Rep/C1 protein of TYLCV, but not of TYLCSV triggered a hypersensitive response (HR) in Nicotiana benthamiana plants co-expressing the Ty-2 gene. Our results indicate that the Rep/C1 gene of TYLCV-IL presents the avirulence determinant of Ty-2-mediated resistance.

5.
Nat Genet ; 52(10): 1018-1023, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989320

RESUMO

Potato (Solanum tuberosum L.) is the most important tuber crop worldwide. Efforts are underway to transform the crop from a clonally propagated tetraploid into a seed-propagated, inbred-line-based hybrid, but this process requires a better understanding of potato genome. Here, we report the 1.67-Gb haplotype-resolved assembly of a diploid potato, RH89-039-16, using a combination of multiple sequencing strategies, including circular consensus sequencing. Comparison of the two haplotypes revealed ~2.1% intragenomic diversity, including 22,134 predicted deleterious mutations in 10,642 annotated genes. In 20,583 pairs of allelic genes, 16.6% and 30.8% exhibited differential expression and methylation between alleles, respectively. Deleterious mutations and differentially expressed alleles were dispersed throughout both haplotypes, complicating strategies to eradicate deleterious alleles or stack beneficial alleles via meiotic recombination. This study offers a holistic view of the genome organization of a clonally propagated diploid species and provides insights into technological evolution in resolving complex genomes.


Assuntos
Genoma de Planta/genética , Haplótipos/genética , Anotação de Sequência Molecular , Solanum tuberosum/genética , Alelos , Diploide , Heterozigoto , Tetraploidia
6.
Theor Appl Genet ; 133(12): 3419-3439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32918590

RESUMO

KEY MESSAGE: Two novel major effect loci (Sen4 and Sen5) and several minor effect QTLs for potato wart disease resistance have been mapped. The importance of minor effect loci to bring full resistance to wart disease was investigated. Using the newly identified and known wart disease resistances, a panel of potato breeding germplasm and Solanum wild species was screened. This provided a state-of-the-art "hitch-hikers-guide" of complementary wart disease resistance sources. Potato wart disease, caused by the obligate biotrophic soil-born fungus Synchytrium endobioticum, is the most important quarantine disease of potato. Because of its huge impact on yield, the lack of chemical control and the formation of resting spores with long viability, breeding for resistant varieties combined with strict quarantine measures are the only way to efficiently and durably manage the disease. In this study, we set out to make an inventory of the different resistance sources. Using a Genome-Wide Association Study (GWAS) in the potato breeding genepool, we identified Sen4, associated with pathotypes 2, 6 and 18 resistance. Associated SNPs mapped to the south arm of chromosome 12 and were validated to be linked to resistance in one full-sib population. Also, a bulked segregant analysis combined with a Comparative Subsequence Sets Analysis (CoSSA) resulted in the identification of Sen5, associated with pathotypes 2, 6 and 18 resistance, on the south arm of chromosome 5. In addition to these two major effect loci, the GWAS and CoSSA allowed the identification of several quantitative trait loci necessary to bring full resistance to certain pathotypes. Panels of varieties and Solanum accessions were screened for the presence of Sen1, Sen2, Sen3, Sen4 and Sen5. Combined with pedigree analysis, we could trace back some of these genes to the ancestral resistance donors. This analysis revealed complementary resistance sources and allows elimination of redundancy in wart resistance breeding programs.

8.
G3 (Bethesda) ; 10(10): 3489-3495, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759330

RESUMO

With the rapid expansion of the application of genomics and sequencing in plant breeding, there is a constant drive for better reference genomes. In potato (Solanum tuberosum), the third largest food crop in the world, the related species S. phureja, designated "DM", has been used as the most popular reference genome for the last 10 years. Here, we introduce the de novo sequenced genome of Solyntus as the next standard reference in potato genome studies. A true Solanum tuberosum made up of 116 contigs that is also highly homozygous, diploid, vigorous and self-compatible, Solyntus provides a more direct and contiguous reference then ever before available. It was constructed by sequencing with state-of-the-art long and short read technology and assembled with Canu. The 116 contigs were assembled into scaffolds to form each pseudochromosome, with three contigs to 17 contigs per chromosome. This assembly contains 93.7% of the single-copy gene orthologs from the Solanaceae set and has an N50 of 63.7 Mbp. The genome and related files can be found at https://www.plantbreeding.wur.nl/Solyntus/ With the release of this research line and its draft genome we anticipate many exciting developments in (diploid) potato research.

9.
mBio ; 11(3)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605983

RESUMO

Plants deploy cell surface receptors known as pattern-recognition receptors (PRRs) that recognize non-self molecules from pathogens and microbes to defend against invaders. PRRs typically recognize microbe-associated molecular patterns (MAMPs) that are usually widely conserved, some even across kingdoms. Here, we report an oomycete-specific family of small secreted cysteine-rich (SCR) proteins that displays divergent patterns of sequence variation in the Irish potato famine pathogen Phytophthora infestans A subclass that includes the conserved effector PcF from Phytophthora cactorum activates immunity in a wide range of plant species. In contrast, the more diverse SCR74 subclass is specific to P. infestans and tends to trigger immune responses only in a limited number of wild potato genotypes. The SCR74 response was recently mapped to a G-type lectin receptor kinase (G-LecRK) locus in the wild potato Solanum microdontum subsp. gigantophyllum. The G-LecRK locus displays a high diversity in Solanum host species compared to other solanaceous plants. We propose that the diversification of the SCR74 proteins in P. infestans is driven by a fast coevolutionary arms race with cell surface immune receptors in wild potato, which contrasts the presumed slower dynamics between conserved apoplastic effectors and PRRs. Understanding the molecular determinants of plant immune responses to these divergent molecular patterns in oomycetes is expected to contribute to deploying multiple layers of disease resistance in crop plants.IMPORTANCE Immune receptors at the plant cell surface can recognize invading microbes. The perceived microbial molecules are typically widely conserved and therefore the matching surface receptors can detect a broad spectrum of pathogens. Here we describe a family of Phytophthora small extracellular proteins that consists of conserved subfamilies that are widely recognized by solanaceous plants. Remarkably, one subclass of SCR74 proteins is highly diverse, restricted to the late blight pathogen Phytophthora infestans and is specifically detected in wild potato plants. The diversification of this subfamily exhibits signatures of a coevolutionary arms race with surface receptors in potato. Insights into the molecular interaction between these potato-specific receptors and the recognized Phytophthora proteins are expected to contribute to disease resistance breeding in potato.

10.
BMC Plant Biol ; 20(1): 284, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560695

RESUMO

BACKGROUND: The development of CRISPR/Cas9 technology has facilitated targeted mutagenesis in an efficient and precise way. Previously, RNAi silencing of the susceptibility (S) gene PowderyMildewResistance 4 (PMR4) in tomato has been shown to enhance resistance against the powdery mildew pathogen Oidium neolycopersici (On). RESULTS: To study whether full knock-out of the tomato PMR4 gene would result in a higher level of resistance than in the RNAi-silenced transgenic plants we generated tomato PMR4 CRISPR mutants. We used a CRISPR/Cas9 construct containing four single-guide RNAs (sgRNAs) targeting the tomato PMR4 gene to increase the possibility of large deletions in the mutants. After PCR-based selection and sequencing of transformants, we identified five different mutation events, including deletions from 4 to 900-bp, a 1-bp insertion and a 892-bp inversion. These mutants all showed reduced susceptibility to On based on visual scoring of disease symptoms and quantification of relative fungal biomass. Histological observations revealed a significantly higher occurrence of hypersensitive response-like cell death at sites of fungal infection in the pmr4 mutants compared to wild-type plants. Both haustorial formation and hyphal growth were diminished but not completely inhibited in the mutants. CONCLUSION: CRISPR/Cas-9 targeted mutagenesis of the tomato PMR4 gene resulted in mutants with reduced but not complete loss of susceptibility to the PM pathogen On. Our study demonstrates the efficiency and versatility of the CRISPR/Cas9 system as a powerful tool to study and characterize S-genes by generating different types of mutations.

11.
Plant J ; 103(3): 1189-1204, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369642

RESUMO

Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations. This led to the identification of the major sensorial and chemical components determining fruit flavor variation and detection of the underlying QTLs. The high representation of QTL haplotypes in the breeders' germplasm suggests that there is great potential for applying these QTLs in current breeding programs aimed at improving tomato flavor. A QTL on chromosome 4 was found to affect the levels of the phenylalanine-derived volatiles (PHEVs) 2-phenylethanol, phenylacetaldehyde and 1-nitro-2-phenylethane. Fruits of near-isogenic lines contrasting for this locus and in the composition of PHEVs significantly differed in the perception of fruity and rose-hip-like aroma. The PHEV locus was fine mapped, which allowed for the identification of FLORAL4 as a candidate gene for PHEV regulation. Using a gene-editing-based (CRISPR-CAS9) reverse-genetics approach, FLORAL4 was demonstrated to be the key factor in this QTL affecting PHEV accumulation in tomato fruit.

12.
Trends Biotechnol ; 38(5): 465-467, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302577

RESUMO

We discuss options to reform the EU genetically modified organism (GMO) regulatory framework, make risk assessment and decision-making more consistent with scientific principles, and lay the groundwork for international coherence. In this third of three articles, we focus on labeling and coexistence as well as discuss the political reality and potential ways forward.

13.
New Phytol ; 227(4): 1264-1276, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32285454

RESUMO

The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.

14.
New Phytol ; 227(1): 260-273, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171029

RESUMO

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.

15.
Trends Biotechnol ; 38(4): 349-351, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32171418

RESUMO

Here, we discuss options to reform the EU genetically modified organism (GMO) regulatory framework, to make risk assessment and decision-making more consistent with scientific principles, and to lay the groundwork for international coherence. We discussed the scope and definitions in a previous article and, thus, here we focus on the procedures for risk assessment and risk management.

16.
Theor Appl Genet ; 133(6): 1859-1871, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32043234

RESUMO

KEY MESSAGE: A Genome-Wide Association Study using 330 commercial potato varieties identified haplotype specific SNP markers associated with pathotype 1(D1) wart disease resistance. Synchytrium endobioticum is a soilborne obligate biotrophic fungus responsible for wart disease. Growing resistant varieties is the most effective way to manage the disease. This paper addresses the challenge to apply molecular markers in potato breeding. Although markers linked to Sen1 were published before, the identification of haplotype-specific single-nucleotide polymorphisms may result in marker assays with high diagnostic value. To identify hs-SNP markers, we performed a genome-wide association study (GWAS) in a panel of 330 potato varieties representative of the commercial potato gene pool. SNP markers significantly associated with pathotype 1 resistance were identified on chromosome 11, at the position of the previously identified Sen1 locus. Haplotype specificity of the SNP markers was examined through the analysis of false positives and false negatives and validated in two independent full-sib populations. This paper illustrates why it is not always feasible to design markers without false positives and false negatives for marker-assisted selection. In the case of Sen1, founders could not be traced because of a lack of identity by descent and because of the decay of linkage disequilibrium between Sen1 and flanking SNP markers. Sen1 appeared to be the main source of pathotype 1 resistance in potato varieties, but it does not explain all the resistance observed. Recombination and introgression breeding may have introduced new, albeit rare haplotypes involved in pathotype 1 resistance. The GWAS approach, in such case, is instrumental to identify SNPs with the best possible diagnostic value for marker-assisted breeding.

17.
Trends Biotechnol ; 38(3): 231-234, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32059122

RESUMO

We discuss options to reform the EU genetically modified organisms (GMO) regulatory framework, make risk assessment and decision-making more consistent with scientific principles, and lay the groundwork for international coherence. The first in a three-part series, this article focuses on reform options related to the scope of the legislation and the GMO definition.

18.
Planta ; 251(2): 45, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915930

RESUMO

MAIN CONCLUSION: Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.


Assuntos
Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Xilema/metabolismo , Xilema/fisiologia , Adaptação Fisiológica/fisiologia , Transporte Biológico/fisiologia , Secas , Imagem por Ressonância Magnética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia
19.
Hortic Res ; 7: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31908809

RESUMO

Myzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper-aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.

20.
Theor Appl Genet ; 133(1): 227-237, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595336

RESUMO

KEY MESSAGE: A QTL for aphid resistance on pepper chromosome 2 was identified and validated. This QTL affects aphid survival and reproduction, and was fine mapped to a locus containing LRR-RLK analogues. Myzus persicae is one of the most threatening insect pests that adversely affects pepper (Capsicum) cultivation. Resistance to aphids was previously identified in Capsicum baccatum. This study aimed at elucidating the genetics of aphid resistance in C. baccatum. A QTL analysis was carried out for M. persicae resistance in an F2 population derived from an intraspecific cross between a highly resistant plant and a susceptible plant. Survival and reproduction were used as resistance parameters. Interval mapping detected two QTLs affecting aphid survival (Rmpas-1) and reproduction (Rmprp-1), respectively, both localized in the same area and sharing the same top marker on chromosome 2. Use of this marker as co-factor in multiple-QTL mapping analysis revealed a second, minor QTL (Rmprp-2) only affecting aphid reproduction, on chromosome 4. Fine mapping confirmed the effects of Rmpas-1 and Rmprp-1 and narrowed the major QTL Rmprp-1 down to a genomic region of 96 kb which is predicted to encode four analogues of resistance genes of the receptor-like kinase family containing a leucine-rich repeat domain (LRR-RLKs). This work provides not only initial information for breeding aphid-resistant pepper varieties, but also forms the basis for future molecular analysis of gene(s) involved in aphid resistance.


Assuntos
Afídeos/fisiologia , Capsicum/genética , Capsicum/parasitologia , Resistência à Doença/genética , Genes de Plantas , Loci Gênicos , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , Animais , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Escore Lod , Anotação de Sequência Molecular , Locos de Características Quantitativas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...