Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 301: 134754, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490750

RESUMO

The excessive and unorganised utilisation of pesticides have posed negative impacts on soil and water at higher levels. Pesticides are a major class of persistent organic compounds with high resistance to natural biodegradation and enhanced tendency to bio accumulate. The severe health hazards imposed on the living organisms hinder the ecosystem and lead to chronic and irreversible health issues. Photocatalytic method is reported as a potential alternative with a variety of techniques and materials that are safer, easier, durable, cost-effective and efficient. Nanomaterials play a key role in this domain due to their versatility. In particular, nanostructured materials of organized shapes and morphological properties have gained enormous attention in research and real-time applications. Specifically, nanomaterials like nanotubes, nanorods and nanowires have unique properties and anisotropic structure that make them more suitable for treating pesticide wastes with photocatalysis. Variety of tuning methods and materials are emerging to enhance the activity of titanium and zinc based nanocatalysts in remediation methods. In the present article, four pesticides, namely, atrazine, chlorpyrifos, paraquat and naphthalene are chosen due to their common occurrence and usage in agricultural applications. These pesticides are highly toxic and need special attention to explore appropriate remediation methods. The report also details the latest innovations reported by several research studies in exploring the potential of specially synthesised nanoparticles for photocatalytic removal of pesticide pollutants from environment. For zinc-based hybrid nanomaterials, the maximum disintegration reported were 99%, 98%, 73.3% and 92.3% for atrazine, chlorpyrifos, paraquat and naphthalene, respectively.

2.
Environ Res ; 212(Pt C): 113380, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537493

RESUMO

The current work reviews the quantitative microbiological risk assessment of antibiotic-resistant bacteria (ARB) in greywater and discusses the international strategies currently used for reducing antimicrobial resistance. The work highlights the countries that have a plan for the treatment and reuse of greywater and the current guidelines used in these countries. The paper also investigates the role of greywater in the distribution of antimicrobial resistance because of antibiotics and ARB. A bibliometric analysis was conducted for the studies on greywater, pathogenic bacteria, and antibiotics. The studies obtained from Scopus database were screened and compared to obtain the data for global antimicrobial resistance in 2000 and 2021. The strategies used by developed countries that led to the reduction in the recorded antimicrobial resistance are also listed. The challenges and limitations associated with the current plans adopted by several countries to minimise the spreading of the antimicrobial resistance are highlighted, while proposed solutions are provided. Two main issues associated with the distribution of antimicrobial resistance are (1) the absence of a plan in developing counties and presence of antimicrobial agents and ARB in the environment and (2) the difficulties in the current treatment technologies used for the removal of these antimicrobial agents from the water and wastewater. Based on the review and discussion, it was concluded that more advanced technologies are required to ensure total elimination of the antimicrobial agents and ARB from the environment. In addition, a new international standard should be drafted for the ARB in the environment, as they differ from the one currently used for medical applications.

3.
Chemosphere ; 300: 134514, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398076

RESUMO

Composting is a promising technology to decompose organic waste into humus-like high-quality compost, which can be used as organic fertilizer. However, greenhouse gases (N2O, CO2, CH4) and odorous emissions (H2S, NH3) are major concerns as secondary pollutants, which may pose adverse environmental and health effects. During the composting process, nitrogen cycle plays an important role to the compost quality. This review aimed to (1) summarizes the nitrogen cycle of the composting, (2) examine the operational parameters, microbial activities, functions of enzymes and genes affecting the nitrogen cycle, and (3) discuss mitigation strategies for nitrogen loss. Operational parameters such as moisture, oxygen content, temperature, C/N ratio and pH play an essential role in the nitrogen cycle, and adjusting them is the most straightforward method to reduce nitrogen loss. Also, nitrification and denitrification are the most crucial processes of the nitrogen cycle, which strongly affect microbial community dynamics. The ammonia-oxidizing bacteria or archaea (AOB/AOA) and the nitrite-oxidizing bacteria (NOB), and heterotrophic and autotrophic denitrifiers play a vital role in nitrification and denitrification with the involvement of ammonia monooxygenase (amoA) gene, nitrate reductase genes (narG), and nitrous oxide reductase (nosZ). Furthermore, adding additives such as struvite salts (MgNH4PO4·6H2O), biochar, and zeolites (clinoptilolite), and microbial inoculation, namely Bacillus cereus (ammonium strain), Pseudomonas donghuensis (nitrite strain), and Bacillus licheniformis (nitrogen fixer) can help control nitrogen loss. This review summarized critical issues of the nitrogen cycle and nitrogen loss in order to help future composting research with regard to compost quality and air pollution/odor control.

4.
Chemosphere ; 301: 134635, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35447212

RESUMO

Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.

5.
Chemosphere ; : 134488, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35385764

RESUMO

Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field. Moreover, the research direction to fill knowledge gaps was proposed and highlighted. Results demonstrated the commonly referenced conditions during composting mixed biochar should be reached such as pH (6.5-7.5), moisture (50-60%), initial C/N ratio (20-25:1), biochar doses (1-20% w/w), improved oxygen content availability, enhanced the performance and humification, accelerating organic matter decomposition through faster microbial growth. Biochar significantly decreased GHGs and odorous emissions by adding a 5-10% dosage range due to its larger surface area and porosity. On the other hand, with high exchange capacity and interaction with organic matters, biochar enhanced the composting performance humification (e.g., formation humic and fulvic acid). Biochar could extend the thermophilic phase of composting, reduce the pH value, NH3 emission, and prevent nitrogen losses through positive effects to nitrifying bacteria. The surfaces of the biochar particles are partly attributed to the presence of functional groups such as Si-O-Si, OH, COOH, CO, C-O, N for high cation exchange capacity and adsorption. Adding biochars could decrease NH3 emissions in the highest range up to 98%, the removal efficiency of CH4 emissions has been reported with a wide range greater than 80%. Biochar could absorb volatile organic compounds (VOCs) more than 50% in the experiment based on distribution mechanisms and surface adsorption and efficient reduction in metal bioaccessibilities for Pb, Ni, Cu, Zn, As, Cr and Cd. By applicating biochar improved the compost maturity by promoting enzymatic activity and germination index (>80%). However, physico-chemical properties of biochar such as particle size, pore size, pore volume should be clarified and its influence on the composting process evaluated in further studies.

6.
Chemosphere ; 298: 134284, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35283157

RESUMO

Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.


Assuntos
Grafite , Poluentes Químicos da Água , Purificação da Água , Adsorção , Grafite/química , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Chemosphere ; 297: 134225, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35259358

RESUMO

The transition metal carbides/nitrides referred to as MXenes has emerged as a wonder material presenting newer opportunities owing to their unique properties such as high thermal and electrical conductivity, high negative zeta-potential and mechanical properties similar to the parent transition metal carbides/nitrides. These properties of MXenes can be utilized in various societal applications including for energy storage and energy conversion. In this focused review, we provide a ready glance into the evolutionary development of the MXene family and various efforts that are made globally towards property improvement and performance enhancement. Particular attention in this review is made to direct the attention of readers to the bright prospects of MXene in the energy storage and energy conversion process - which is extremely timely to tackle the current concern on climate change. The review concludes by offering fresh insights into the future research needs and challenges that need to be addressed to develop resilient energy solutions.

8.
Chemosphere ; 298: 134221, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276102

RESUMO

With the massive development of industrialization, multiple ecological contaminants in gaseous, liquid, and solid forms are vented into habitats, which is currently at the forefront of worldwide attention. Because of the possible damage to public health and eco-diversity, high-efficiency clearance of these environmental contaminants is a serious concern. Improved nanomaterials (NMs) could perform a significant part in the exclusion of contaminants from the atmosphere. MXenes, a class of two-dimensional (2D) compounds that have got tremendous consideration from researchers for a broad array of applications in a variety of industries and are viewed as a potential route for innovative solutions to identify and prevent a variety of obstreperous hazardous pollutants from environmental compartments due to their exceptional innate physicochemical and mechanical features, including high specific surface area, physiological interoperability, sturdy electrodynamics, and elevated wettability. This paper discusses the recent progress in MXene-based nanomaterials' applications such as environmental remediation, with a focus on their adsorption-reduction characteristics. The removal of heavy metals, dyes, and radionuclides by MXenes and MXene-based nanomaterials is depicted in detail, with the adsorption mechanism and regeneration potential highlighted. Finally, suggestions for future research are provided to ensure that MXenes and MXene-based nanomaterials are synthesized and applied more effectively.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanoestruturas , Purificação da Água , Adsorção , Purificação da Água/métodos
9.
Environ Chem Lett ; : 1-25, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35350388

RESUMO

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70-75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

10.
Chemosphere ; 299: 134364, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35318024

RESUMO

Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35294686

RESUMO

In the present work, halloysite nanotubes modified with gold nanoparticles (AuNPs-HNT) are successfully prepared by wet chemical method for the catalytic degradation of phenothiazine dyes (azure B (AZB) and toluidine blue O (TBO)) and also cleaner reduction of 4-(4-nitrophenyl)morpholine (4NM) in the sodium borohydride (NaBH4) media. The catalyst is formulated by modifying the HNT support with a 0.964% metal loading using the HNT supports modified with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent to facilitate the anchoring sites to trap the AuNPs and to prevent their agglomeration/aggregation. The AuNPs-HNT catalyst is investigated for structural and morphological characterization to get insights about the formation of the catalyst for the effective catalytic reduction of dyes and 4NM. The microscopic studies demonstrate that AuNPs (2.75 nm) are decorated on the outer surface of HNT. The as-prepared AuNPs-HNT catalyst demonstrates AZB and TBO dye degradation efficiency up to 96% in 10 and 11 min, respectively, and catalytic reduction of 4NM to 4-morpholinoaniline (MAN) is achieved up to 97% in 11 min, in the presence of NaBH4 without the formation of any by-products. The pseudo-first-order rate constant (K1) value of the AuNPs-HNT catalyst for AZB, TBO, and 4NM were calculated to be 0.0078, 0.0055, and 0.0066 s-1, respectively. Moreover, the synthesized catalyst shows an excellent reusability with stable catalytic reduction for 7 successive cycles for both the dyes and 4NM. A plausible mechanism for the catalytic dye degradation and reduction of 4NM by AuNPs-HNT catalyst is proposed as well. The obtained results clearly indicate the potential of AuNPs-HNT as an efficient catalyst for the removal of dye contaminants from the aquatic environments and cleaner reduction of 4NM to MAN, insinuating future pharmaceutical applications.

12.
Chemosphere ; 298: 134244, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35278440

RESUMO

The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos
13.
Environ Res ; 210: 112902, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35167851

RESUMO

Chromium is a toxic heavy metal prevalent in higher levels in aqueous matrices owing to industrial applications. Whilst being a key player in industries, the environmental issues caused by Cr(VI) are highly deleterious. Adsorptive remediation is found to be an effective method adopted by researchers in the past decades for Cr(VI) removal from water streams in which variety of naturally available biosorbents have been explored for handling Cr(VI). This review article briefly sketches up the biosorptive potential of plant-based biosorbents used in raw and chemically modified form for the optimum exclusion of Cr(VI) from aqueous sources. Mechanisms and kinetic behavior of the removal process are also discussed. pH of the solution and initial Cr(VI) concentration were found to be the key parameters in Cr removal. The mechanism of Cr removal from aqueous systems was elucidated to be either adsorption or adsorption-coupled-reduction. After precise discussion on various plant-based biosorbents with their maximum adsorption capacities, desorption and regeneration potential, it is perceived that plant-based biosorbents are superior options for Cr(VI) elimination from aqueous streams.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Plantas , Soluções , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
Chemosphere ; 295: 133795, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124083

RESUMO

Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as: 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.


Assuntos
Poluentes Ambientais , Compostos Orgânicos Voláteis , Adsorção , Alumínio , Óxido de Alumínio , Animais , Plumas , Humanos , Estágios do Ciclo de Vida
15.
Environ Res ; 209: 112831, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35123962

RESUMO

The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Extratos Vegetais , Óxido de Zinco/farmacologia
16.
Environ Sci Pollut Res Int ; 29(21): 32120-32141, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35013974

RESUMO

The present study reported the synthesis and utilization of a graphene-based hybrid nanocomposite (MnFe2O4/G) to mitigate several synthetic dyes, including methylene blue, malachite green, crystal violet, and Rhodamine B. This adsorbent was structurally analyzed by several physicochemical techniques such as X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption isotherm measurement, point of zero charge, and Boehm titrations. BET surface area of MnFe2O4/G was measured at 382.98 m2/g, which was substantially higher than that of MnFe2O4. MnFe2O4/G possessed diverse surface chemistry properties with the presence of many functional groups such as carboxylic acid, phenolic, lactone, and basic groups. MnFe2O4/G was used to remove synthetic dyes in the aqueous media. The effect of many factors, e.g., concentration (5-50 mg/L), pH (4-10), dose (5-20 mg), and temperature (25-45 °C) on adsorption performance of MnFe2O4/G was conducted. Kinetic, isotherm, intraparticle, and thermodynamic models were adopted for investigating adsorption phenomenon of dyes on MnFe2O4/G. The maximum adsorption capacity of dyes over MnFe2O4/G was found as Rhodamine B (67.8 mg/g) < crystal violet (81.3 mg/g) < methylene blue (137.7 mg/g) < malachite green (394.5 mg/g). Some tests were performed to remove mixed dyes, and mixed dyes in the presence of antibiotics with total efficiencies of 65.8-87.9% after 120 min. Moreover, the major role of π-π stacking interaction was clarified to gain insight into the adsorption mechanism. MnFe2O4/G could recycle up to 4 cycles, which may be beneficial for further practical water treatment.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Adsorção , Corantes , Violeta Genciana , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Poluentes Químicos da Água/análise
17.
Environ Chem Lett ; 20(2): 1309-1331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035338

RESUMO

Pollution and diseases such as the coronavirus pandemic (COVID-19) are major issues that may be solved partly by nanotechnology. Here we review the synthesis of ZrO2 nanoparticles and their nanocomposites using compounds from bacteria, fungi, microalgae, and plants. For instance, bacteria, microalgae, and fungi secret bioactive metabolites such as fucoidans, digestive enzymes, and proteins, while plant tissues are rich in reducing sugars, polyphenols, flavonoids, saponins, and amino acids. These compounds allow reducing, capping, chelating, and stabilizing during the transformation of Zr4+ into ZrO2 nanoparticles. Green ZrO2 nanoparticles display unique properties such as a nanoscale size of 5-50 nm, diverse morphologies, e.g. nanospheres, nanorods and nanochains, and wide bandgap energy of 3.7-5.5 eV. Their high stability and biocompatibility are suitable biomedical and environmental applications, such as pathogen and cancer inactivation, and pollutant removal. Emerging applications of green ZrO2-based nanocomposites include water treatment, catalytic reduction, nanoelectronic devices, and anti-biofilms.

18.
Environ Chem Lett ; 20(2): 1421-1451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018167

RESUMO

Water contamination is an environmental burden for the next generations, calling for advanced methods such as adsorption to remove pollutants. For instance, unwanted biowaste and invasive plants can be converted into biosorbents for environmental remediation. This would partly solve the negative effects of invasive plants, estimated at 120 billion dollars in the USA. Here we review the distribution, impact, and use of invasive plants for water treatment, with emphasis on the preparation of biosorbents and removal of pollutants such as cadmium, lead, copper, zinc, nickel, mercury, chromate, synthetic dyes, and fossil fuels. Those biosorbents can remove 90-99% heavy metals from aqueous solutions. High adsorption capacities of 476.190 mg/g for synthetic dyes and 211 g/g for diesel oils have been observed. We also discuss the regeneration of these biosorbents.

19.
Chemosphere ; 293: 133542, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34999104

RESUMO

MXenes are a quickly growing and extended group of two-dimensional (2D) substances that have earned unbelievable analysis credits for various application areas within different manufacturing areas. Due to novel essential architectural and physicochemical properties shows good properties, such as elevated exterior area, living adaptability, strong electrochemistry, and great hydrophilicity. Given the fast progress within the structure and synthesis of MBNs for water treatment, quick updates on this research field are required to remove toxic substances, such as production approaches and characterization methods for the advantages and constraints of MXenes for pollutant degradation. MXenes are determined as a proposed road toward atmosphere-clean-up machinery to identify and decrease a pattern of hazardous resistant pollutants from environmental forms. Here, in this review article, we have been focused on describing the overview, novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation, along with the conclusion, challenges, and prospects in this field, have been discussed.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanoestruturas , Praguicidas , Purificação da Água
20.
Chemosphere ; 288(Pt 2): 132448, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619253

RESUMO

In this world, water is considered as the Elixir for all living creatures. Human life rolls with water, and every activity depends upon water. Worldwide water resources are being contaminated due to the elevation in the population count, industrialization and urbanization. Ejection of chemicals by industries and domestic sewages remains the major reason in the destruction of natural water resources. Contaminated water with harmful microbes, chemical dyes, pesticides, and carcinogens are the root cause of many diseases and deaths of living species. In this scenario, researchers engaged in producing ultra components to remove the contaminants. Metal organic frameworks (MOF) are the desired combination of organic and inorganic materials to achieve the required target. MOFs possess unique characteristics like tunable internal structure, porosity, crystallinity and high surface area which enable them for energy and environmental application. For the past years, MOFs are concentrated more as a photocatalyst in the treatment of polluted water. These research studies discuss the improvement of photocatalytic performance of MOF by the incorporation of metals, metal coupled with nanoparticles like polymers, graphene, etc., into it to achieve the enhanced photocatalytic activity by scavenging entire chemicals and harmful microbes to retain the quality of water. The target of this review article is to focus on the state of the art research work on MOFs in photocatalytic water treatment technique.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Nanopartículas , Corantes , Humanos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...