Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31479583

RESUMO

Sotos syndrome is an overgrowth-intellectual disability (OGID) syndrome caused by NSD1 pathogenic variants and characterized by a distinctive facial appearance, an intellectual disability, tall stature and/or macrocephaly. Other associated clinical features include scoliosis, seizures, renal anomalies, and cardiac anomalies. However, many of the published Sotos syndrome clinical descriptions are based on studies of children; the phenotype in adults with Sotos syndrome is not yet well described. Given that it is now 17 years since disruption of NSD1 was shown to cause Sotos syndrome, many of the children first reported are now adults. It is therefore timely to investigate the phenotype of 44 adults with Sotos syndrome and NSD1 pathogenic variants. We have shown that adults with Sotos syndrome display a wide spectrum of intellectual ability with functioning ranging from fully independent to fully dependent. Reproductive rates are low. In our cohort, median height in adult women is +1.9 SD and men +0.5 SD. There is a distinctive facial appearance in adults with a tall, square, prominent chin. Reassuringly, adults with Sotos syndrome are generally healthy with few new medical issues; however, lymphedema, poor dentition, hearing loss, contractures and tremor have developed in a small number of individuals.

2.
Nat Commun ; 10(1): 1951, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028252

RESUMO

This Article contains an error in the last sentence of the 'Variant analysis suggests they are pathogenic' section of the Results, which incorrectly reads 'No truncated PIEZO1 protein products were identified in western blot analysis in GLD1:II.3 and GLD2:II.2 (Fig. 2, Supplementary Fig. 6), suggesting that the truncated protein is not stable and therefore degraded.' This should read 'No full-size PIEZO1 protein products were identified in western blot analysis in GLD1:II.3 and GLD2:II.2 (Fig. 2, Supplementary Fig. 6); the three nonsense mutations are predicted to lead to premature termination of the protein, hence it is possible that those truncated proteins will be non-functional or even unstable and degraded.' The error has not been fixed in the PDF or HTML versions of the Article.

3.
Genet Med ; 21(10): 2216-2223, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30976099

RESUMO

PURPOSE: To provide a detailed electroclinical description and expand the phenotype of PIGT-CDG, to perform genotype-phenotype correlation, and to investigate the onset and severity of the epilepsy associated with the different genetic subtypes of this rare disorder. Furthermore, to use computer-assisted facial gestalt analysis in PIGT-CDG and to the compare findings with other glycosylphosphatidylinositol (GPI) anchor deficiencies. METHODS: We evaluated 13 children from eight unrelated families with homozygous or compound heterozygous pathogenic variants in PIGT. RESULTS: All patients had hypotonia, severe developmental delay, and epilepsy. Epilepsy onset ranged from first day of life to two years of age. Severity of the seizure disorder varied from treatable seizures to severe neonatal onset epileptic encephalopathies. The facial gestalt of patients resembled that of previously published PIGT patients as they were closest to the center of the PIGT cluster in the clinical face phenotype space and were distinguishable from other gene-specific phenotypes. CONCLUSION: We expand our knowledge of PIGT. Our cases reaffirm that the use of genetic testing is essential for diagnosis in this group of disorders. Finally, we show that computer-assisted facial gestalt analysis accurately assigned PIGT cases to the multiple congenital anomalies-hypotonia-seizures syndrome phenotypic series advocating the additional use of next-generation phenotyping technology.

5.
Genome Med ; 11(1): 12, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819258

RESUMO

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Mutação INDEL , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Síndrome de Smith-Magenis/patologia , Fatores de Transcrição/metabolismo , Adulto Jovem
6.
Clin Genet ; 95(4): 496-506, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30666632

RESUMO

Whole-exome sequencing has established IQSEC2 as a neurodevelopmental disability gene. The IQSEC2 variant phenotype includes developmental delay, intellectual disability, epilepsy, hypotonia, autism, developmental regression, microcephaly and stereotypies but is yet to be fully described. Presented here are 14 new patients with IQSEC2 variants. In addition to the established features, we observed: gait ataxia in 7 of 9 (77.8%), drooling in 9 of 14 (64.2%), early feeding difficulties in 7 of 14 (50%), structural brain abnormalities in 6 of 13 (46.2%), brachycephaly in 5 of 14 (35.7%), and scoliosis and paroxysms of laughter each in 4 of 14 (28.6%). We suggest that these are features of the IQSEC2-related disorder. Gastrostomy requirement, plagiocephaly, strabismus and cortical blindness, each seen in 2 of 14 (14.3%), may also be associated. Shared facial features were noted in 8 of 14 patients, and shared hair patterning was identified in 5 of 14 patients. This study further delineates the IQSEC2 phenotypic spectrum and supports the notion of an emerging IQSEC2 syndrome. We draw parallels between the IQSEC2-related disorder and the Angelman-/Rett-/Pitt-Hopkins syndrome group of conditions and recommend the addition of IQSEC2 to epilepsy and developmental delay gene panels. We observed discordant phenotypes in monozygotic twins and apparent gonadal mosaicism, which has implications for recurrence risk counselling in the IQSEC2-related disorder.

7.
Neuromodulation ; 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016006

RESUMO

BACKGROUND: Ensemble recording methods are pervasive in basic and clinical neuroscience research. Invasive neural implants are used in patients with drug resistant epilepsy to localize seizure origin, in neuropsychiatric or Parkinson's patients to alleviate symptoms via deep brain stimulation, and with animal models to conduct basic research. Studies addressing the brain's physiological response to chronic electrode implants demonstrate that the mechanical trauma of insertion is followed by an acute inflammatory response as well as a chronic foreign body response. Despite use of invasive recording methods with animal models and humans, little is known of their effect on behavior in healthy populations. OBJECTIVE: To quantify the effect of chronic electrode implantation targeting the hippocampus on recognition memory performance. METHODS: Four healthy female rhesus macaques were tested in a delayed nonmatching-to-sample (DNMS) recognition memory task before and after hippocampal implantation with a tetrode array device. RESULTS: Trials to criterion and recognition memory performance were not significantly different before vs. after chronic electrode implantation. CONCLUSION: Our results suggest that chronic implants did not produce significant impairments on DNMS performance.

8.
Hippocampus ; 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072793

RESUMO

Identification of primate hippocampal subfields in vivo using structural MRI imaging relies on variable anatomical guidelines, signal intensity differences, and heuristics to differentiate between regions (Yushkevich et al., ). Thus, a clear anatomically-driven basis for subfield demarcation is lacking. Recent work, however, has begun to develop methods to use ex vivo histology or ex vivo MRI (Adler et al., 2014; Iglesias et al., 2015) that have the potential to inform subfield demarcations of in vivo images. For optimal results, however, ex vivo and in vivo images should ideally be matched within the same healthy brains, with the goal to develop a neuroanatomically-driven basis for in vivo structural MRI images. Here, we address this issue in young and aging rhesus macaques (young n = 5 and old n = 5) using ex vivo Nissl-stained sections in which we identified the dentate gyrus, CA3, CA2, CA1, subiculum, presubiculum, and parasubiculum guided by morphological cell properties (30 µm thick sections spaced at 240 µm intervals and imaged at 161 nm/pixel). The histologically identified boundaries were merged with in vivo structural MRIs (0.625 × 0.625 × 1 mm) from the same subjects via iterative rigid and diffeomorphic registration resulting in probabilistic atlases of young and old rhesus macaques. Our results indicate stability in hippocampal subfield volumes over an age range of 13 to 32 years, consistent with previous results showing preserved whole hippocampal volume in aged macaques (Shamy et al., 2006). Together, our methods provide a novel approach for identifying hippocampal subfields in non-human primates and a potential 'ground truth' for more accurate identification of hippocampal subfield boundaries on in vivo MRIs. This could, in turn, have applications in humans where accurately identifying hippocampal subfields in vivo is a critical research goal.

9.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859103

RESUMO

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Assuntos
Regulação da Expressão Gênica/genética , Hipotálamo/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Fatores de Transcrição/genética , Adulto , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Criança , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
10.
Front Aging Neurosci ; 9: 180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659785

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is associated with Alzheimer's disease (AD), but its age-related effects are unknown. We chose the rhesus macaque due to its closeness to human anatomy and physiology. We examined four variables: aging, cognitive performance, amyloid plaques and PACAP. Delayed nonmatching-to-sample recognition memory scores declined with age and correlated with PACAP levels in the striatum, parietal and temporal lobes. Because amyloid plaques were the only AD pathology in the old rhesus macaque, we further studied human amyloid precursor protein (hAPP) transgenic mice. Aging was associated with decreased performance in the Morris Water Maze (MWM). In wild type (WT) C57BL/6 mice, the performance was decreased at age 24-26 month whereas in hAPP transgenic mice, it was decreased as early as 9-12 month. Neuritic plaques in adult hAPP mice clustered in hippocampus and adjacent cortical regions, but did not propagate further into the frontal cortex. Cerebral PACAP protein levels were reduced in hAPP mice compared to age-matched WT mice, but the genetic predisposition dominated cognitive decline. Taken together, these data suggest an association among PACAP levels, aging, cognitive function and amyloid load in nonhuman primates, with both similarities and differences from human AD brains. Our results suggest caution in choosing animal models and in extrapolating data to human AD studies.

11.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28413018

RESUMO

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Assuntos
Epilepsia/genética , Proteínas/genética , Espasmos Infantis/genética , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/diagnóstico , Fibroblastos/metabolismo , Técnicas de Genotipagem , Humanos , Lactente , Recém-Nascido , Imagem por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Proteínas/metabolismo , Células de Purkinje/metabolismo , Espasmos Infantis/diagnóstico , Vesículas Sinápticas/metabolismo , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
12.
Eur J Hum Genet ; 25(5): 552-559, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327570

RESUMO

PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. The phenotypic variability was striking; however, we observed similarities including spinal segmentation anomalies, congenital heart disease, ocular colobomata, hand anomalies and (in two patients) unilateral renal agenesis/horseshoe kidney. Characteristic facial features included micrognathia, a thin upper lip and long philtrum, narrow almond-shaped palpebral fissures, synophrys, flared eyebrows and facial hypertrichosis. Heterozygote loss-of-function variants in PUF60 cause a phenotype comprising growth/developmental delay and craniofacial, cardiac, renal, ocular and spinal anomalies, adding to disorders of human development resulting from aberrant RNA processing/spliceosomal function.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/diagnóstico , Células Cultivadas , Criança , Códon de Terminação/genética , Exoma , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Microcefalia/diagnóstico , Fenótipo , Síndrome
13.
J Clin Endocrinol Metab ; 102(6): 2019-2028, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323974

RESUMO

Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in pediatric research centers. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities.


Assuntos
Coxa Vara/fisiopatologia , Canais Iônicos/genética , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese Imperfeita/fisiopatologia , Fraturas da Coluna Vertebral/fisiopatologia , Adolescente , Adulto , Animais , Densidade Óssea , Cálcio/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Estudos de Casos e Controles , Contagem de Células , Diferenciação Celular , Criança , Pré-Escolar , Coxa Vara/etiologia , Ecocardiografia , Feminino , Perfilação da Expressão Gênica , Genótipo , Cardiopatias/diagnóstico por imagem , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Heterozigoto , Humanos , Lactente , Recém-Nascido , Canais Iônicos/metabolismo , Vértebras Lombares/diagnóstico por imagem , Masculino , Camundongos , Microscopia Eletrônica , Hipotonia Muscular/etiologia , Hipotonia Muscular/fisiopatologia , Mutação , Tamanho do Órgão , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/genética , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Índice de Gravidade de Doença , Análise Espectral Raman , Fraturas da Coluna Vertebral/etiologia , Adulto Jovem
14.
Am J Hum Genet ; 100(1): 138-150, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017370

RESUMO

Early B cell factor 3 (EBF3) is an atypical transcription factor that is thought to influence the laminar formation of the cerebral cortex. Here, we report that de novo mutations in EBF3 cause a complex neurodevelopmental syndrome. The mutations were identified in two large-scale sequencing projects: the UK Deciphering Developmental Disorders (DDD) study and the Canadian Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study. The core phenotype includes moderate to severe intellectual disability, and many individuals exhibit cerebellar ataxia, subtle facial dysmorphism, strabismus, and vesicoureteric reflux, suggesting that EBF3 has a widespread developmental role. Pathogenic de novo variants identified in EBF3 include multiple loss-of-function and missense mutations. Structural modeling suggested that the missense mutations affect DNA binding. Functional analysis of mutant proteins with missense substitutions revealed reduced transcriptional activities and abilities to form heterodimers with wild-type EBF3. We conclude that EBF3, a transcription factor previously unknown to be associated with human disease, is important for brain and other organ development and warrants further investigation.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Idade de Início , Ataxia/genética , Canadá , Criança , DNA/metabolismo , Deficiências do Desenvolvimento/genética , Face/anormalidades , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Mutação de Sentido Incorreto/genética , Estrabismo/genética , Síndrome , Fatores de Transcrição/metabolismo , Reino Unido
15.
Genet Med ; 19(4): 386-395, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27632686

RESUMO

PURPOSE: Thoracic aortic aneurysm and dissection (TAAD) is typically inherited in an autosomal dominant manner, but rare X-linked families have been described. So far, the only known X-linked gene is FLNA, which is associated with the periventricular nodular heterotopia type of Ehlers-Danlos syndrome. However, mutations in this gene explain only a small number of X-linked TAAD families. METHODS: We performed targeted resequencing of 368 candidate genes in a cohort of 11 molecularly unexplained Marfan probands. Subsequently, Sanger sequencing of BGN in 360 male and 155 female molecularly unexplained TAAD probands was performed. RESULTS: We found five individuals with loss-of-function mutations in BGN encoding the small leucine-rich proteoglycan biglycan. The clinical phenotype is characterized by early-onset aortic aneurysm and dissection. Other recurrent findings include hypertelorism, pectus deformity, joint hypermobility, contractures, and mild skeletal dysplasia. Fluorescent staining revealed an increase in TGF-ß signaling, evidenced by an increase in nuclear pSMAD2 in the aortic wall. Our results are in line with those of prior reports demonstrating that Bgn-deficient male BALB/cA mice die from aortic rupture. CONCLUSION: In conclusion, BGN gene defects in humans cause an X-linked syndromic form of severe TAAD that is associated with preservation of elastic fibers and increased TGF-ß signaling.Genet Med 19 4, 386-395.


Assuntos
Aneurisma Dissecante/genética , Aneurisma da Aorta Torácica/genética , Biglicano/genética , Mutação , Aneurisma Dissecante/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Biglicano/metabolismo , Células Cultivadas , Feminino , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Análise de Sequência de DNA/métodos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Pediatr Neurol ; 66: 59-62, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27843092

RESUMO

BACKGROUND: Leukoencephalopathy with temporal lobe cysts may be associated with monogenetic conditions such as Aicardi-Goutières syndrome or RNASET2 mutations and with congenital infections such as cytomegalovirus. In view of the fact that congenital cytomegalovirus is difficult to confirm outside the neonatal period, excluding a Mendelian disorder is extremely relevant, changing family planning and medical management in affected families. We performed diagnostic testing in individuals with leukoencephalopathy with temporal lobe cysts without a definitive diagnosis of congenital cytomegalovirus infection. METHODS: We reviewed a large-scale biorepository of patients with unsolved leukodystrophies and identified two individuals with required for meiotic nuclear division 1 (RMND1) mutations and similar magnetic resonance imaging (MRI) features, including temporal lobe cysts. Ten additional subjects with confirmed RMND1 mutations were identified as part of a separate disease specific cohort. Brain MRIs from all 12 individuals were reviewed for common neuroradiological features. RESULTS: MRI features in RMND1 mutations included temporal lobe swelling, with rarefaction and cystic evolution, enlarged tips of the temporal lobes, and multifocal subcortical white matter changes with confluent periatrial T2 signal hyperintensity. A combination of these features was present in ten of the 12 individuals reviewed. CONCLUSIONS: Despite the small number of reported individuals with RMND1 mutations, a clinically recognizable phenotype of leukoencephalopathy with temporal lobe swelling, rarefaction, and cystic changes has emerged in a subset of individuals. Careful clinical phenotyping, including for lactic acidosis, deafness, and severe muscle involvement seen in RMND1 mutation positive individuals, and MRI pattern recognition will be important in differentiating these patients from children with congenital infections like cytomegalovirus.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Infecções por Citomegalovirus/congênito , Surdez/genética , Leucoencefalopatias/genética , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Cistos/diagnóstico por imagem , Infecções por Citomegalovirus/diagnóstico por imagem , Infecções por Citomegalovirus/genética , Surdez/diagnóstico por imagem , Diagnóstico Diferencial , Humanos , Lactente , Leucoencefalopatias/diagnóstico por imagem , Mutação , Fenótipo , Lobo Temporal/diagnóstico por imagem
17.
J Neurosci ; 36(48): 12217-12227, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903730

RESUMO

The ability to navigate through space involves complex interactions between multiple brain systems. Although it is clear that spatial navigation is impaired during aging, the networks responsible for these altered behaviors are not well understood. Here, we used a within-subject design and [18F]FDG-microPET to capture whole-brain activation patterns in four distinct spatial behaviors from young and aged rhesus macaques: constrained space (CAGE), head-restrained passive locomotion (CHAIR), constrained locomotion in space (TREADMILL), and unconstrained locomotion (WALK). The results reveal consistent networks activated by these behavior conditions that were similar across age. For the young animals, however, the coactivity patterns were distinct between conditions, whereas older animals tended to engage the same networks in each condition. The combined observations of less differentiated networks between distinct behaviors and alterations in functional connections between targeted regions in aging suggest changes in network dynamics as one source of age-related deficits in spatial cognition. SIGNIFICANCE STATEMENT: We report how whole-brain networks are involved in spatial navigation behaviors and how normal aging alters these network patterns in nonhuman primates. This is the first study to examine whole-brain network activity in young or old nonhuman primates while they actively or passively traversed an environment. The strength of this study resides in our ability to identify and differentiate whole-brain networks associated with specific navigational behaviors within the same nonhuman primate and to compare how these networks change with age. The use of high-resolution PET (microPET) to capture brain activity of real-world behaviors adds significantly to our understanding of how active circuits critical for navigation are affected by aging.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Navegação Espacial/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Mapeamento Encefálico , Feminino , Humanos , Macaca mulatta , Masculino , Vias Neurais/fisiologia
18.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27667800

RESUMO

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Deleção Cromossômica , Cromossomos Humanos Par 16 , Hibridização Genômica Comparativa , Facies , Feminino , Humanos , Masculino , Fenótipo , Proteínas Repressoras/genética
19.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545680

RESUMO

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Genes Essenciais/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação/genética , Processamento de RNA/genética , Animais , Encéfalo/anormalidades , Encéfalo/patologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Anormalidades do Olho/genética , Feminino , Haploinsuficiência/genética , Cabeça/anormalidades , Heterozigoto , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Antígenos de Histocompatibilidade Menor/análise , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem , RNA Mensageiro/análise , Coluna Vertebral/anormalidades , Síndrome , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologia , Peixe-Zebra/genética
20.
J Med Genet ; 53(11): 768-775, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27412952

RESUMO

BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype-phenotype correlates and performed survival analysis to identify prognostic factors. RESULTS: We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. CONCLUSIONS: The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA