Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Int J Cancer ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534179

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second cancer-related cause of death by 2030. Identifying novel risk factors, including genetic risk loci, could be instrumental in risk stratification and implementation of prevention strategies. Long noncoding RNAs (lncRNAs) are involved in regulation of key biological processes, and the possible role of their genetic variability has been unexplored so far. Combining genome wide association studies and functional data, we investigated the genetic variability in all lncRNAs. We analyzed 9893 PDAC cases and 9969 controls and identified a genome-wide significant association between the rs7046076 SNP and risk of developing PDAC (P = 9.73 × 10-9 ). This SNP is located in the NONHSAG053086.2 (lnc-SMC2-1) gene and the risk allele is predicted to disrupt the binding of the lncRNA with the micro-RNA (miRNA) hsa-mir-1256 that regulates several genes involved in cell cycle, such as CDKN2B. The CDKN2B region is pleiotropic and its genetic variants have been associated with several human diseases, possibly though an imperfect interaction between lncRNA and miRNA. We present a novel PDAC risk locus, supported by a genome-wide statistical significance and a plausible biological mechanism.

2.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513745

RESUMO

The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33318029

RESUMO

BACKGROUND: Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS: Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS: Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS: MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT: Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.

4.
Mutagenesis ; 35(6): 491-497, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33367858

RESUMO

Disruption of telomere length (TL) homeostasis in peripheral blood lymphocytes has been previously assessed as a potential biomarker of breast cancer (BC) risk. The present study addressed the relationship between lymphocyte TL (LTL), prognosis and clinicopathological features in the BC patients since these associations are insufficiently explored at present. LTL was measured in 611 BC patients and 154 healthy controls using the monochrome multiplex quantitative Polymerase Chain Reaction assay. In addition, we genotyped nine TL-associated single-nucleotide polymorphisms that had been identified through genome-wide association studies. Our results showed that the patients had significantly (P = 0.001, Mann-Whitney U-test) longer LTL [median (interquartile range); 1.48 (1.22-1.78)] than the healthy controls [1.27 (0.97-1.82)]. Patients homozygous (CC) for the common allele of hTERT rs2736108 or the variant allele (CC) of hTERC rs16847897 had longer LTL. The latter association remained statistically significant in the recessive genetic model after the Bonferroni correction (P = 0.004, Wilcoxon two-sample test). We observed no association between LTL and overall survival or relapse-free survival of the patients. LTL did not correlate with cancer staging based on Union for International Cancer Control (UICC), The tumor node metastasis (TNM) staging system classification, tumour grade or molecular BC subtypes. Overall, we observed an association between long LTL and BC disease and an association of the hTERC rs16847897 CC genotype with increased LTL. However, no association between LTL, clinicopathological features and survival of the patients was found.

5.
Carcinogenesis ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319241

RESUMO

One of the principal mechanisms of chemotherapy resistance in highly frequent solid tumors like colorectal cancer (CRC) is the decreased activity of drug transport into tumor cells due to low expression of important membrane proteins, such as solute carrier (SLC) transporters. Sequence complementarity is a major determinant for target gene recognition by microRNAs (miRNAs). Single nucleotide polymorphisms (SNPs) in target sequences transcribed into messenger RNA may therefore alter miRNA binding to these regions by either creating a new site or destroying an existing one. miRSNPs may explain the modulation of expression levels in association with increased/decreased susceptibility to common diseases as well as in chemoresistance and the consequent interindividual variability in drug response. In the present study, we investigated whether miRSNPs in SLC transporter genes may modulate CRC susceptibility and patient's survival. Using an in silico approach for functional predictions, we analyzed twenty-six miRSNPs in nine SLC genes in a cohort of 1368 CRC cases and 698 controls from the Czech Republic. After correcting for multiple tests, we found several miRSNPs significantly associated with patient's survival. SNPs in SLCO3A1, SLC22A2, and SLC22A3 genes were defined as prognostic factors in the classification and regression tree analysis. In contrast, we did not observe any significant association between miRSNPs and CRC risk. To the best of our knowledge, this is the first study investigating miRSNPs potentially affecting miRNA binding to SLC transporter genes and their impact on CRC susceptibility or patient's prognosis.

6.
Mutat Res ; 858-860: 503253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33198934

RESUMO

Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.

7.
Nat Protoc ; 15(12): 3844-3878, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33199871

RESUMO

This optimized protocol (including links to instruction videos) describes a comet-based in vitro DNA repair assay that is relatively simple, versatile, and inexpensive, enabling the detection of base and nucleotide excision repair activity. Protein extracts from samples are incubated with agarose-embedded substrate nucleoids ('naked' supercoiled DNA) containing specifically induced DNA lesions (e.g., resulting from oxidation, UVC radiation or benzo[a]pyrene-diol epoxide treatment). DNA incisions produced during the incubation reaction are quantified as strand breaks after electrophoresis, reflecting the extract's incision activity. The method has been applied in cell culture model systems, human biomonitoring and clinical investigations, and animal studies, using isolated blood cells and various solid tissues. Once extracts and substrates are prepared, the assay can be completed within 2 d.

8.
Nat Protoc ; 15(12): 3817-3826, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33106678

RESUMO

The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between 'desirable' and 'essential' information: 'essential' information refers to the precise details that are necessary to assess the quality of the experimental work, whereas 'desirable' information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.

9.
Oncol Rep ; 44(5): 2219-2230, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000239

RESUMO

Accumulation of non­specific structural chromosomal aberrations (CAs) and telomere shortening contribute to genome instability, which constitutes as one of the hallmarks of cancer. CAs arise due to direct DNA damage or telomere shortening. CAs in peripheral blood lymphocytes (PBL), which are considered to be markers of exposure, have been previously reported to serve a role in the pathophysiology and progression of cancer through mechanisms that are poorly understood. In addition, the prognostic relevance of telomere length (TL) in patients with cancer remains to be elucidated. In the present study, CAs and TL in PBL isolated from patients with newly diagnosed cancer (151 breast, 96 colorectal, 90 lung) and 335 cancer­free control individuals were investigated. These results were then correlated with clinicopathological factors and follow­up data. The accumulation of CAs in PBL was observed with increased susceptibility to breast and lung cancer (P<0.0001), while individuals with longer TL were found to be at a higher risk of breast cancer (P<0.0001). Increased chromatid­type aberrations were also revealed to be associated with lower overall survival of patients with breast and colorectal cancers using a multivariate model. Compared with control individuals, no association was observed between TL and CAs or age in patients with cancer. In conclusion, the present study demonstrates the association between CAs/TL in PBL and the susceptibility, prognosis and survival of patients with breast, colorectal and lung cancer.

10.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756484

RESUMO

The phenotypic effects of single nucleotide polymorphisms (SNPs) in the development of sporadic solid cancers are still scarce. The aim of this review was to summarise and analyse published data on the associations between SNPs in mismatch repair genes and various cancers. The mismatch repair system plays a unique role in the control of the genetic integrity and it is often inactivated (germline and somatic mutations and hypermethylation) in cancer patients. Here, we focused on germline variants in mismatch repair genes and found the outcomes rather controversial: some SNPs are sometimes ascribed as protective, while other studies reported their pathological effects. Regarding the complexity of cancer as one disease, we attempted to ascertain if particular polymorphisms exert the effect in the same direction in the development and treatment of different malignancies, although it is still not straightforward to conclude whether polymorphisms always play a clear positive role or a negative one. Most recent and robust genome-wide studies suggest that risk of cancer is modulated by variants in mismatch repair genes, for example in colorectal cancer. Our study shows that rs1800734 in MLH1 or rs2303428 in MSH2 may influence the development of different malignancies. The lack of functional studies on many DNA mismatch repair SNPs as well as their interactions are not explored yet. Notably, the concerted action of more variants in one individual may be protective or harmful. Further, complex interactions of DNA mismatch repair variations with both the environment and microenvironment in the cancer pathogenesis will deserve further attention.

11.
Cancers (Basel) ; 12(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605254

RESUMO

There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, highpenetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.

12.
Cells ; 9(6)2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599894

RESUMO

Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.

13.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722130

RESUMO

Colorectal cancer (CRC) remains a serious health problem worldwide. Approximately half of patients will develop distant metastasis after CRC resection, usually with very poor prognosis afterwards. Because patient performance after distant metastasis surgery remains very heterogeneous, ranging from death within 2 years to a long-term cure, there is a clinical need for a precise risk stratification of patients to aid pre- and post-operative decisions. Furthermore, around 20% of identified CRC cases are at IV stage disease, known as a metastatic CRC (mCRC). In this review, we overview possible molecular and clinicopathological biomarkers that may provide prognostic and predictive information for patients with distant metastasis. These may comprise sidedness of the tumor, molecular profile and epigenetic characteristics of the primary tumor and arising metastatic CRC, and early markers reflecting cancer cell resistance in mCRC and biomarkers identified from transcriptome. This review discusses current stage in employment of these biomarkers in clinical practice as well as summarizes current experience in identifying predictive biomarkers in mCRC treatment.

14.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380676

RESUMO

Colorectal cancer (CRC) is a malignant disease with an incidence of over 1.8 million new cases per year worldwide. CRC outcome is closely related to the respective stage of CRC and is more favorable at less advanced stages. Detection of early colorectal adenomas is the key to survival. In spite of implemented screening programs showing efficiency in the detection of early precancerous lesions and CRC in asymptomatic patients, a significant number of patients are still diagnosed in advanced stages. Research on CRC accomplished during the last decade has improved our understanding of the etiology and development of colorectal adenomas and revealed weaknesses in the general approach to their detection and elimination. Recent studies seek to find a reliable non-invasive biomarker detectable even in the blood. New candidate biomarkers could be selected on the basis of so-called liquid biopsy, such as long non-coding RNA, microRNA, circulating cell-free DNA, circulating tumor cells, and inflammatory factors released from the adenoma into circulation. In this work, we focused on both genetic and epigenetic changes associated with the development of colorectal adenomas into colorectal carcinoma and we also discuss new possible biomarkers that are detectable even in adenomas prior to cancer development.

15.
Int J Cancer ; 147(8): 2065-2074, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32270874

RESUMO

Early onset pancreatic cancer (EOPC) is a rare disease with a very high mortality rate. Almost nothing is known on the genetic susceptibility of EOPC, therefore, we performed a genome-wide association study (GWAS) to identify novel genetic variants specific for patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) at younger ages. In the first phase, conducted on 821 cases with age of onset ≤60 years, of whom 198 with age of onset ≤50, and 3227 controls from PanScan I-II, we observed four SNPs (rs7155613, rs2328991, rs4891017 and rs12610094) showing an association with EOPC risk (P < 1 × 10-4 ). We replicated these SNPs in the PANcreatic Disease ReseArch (PANDoRA) consortium and used additional in silico data from PanScan III and PanC4. Among these four variants rs2328991 was significant in an independent set of 855 cases with age of onset ≤60 years, of whom 265 with age of onset ≤50, and 4142 controls from the PANDoRA consortium while in the in silico data, we observed no statistically significant association. However, the resulting meta-analysis supported the association (P = 1.15 × 10-4 ). In conclusion, we propose a novel variant rs2328991 to be involved in EOPC risk. Even though it was not possible to find a mechanistic link between the variant and the function, the association is supported by a solid statistical significance obtained in the largest study on EOPC genetics present so far in the literature.

16.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252452

RESUMO

Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.

17.
Mutagenesis ; 35(3): 261-271, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083302

RESUMO

Colorectal cancer (CRC) continues to be one of the leading malignancies and causes of tumour-related deaths worldwide. Both impaired DNA repair mechanisms and disrupted telomere length homeostasis represent key culprits in CRC initiation, progression and prognosis. Mechanistically, altered DNA repair results in the accumulation of mutations in the genome and, ultimately, in genomic instability. DNA repair also determines the response to chemotherapeutics in CRC treatment, suggesting its utilisation in the prediction of therapy response and individual approach to patients. Telomere attrition resulting in replicative senescence, simultaneously by-passing cell cycle checkpoints, is a hallmark of malignant transformation of the cell. Telomerase is almost ubiquitous in advanced solid cancers, including CRC, and its expression is fundamental to cell immortalisation. Therefore, there is a persistent effort to develop therapeutics, which are telomerase-specific and gentle to non-malignant tissues. However, in practice, we are still at the level of clinical trials. The current state of knowledge and the route, which the research takes, gives us a positive perspective that the problem of molecular models of telomerase activation and telomere length stabilisation will finally be solved. We summarise the current literature herein, by pointing out the crosstalk between proteins involved in DNA repair and telomere length homeostasis in relation to CRC.

18.
Mutagenesis ; 35(3): 273-281, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31922572

RESUMO

The chemotherapeutic efficacy in colorectal cancer (CRC) is limited due to the inter-individual variability in drug response and the development of tumour resistance. ATP-binding cassette (ABC) transporters are crucial in the development of resistance by the efflux of anticancer agents from cancer cells. In this study, we identified 14 single nucleotide polymorphisms (SNPs) in 11 ABC transporter genes acting as an expression of quantitative trait loci (eQTLs), i.e. whose variation influence the expression of many downstream genes. These SNPs were genotyped in a case-control study comprising 1098 cases and 1442 healthy controls and analysed in relation to CRC development risk and patient survival. Considering a strict correction for multiple tests, we did not observe any significant association between SNPs and CRC risk. The rs3819720 polymorphism in the ABCB3/TAP2 gene was statistically significantly associated with shorter overall survival (OS) in the codominant, and dominant models [GA vs. GG, hazard ratio (HR) = 1.48; P = 0.002; AA vs. GG, HR = 1.70; P = 0.004 and GA + AA vs. GG, HR = 1.52; P = 0.0006]. Additionally, GA carriers of the same SNP displayed worse OS after receiving 5-FU based chemotherapy. The variant allele of rs3819720 polymorphism statistically significantly affected the expression of 36 downstream genes. Screening for eQTL polymorphisms in relevant genes such as ABC transporters that can regulate the expression of several other genes may help to identify the genetic background involved in the individual response to the treatment of CRC patients.

20.
Pharmacol Ther ; 206: 107447, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756363

RESUMO

5-Fluorouracil (5-FU) is an essential component of systemic chemotherapy for colorectal cancer (CRC) in the palliative and adjuvant settings. Over the past four decades, several modulation strategies including the implementation of 5-FU-based combination regimens and 5-FU pro-drugs have been developed and tested to increase the anti-tumor activity of 5-FU and to overcome the clinical resistance. Despite the encouraging progress in CRC therapy to date, the patients' response rates to therapy continue to remain low and the patients' benefit from 5-FU-based therapy is frequently compromised by the development of chemoresistance. Inter-individual differences in the treatment response in CRC patients may originate in the unique genetic and epigenetic make-up of each individual. The critical element in the current trend of personalized medicine is the proper comprehension of causes and mechanisms contributing to the low or lack of sensitivity of tumor tissue to 5-FU-based therapy. The identification and validation of predictive biomarkers for existing 5-FU-based and new targeted therapies for CRC treatment will likely improve patients' outcomes in the future. Herein we present a comprehensive review summarizing options of CRC treatment and the mechanisms of 5-FU action at the molecular level, including both anabolic and catabolic ways. The main part of this review comprises the currently known molecular mechanisms underlying the chemoresistance in CRC patients. We also focus on various 5-FU pro-drugs developed to increase the amount of circulating 5-FU and to limit toxicity. Finally, we propose future directions of personalized CRC therapy according to the latest published evidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA