Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Neurodev Disord ; 13(1): 30, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429070

RESUMO

BACKGROUND: Prenatal exposure to air pollutants is associated with increased risk for neurodevelopmental and neurodegenerative disorders. However, few studies have identified transcriptional changes related to air pollutant exposure. METHODS: RNA sequencing was used to examine transcriptomic changes in blood and cerebral cortex of three male and three female mouse neonates prenatally exposed to traffic-related nano-sized particulate matter (nPM) compared to three male and three female mouse neonates prenatally exposed to control filter air. RESULTS: We identified 19 nPM-associated differentially expressed genes (nPM-DEGs) in blood and 124 nPM-DEGs in cerebral cortex. The cerebral cortex transcriptional responses to nPM suggested neuroinflammation involvement, including CREB1, BDNF, and IFNγ genes. Both blood and brain tissues showed nPM transcriptional changes related to DNA damage, oxidative stress, and immune responses. Three blood nPM-DEGs showed a canonical correlation of 0.98 with 14 nPM-DEGS in the cerebral cortex, suggesting a convergence of gene expression changes in blood and cerebral cortex. Exploratory sex-stratified analyses suggested a higher number of nPM-DEGs in female cerebral cortex than male cerebral cortex. The sex-stratified analyses identified 2 nPM-DEGs (Rgl2 and Gm37534) shared between blood and cerebral cortex in a sex-dependent manner. CONCLUSIONS: Our findings suggest that prenatal nPM exposure induces transcriptional changes in the cerebral cortex, some of which are also observed in blood. Further research is needed to replicate nPM-induced transcriptional changes with additional biologically relevant time points for brain development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Animais , Córtex Cerebral , Feminino , Masculino , Camundongos , Material Particulado/toxicidade , Gravidez , Transcriptoma
2.
J Autism Dev Disord ; 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34331628

RESUMO

Participation in extracurricular activities and community involvement during secondary school is important for the healthy social, emotional, mental, and physical development of adolescents, especially those with autism spectrum disorder (ASD). The current study utilized three waves of data (2016, 2017, and 2018) from the National Survey of Children's Health (NSCH) to examine disparities in extracurricular participation among 12- to 17-year old adolescents with ASD. Across the three waves, data demonstrate clear sociodemographic disparities among adolescents with ASD. These disparities were more evident in adolescents with caregivers that had less education and lower household income, as well as males. These disparities suggest a continued need for targeted interventions to promote engagement among adolescents with ASD to narrow this social disparity gap.

3.
Epigenetics ; : 1-16, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33794742

RESUMO

The maternal epigenome may be responsive to prenatal metals exposures. We tested whether metals are associated with concurrent differential maternal whole blood DNA methylation. In the Early Autism Risk Longitudinal Investigation cohort, we measured first or second trimester maternal blood metals concentrations (cadmium, lead, mercury, manganese, and selenium) using inductively coupled plasma mass spectrometry. DNA methylation in maternal whole blood was measured on the Illumina 450 K array. A subset sample of 97 women had both measures available for analysis, all of whom did not report smoking during pregnancy. Linear regression was used to test for site-specific associations between individual metals and DNA methylation, adjusting for cell type composition and confounding variables. Discovery gene ontology analysis was conducted on the top 1,000 sites associated with each metal. We observed hypermethylation at 11 DNA methylation sites associated with lead (FDR False Discovery Rate q-value <0.1), near the genes CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, PCDH7, ZSCAN18, and VIPR2. Lead-associated sites were enriched (FDR q-value <0.1) for the pathways cell adhesion, nervous system development, and calcium ion binding. Manganese was associated with hypermethylation at four DNA methylation sites (FDR q-value <0.1), one of which was near the gene ARID2. Manganese-associated sites were enriched for cellular metabolism pathways (FDR q-value<0.1). Effect estimates for DNA methylation sites associated (p < 0.05) with cadmium, lead, and manganese were highly correlated (Pearson ρ > 0.86). DNA methylation sites associated with lead and manganese may be potential biomarkers of exposure or implicate downstream gene pathways.

4.
Mol Autism ; 12(1): 24, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736683

RESUMO

BACKGROUND: The Early Markers for Autism (EMA) study is a population-based case-control study designed to learn more about early biologic processes involved in ASD. METHODS: Participants were drawn from Southern California births from 2000 to 2003 with archived prenatal and neonatal screening specimens. Across two phases, children with ASD (n = 629) and intellectual disability without ASD (ID, n = 230) were ascertained from the California Department of Developmental Services (DDS), with diagnoses confirmed according to DSM-IV-TR criteria based on expert clinical review of abstracted records. General population controls (GP, n = 599) were randomly sampled from birth certificate files and matched to ASD cases by sex, birth month and year after excluding individuals with DDS records. EMA has published over 20 papers examining immune markers, endogenous hormones, environmental chemicals, and genetic factors in association with ASD and ID. This review summarizes the results across these studies, as well as the EMA study design and future directions. RESULTS: EMA enabled several key contributions to the literature, including the examination of biomarker levels in biospecimens prospectively collected during critical windows of neurodevelopment. Key findings from EMA include demonstration of elevated cytokine and chemokine levels in maternal mid-pregnancy serum samples in association with ASD, as well as aberrations in other immune marker levels; suggestions of increased odds of ASD with prenatal exposure to certain endocrine disrupting chemicals, though not in mixture analyses; and demonstration of maternal and fetal genetic influence on prenatal chemical, and maternal and neonatal immune marker and vitamin D levels. We also observed an overall lack of association with ASD and measured maternal and neonatal vitamin D, mercury, and brain-derived neurotrophic factor (BDNF) levels. LIMITATIONS: Covariate and outcome data were limited to information in Vital Statistics and DDS records. As a study based in Southern California, generalizability for certain environmental exposures may be reduced. CONCLUSIONS: Results across EMA studies support the importance of the prenatal and neonatal periods in ASD etiology, and provide evidence for the role of the maternal immune response during pregnancy. Future directions for EMA, and the field of ASD in general, include interrogation of mechanistic pathways and examination of combined effects of exposures.


Assuntos
Transtorno Autístico/epidemiologia , Adulto , Transtorno Autístico/sangue , Transtorno Autístico/imunologia , Biomarcadores/sangue , California/epidemiologia , Estudos de Casos e Controles , Criança , Citocinas/imunologia , Disruptores Endócrinos , Exposição Ambiental , Poluentes Ambientais , Feminino , Humanos , Masculino , Gravidez/imunologia , Hormônios Tireóideos/sangue , Vitamina D/sangue , Adulto Jovem
5.
PLoS One ; 16(1): e0245064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33418560

RESUMO

Preterm birth occurs at excessively high and disparate rates in the United States. In 2016, the National Institutes of Health (NIH) launched the Environmental influences on Child Health Outcomes (ECHO) program to investigate the influence of early life exposures on child health. Extant data from the ECHO cohorts provides the opportunity to examine racial and geographic variation in effects of individual- and neighborhood-level markers of socioeconomic status (SES) on gestational age at birth. The objective of this study was to examine the association between individual-level (maternal education) and neighborhood-level markers of SES and gestational age at birth, stratifying by maternal race/ethnicity, and whether any such associations are modified by US geographic region. Twenty-six ECHO cohorts representing 25,526 mother-infant pairs contributed to this disseminated meta-analysis that investigated the effect of maternal prenatal level of education (high school diploma, GED, or less; some college, associate's degree, vocational or technical training [reference category]; bachelor's degree, graduate school, or professional degree) and neighborhood-level markers of SES (census tract [CT] urbanicity, percentage of black population in CT, percentage of population below the federal poverty level in CT) on gestational age at birth (categorized as preterm, early term, full term [the reference category], late, and post term) according to maternal race/ethnicity and US region. Multinomial logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). Cohort-specific results were meta-analyzed using a random effects model. For women overall, a bachelor's degree or above, compared with some college, was associated with a significantly decreased odds of preterm birth (aOR 0.72; 95% CI: 0.61-0.86), whereas a high school education or less was associated with an increased odds of early term birth (aOR 1.10, 95% CI: 1.00-1.21). When stratifying by maternal race/ethnicity, there were no significant associations between maternal education and gestational age at birth among women of racial/ethnic groups other than non-Hispanic white. Among non-Hispanic white women, a bachelor's degree or above was likewise associated with a significantly decreased odds of preterm birth (aOR 0.74 (95% CI: 0.58, 0.94) as well as a decreased odds of early term birth (aOR 0.84 (95% CI: 0.74, 0.95). The association between maternal education and gestational age at birth varied according to US region, with higher levels of maternal education associated with a significantly decreased odds of preterm birth in the Midwest and South but not in the Northeast and West. Non-Hispanic white women residing in rural compared to urban CTs had an increased odds of preterm birth; the ability to detect associations between neighborhood-level measures of SES and gestational age for other race/ethnic groups was limited due to small sample sizes within select strata. Interventions that promote higher educational attainment among women of reproductive age could contribute to a reduction in preterm birth, particularly in the US South and Midwest. Further individual-level analyses engaging a diverse set of cohorts are needed to disentangle the complex interrelationships among maternal education, neighborhood-level factors, exposures across the life course, and gestational age at birth outcomes by maternal race/ethnicity and US geography.


Assuntos
Grupos Étnicos , Idade Gestacional , Idade Materna , Mães , Classe Social , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Estados Unidos
6.
Environ Res ; 196: 110320, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33098817

RESUMO

BACKGROUND: Air pollution exposure is ubiquitous with demonstrated effects on morbidity and mortality. A growing literature suggests that prenatal air pollution exposure impacts neurodevelopment. We posit that the Environmental influences on Child Health Outcomes (ECHO) program will provide unique opportunities to fill critical knowledge gaps given the wide spatial and temporal variability of ECHO participants. OBJECTIVES: We briefly describe current methods for air pollution exposure assessment, summarize existing studies of air pollution and neurodevelopment, and synthesize this information as a basis for recommendations, or a blueprint, for evaluating air pollution effects on neurodevelopmental outcomes in ECHO. METHODS: We review peer-reviewed literature on prenatal air pollution exposure and neurodevelopmental outcomes, including autism spectrum disorder, attention deficit hyperactivity disorder, intelligence, general cognition, mood, and imaging measures. ECHO meta-data were compiled and evaluated to assess frequency of neurodevelopmental assessments and prenatal and infancy residential address locations. Cohort recruitment locations and enrollment years were summarized to examine potential spatial and temporal variation present in ECHO. DISCUSSION: While the literature provides compelling evidence that prenatal air pollution affects neurodevelopment, limitations in spatial and temporal exposure variation exist for current published studies. As >90% of the ECHO cohorts have collected a prenatal or infancy address, application of advanced geographic information systems-based models for common air pollutant exposures may be ideal to address limitations of published research. CONCLUSIONS: In ECHO we have the opportunity to pioneer unifying exposure assessment and evaluate effects across multiple periods of development and neurodevelopmental outcomes, setting the standard for evaluation of prenatal air pollution exposures with the goal of improving children's health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Criança , Saúde da Criança , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Inteligência , Material Particulado/análise , Gravidez
7.
J Neurodev Disord ; 12(1): 42, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33327930

RESUMO

BACKGROUND: Perinatal exposure to air pollution and immune system dysregulation are two factors consistently associated with autism spectrum disorders (ASD) and other neurodevelopmental outcomes. However, little is known about how air pollution may influence maternal immune function during pregnancy. OBJECTIVES: To assess the relationship between mid-gestational circulating levels of maternal cytokines/chemokines and previous month air pollution exposure across neurodevelopmental groups, and to assess whether cytokines/chemokines mediate the relationship between air pollution exposures and risk of ASD and/or intellectual disability (ID) in the Early Markers for Autism (EMA) study. METHODS: EMA is a population-based, nested case-control study which linked archived maternal serum samples collected during weeks 15-19 of gestation for routine prenatal screening, birth records, and Department of Developmental Services (DDS) records. Children receiving DDS services for ASD without intellectual disability (ASD without ID; n = 199), ASD with ID (ASD with ID; n = 180), ID without ASD (ID; n = 164), and children from the general population (GP; n = 414) with no DDS services were included in this analysis. Serum samples were quantified for 22 cytokines/chemokines using Luminex multiplex analysis technology. Air pollution exposure for the month prior to maternal serum collection was assigned based on the Environmental Protection Agency's Air Quality System data using the maternal residential address reported during the prenatal screening visit. RESULTS: Previous month air pollution exposure and mid-gestational maternal cytokine and chemokine levels were significantly correlated, though weak in magnitude (ranging from - 0.16 to 0.13). Ten pairs of mid-pregnancy immune markers and previous month air pollutants were significantly associated within one of the child neurodevelopmental groups, adjusted for covariates (p < 0.001). Mid-pregnancy air pollution was not associated with any neurodevelopmental outcome. IL-6 remained associated with ASD with ID even after adjusting for air pollution exposure. CONCLUSION: This study suggests that maternal immune activation is associated with risk for neurodevelopmental disorders. Furthermore, that prenatal air pollution exposure is associated with small, but perhaps biologically relevant, effects on maternal immune system function during pregnancy. Additional studies are needed to better evaluate how prenatal exposure to air pollution affects the trajectory of maternal immune activation during pregnancy, if windows of heightened susceptibility can be identified, and how these factors influence neurodevelopment of the offspring.


Assuntos
Poluição do Ar , Transtorno Autístico , Imunidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Poluição do Ar/efeitos adversos , Biomarcadores , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Gravidez/imunologia , Estados Unidos
8.
Genome Med ; 12(1): 88, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054850

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS: We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS: We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS: At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.


Assuntos
Transtorno do Espectro Autista/etiologia , Metilação de DNA , Epigenoma , Sangue Fetal , Genes Ligados ao Cromossomo X , Neurogênese , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Biomarcadores , Encéfalo/metabolismo , Pré-Escolar , Biologia Computacional/métodos , Epigênese Genética , Contagem de Eritrócitos , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Aprendizado de Máquina , Masculino , Especificidade de Órgãos/genética , Prognóstico
9.
Transl Psychiatry ; 10(1): 218, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636363

RESUMO

Gestational exposure to air pollution increases the risk of autism spectrum disorder and cognitive impairments with unresolved molecular mechanisms. This study exposed C57BL/6J mice throughout gestation to urban-derived nanosized particulate matter (nPM). Young adult male and female offspring were studied for behavioral and metabolic changes using forced swim test, fat gain, glucose tolerance, and hippocampal transcriptome. Gestational nPM exposure caused increased depressive behaviors, decreased neurogenesis in the dentate gyrus, and increased glucose tolerance in adult male offspring. Both sexes gained fat and body weight. Gestational nPM exposure induced 29 differentially expressed genes (DEGs) in adult hippocampus related to cytokine production, IL17a signaling, and dopamine degradation in both sexes. Stratification by sex showed twofold more DEGs in males than females (69 vs 37), as well as male-specific enrichment of DEGs mediating serotonin signaling, endocytosis, Gαi, and cAMP signaling. Gene co-expression analysis (WCGNA) identified a module of 43 genes with divergent responses to nPM between the sexes. Chronic changes in 14 DEGs (e.g., microRNA9-1) were associated with depressive behaviors, adiposity and glucose intolerance. These genes enriched neuroimmune pathways such as HMGB1 and TLR4. Based on cerebral cortex transcriptome data of neonates, we traced the initial nPM responses of HMGB1 pathway. In vitro, mixed glia responded to 24 h nPM with lower HMGB1 protein and increased proinflammatory cytokines. This response was ameliorated by TLR4 knockdown. In sum, we identified transcriptional changes that could be associated with air pollution-mediated behavioral and phenotypic changes. These identified genes merit further mechanistic studies for therapeutic intervention development.


Assuntos
Poluição do Ar , Transtorno do Espectro Autista , Poluição do Ar/efeitos adversos , Animais , Feminino , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
10.
Environ Res ; 188: 109709, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526495

RESUMO

The Environmental influences on Child Health Outcomes (ECHO) Program is a research initiative funded by the National Institutes of Health that capitalizes on existing cohort studies to investigate the impact of early life environmental factors on child health and development from infancy through adolescence. In the initial stage of the program, extant data from 70 existing cohort studies are being uploaded to a database that will be publicly available to researchers. This new database will represent an unprecedented opportunity for researchers to combine data across existing cohorts to address associations between prenatal chemical exposures and child neurodevelopment. Data elements collected by ECHO cohorts were determined via a series of surveys administered by the ECHO Data Analysis Center. The most common chemical classes quantified in multiple cohorts include organophosphate pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, environmental phenols (including bisphenol A), phthalates, and metals. For each of these chemicals, at least four ECHO cohorts also collected behavioral data during infancy/early childhood using the Child Behavior Checklist. For these chemicals and this neurodevelopmental assessment (as an example), existing data from multiple ECHO cohorts could be pooled to address research questions requiring larger sample sizes than previously available. In addition to summarizing the data that will be available, the article also describes some of the challenges inherent in combining existing data across cohorts, as well as the gaps that could be filled by the additional data collection in the ECHO Program going forward.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Adolescente , Criança , Saúde da Criança , Pré-Escolar , Estudos de Coortes , Exposição Ambiental , Poluentes Ambientais/toxicidade , Feminino , Éteres Difenil Halogenados , Humanos , Compostos Organofosforados , Gravidez
11.
Autism Res ; 13(6): 998-1010, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314879

RESUMO

Advanced parental age is a well-replicated risk factor for autism spectrum disorder (ASD), a neurodevelopmental condition with a complex and not well-defined etiology. We sought to determine parental age associations with ASD-related outcomes in subjects at high familial risk for ASD. A total of 397 younger siblings of a child with ASD, drawn from existing prospective high familial risk cohorts, were included in these analyses. Overall, we did not observe significant associations of advanced parental age with clinical ASD diagnosis, Social Responsiveness Scale, or Vineland Adaptive Behavior Scales scores. Instead, increased odds of ASD were found with paternal age < 30 years (adjusted odds ratio [AOR] = 2.83 and 95% confidence intervals [CI] = 1.14-7.02). Likewise, younger age (<30 years) for both parents was associated with decreases in Mullen Scales of Early Learning early learning composite (MSEL-ELC) scores (adjusted ß = -9.62, 95% CI = -17.1 to -2.15). We also found significant increases in cognitive functioning based on MSEL-ELC scores with increasing paternal age (adjusted ß associated with a 10-year increase in paternal age = 5.51, 95% CI = 0.70-10.3). Results suggest the potential for a different relationship between parental age and ASD-related outcomes in families with elevated ASD risk than has been observed in general population samples. Autism Res 2020, 13: 998-1010. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Previous work suggests that older parents have a greater likelihood of having a child with autism. We investigated this relationship in the younger siblings of families who already had a child with autism. In this setting, we found a higher likelihood of autism, as well as poorer cognitive scores, in the siblings with younger fathers, and higher cognitive scores in the siblings with older parents. These results suggest that parental age associations may differ based on children's familial risk for autism.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Idade Materna , Idade Paterna , Adulto , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos
12.
Mol Autism ; 10: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673306

RESUMO

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods: Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results: While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations: ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions: This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.


Assuntos
Transtorno Autístico/genética , Autoimunidade/genética , Cromatina/metabolismo , Meio Ambiente , Sangue Fetal/metabolismo , Adulto , Criança , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Estudos Prospectivos , Fatores de Risco
13.
Environ Health Perspect ; 127(5): 57012, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Epigenoma , Sangue Fetal/química , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Adolescente , Poluição do Ar/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
14.
Environ Int ; 126: 363-376, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30826615

RESUMO

BACKGROUND: Prenatal air pollution exposure has been linked to many adverse health conditions in the offspring. However, little is known about the mechanisms underlying these associations. Epigenetics may be one plausible biologic link. Here, we sought to identify site-specific and global DNA methylation (DNAm) changes, in developmentally relevant tissues, associated with prenatal exposure to nitrogen dioxide (NO2) and ozone (O3). Additionally, we assessed whether sex-specific changes in methylation exist and whether DNAm changes are consistently observed across tissues. METHODS: Genome-scale DNAm measurements were obtained using the Infinium HumanMethylation450k platform for 133 placenta and 175 cord blood specimens from Early Autism Risk Longitudinal Investigation (EARLI) neonates. Ambient NO2 and O3 exposure levels were based on prenatal address locations of EARLI mothers and the Environmental Protection Agency's AirNOW monitoring network using inverse distance weighting. We computed sample-level aggregate methylation measures for each of 5 types of genomic regions including genome-wide, open sea, shelf, shore, and island regions. Linear regression was performed for each genomic region; per-sample aggregate methylation measures were modeled as a function of quantitative exposure level with covariate adjustment. In addition, bumphunting was performed to identify differentially methylated regions (DMRs) associated with prenatal O3 and NO2 exposures in each tissue and by sex, with adjustment for technical and biological sources of variation. RESULTS: We identified global and locus-specific changes in DNA methylation related to prenatal exposure to NO2 and O3 in 2 developmentally relevant tissues. Neonates with increased prenatal O3 exposure had lower aggregate levels of DNAm at CpGs located in open sea and shelf regions of the genome. We identified 6 DMRs associated with prenatal NO2 exposure, including 3 sex-specific. An additional 3 sex-specific DMRs were associated with prenatal O3 exposure levels. DMRs initially detected in cord blood samples (n = 4) showed consistent exposure-related changes in DNAm in placenta. However, the DMRs initially detected in placenta (n = 5) did not show DNAm differences in cord blood and, thus, they appear to be tissue-specific. CONCLUSIONS: We observed global, locus, and sex-specific methylation changes associated with prenatal NO2 and O3 exposures. Our findings support DNAm is a biologic target of prenatal air pollutant exposures and highlight epigenetic involvement in sex-specific differential susceptibility to environmental exposure effects in 2 developmentally relevant tissues.


Assuntos
Poluição do Ar/análise , Metilação de DNA , Troca Materno-Fetal , Poluentes Atmosféricos/análise , Saúde da Criança , Epigenômica , Feminino , Humanos , Saúde do Lactente , Recém-Nascido , Masculino , Exposição Materna , Dióxido de Nitrogênio/análise , Ozônio/análise , Placenta/química , Gravidez
15.
Artigo em Inglês | MEDLINE | ID: mdl-29561551

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are ubiquitous air pollutants associated with negative impacts on growth, development and behavior in children. Source-specific biological markers of PAH exposure are needed for targeting interventions to protect children. Nitro-derivatives of PAH can act as markers of exposure to diesel exhaust, gasoline exhaust, or general combustion sources. Using a novel HPLC-APCI-MS/MS detection method, we examined four hemoglobin (Hb) adducts of nitro-PAH metabolites and the Hb adduct of a benzo[a]pyrene (BaP) metabolite in 22 umbilical cord blood samples. The samples were collected from a birth cohort with comprehensive data on prenatal PAH exposure, including prenatal personal air monitoring and DNA adducts in maternal and umbilical cord blood. Using non-parametric analyses, heat maps, and principal component analysis (PCA), we analyzed the relationship between the five Hb adducts and previous PAH measurements, with each measurement representing a different duration of exposure. We found that Hb adducts derived from several diesel-related nitro-PAHs (2-nitrofluorene and 1-nitropyrene) were significantly correlated (r = 0.77, p ≤ 0.0001) and grouped together in PCA. Nitro-PAH derived Hb adducts were largely unrelated to previously collected measures of exposure to a number of PAH parent compounds. These measures need to be validated in a larger sample.

16.
Environ Health Perspect ; 126(3): 037004, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29553459

RESUMO

BACKGROUND: Previous studies have reported associations of perinatal exposure to air toxics, including some metals and volatile organic compounds, with autism spectrum disorder (ASD). OBJECTIVES: Our goal was to further explore associations of perinatal air toxics with ASD and associated quantitative traits in high-risk multiplex families. METHODS: We included participants of a U.S. family-based study [the Autism Genetic Resource Exchange (AGRE)] who were born between 1994 and 2007 and had address information. We assessed associations between average annual concentrations at birth for each of 155 air toxics from the U.S. EPA emissions-based National-scale Air Toxics Assessment and a) ASD diagnosis (1,540 cases and 477 controls); b) a continuous measure of autism-related traits, the Social Responsiveness Scale (SRS, among 1,272 cases and controls); and c) a measure of autism severity, the Calibrated Severity Score (among 1,380 cases). In addition to the individual's air toxic level, mixed models (clustering on family) included the family mean air toxic level, birth year, and census covariates, with consideration of the false discovery rate. RESULTS: ASD diagnosis was positively associated with propionaldehyde, methyl tert-butyl ether (MTBE), bromoform, 1,4-dioxane, dibenzofurans, and glycol ethers and was inversely associated with 1,4-dichlorobenzene, 4,4'-methylene diphenyl diisocyanate (MDI), benzidine, and ethyl carbamate (urethane). These associations were robust to adjustment in two-pollutant models. Autism severity was associated positively with carbon disulfide and chlorobenzene, and negatively with 1,4-dichlorobenzene. There were no associations with the SRS. CONCLUSIONS: Some air toxics were associated with ASD risk and severity, including some traffic-related air pollutants and newly-reported associations, but other previously reported associations with metals and volatile organic compounds were not reproducible. https://doi.org/10.1289/EHP1867.


Assuntos
Transtorno Autístico/epidemiologia , Poluentes Atmosféricos/toxicidade , Aldeídos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno Autístico/etiologia , Benzidinas/toxicidade , Clorobenzenos/toxicidade , Dioxanos/toxicidade , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Éteres Metílicos/toxicidade , Trialometanos/toxicidade , Uretana/toxicidade
17.
Autism Res ; 11(1): 69-80, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29120534

RESUMO

Independent studies report that periconceptional folic acid (FA) may decrease the risk of autism spectrum disorder (ASD) while exposure to air pollution may increase ASD risk. We examined the joint effects of gestational FA and air pollution exposures in association with ASD. We studied 346 ASD cases and 260 typically developing controls from the CHARGE case-control study. Self-reported FA intake for each month of pregnancy was quantified. Estimates of exposure to near roadway air pollution (NRP) and criteria air pollutant measures were assigned based on maternal residential history. Among mothers with high FA intake (>800 µg) in the first pregnancy month, exposure to increasing levels of all air pollutants, except ozone, during the first trimester was associated with decreased ASD risk, while increased ASD risk was observed for the same pollutant among mothers with low FA intake (≤800 µg). This difference was statistically significant for NO2 (e.g., NO2 and low FA intake: OR = 1.53 (0.91, 2.56) vs NO2 and high FA intake: OR = 0.74 (0.46, 1.19), P-interaction = 0.04). Mothers exposed to higher levels (≥ median) of any air pollutant during the first trimester of pregnancy and who reported low FA intake were at a higher ASD risk compared to mothers exposed to lower levels of that air pollutant and who reported high first month FA intake. Joint effects showed significant (alpha < 0.10) departures from expected interaction for NRP and NO2 . Our results suggest that periconceptional FA intake may reduce ASD risk in those with high prenatal air pollution exposure. Further study is needed to replicate these findings in larger sample sizes and to understand mechanisms of this potential relationship.. Autism Res 2018, 11: 69-80. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We examined interactions between periconceptional folic acid (FA) and air pollution exposure on risk of ASD. Mothers exposed to higher levels of air pollution during the first trimester of pregnancy and who reported low supplemental FA intake during the first pregnancy month were at a higher ASD risk compared to mothers exposed to lower levels of air pollution and who reported high first month FA intake. Our results suggest that periconceptional FA intake may reduce ASD risk in those with high prenatal air pollution exposure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Transtorno do Espectro Autista/epidemiologia , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , California/epidemiologia , Estudos de Casos e Controles , Causalidade , Pré-Escolar , Feminino , Humanos , Masculino , Mães , Gravidez , Risco
18.
Environ Health Perspect ; 125(9): 097007, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28934093

RESUMO

BACKGROUND: Maternal folic acid (FA) protects against developmental toxicity from certain environmental chemicals. OBJECTIVE: We examined combined exposures to maternal FA and pesticides in relation to autism spectrum disorder (ASD). METHODS: Participants were California children born from 2000-2007 who were enrolled in the Childhood Autism Risks from Genetics and the Environment (CHARGE) case-control study at age 2-5 y, were clinically confirmed to have ASD (n=296) or typical development (n=220), and had information on maternal supplemental FA and pesticide exposures. Maternal supplemental FA and household pesticide product use were retrospectively collected in telephone interviews from 2003-2011. High vs. low daily FA intake was dichotomized at 800µg (median). Mothers' addresses were linked to a statewide database of commercial applications to estimate agricultural pesticide exposure. RESULTS: High FA intake (≥800µg) during the first pregnancy month and no known pesticide exposure was the reference group for all analyses. Compared with this group, ASD was increased in association with <800µg FA and any indoor pesticide exposure {adjusted odds ratio [OR]=2.5 [95% confidence interval (CI): 1.3, 4.7]} compared with low FA [OR=1.2 (95% CI: 0.7, 2.2)] or indoor pesticides [OR=1.7 (95% CI: 1.1, 2.8)] alone. ORs for the combination of low FA and regular pregnancy exposure (≥6 mo) to pet pesticides or to outdoor sprays and foggers were 3.9 (95% CI: 1.4, 11.5) and 4.1 (95% CI: 1.7, 10.1), respectively. ORs for low maternal FA and agricultural pesticide exposure 3 mo before or after conception were 2.2 (95% CI: 0.7, 6.5) for chlorpyrifos, 2.3 (95% CI: 0.98, 5.3) for organophosphates, 2.1 (95% CI: 0.9, 4.8) for pyrethroids, and 1.5 (95% CI: 0.5, 4.8) for carbamates. Except for carbamates, these ORs were approximately two times greater than those for either exposure alone or for the expected ORs for combined exposures under multiplicative or additive models. CONCLUSIONS: In this study population, associations between pesticide exposures and ASD were attenuated among those with high versus low FA intake during the first month of pregnancy. Confirmatory and mechanistic studies are needed. https://doi.org/10.1289/EHP604.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Suplementos Nutricionais , Poluentes Ambientais/metabolismo , Ácido Fólico/uso terapêutico , Exposição Materna/estatística & dados numéricos , Praguicidas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , California/epidemiologia , Estudos de Casos e Controles , Criança , Transtornos Globais do Desenvolvimento Infantil/epidemiologia , Feminino , Humanos , Masculino , Gravidez
19.
Environ Health Perspect ; 124(1): 133-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26068947

RESUMO

BACKGROUND: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. OBJECTIVES: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. METHODS: Ours was a collaborative study of four European population-based birth/child cohorts-CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 µm (PM2.5), ≤ 10 µm (PM10), and between 2.5 and 10 µm (PM(coarse)), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. RESULTS: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10-µg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. CONCLUSIONS: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies. CITATION: Guxens M, Ghassabian A, Gong T, Garcia-Esteban R, Porta D, Giorgis-Allemand L, Almqvist C, Aranbarri A, Beelen R, Badaloni C, Cesaroni G, de Nazelle A, Estarlich M, Forastiere F, Forns J, Gehring U, Ibarluzea J, Jaddoe VW, Korek M, Lichtenstein P, Nieuwenhuijsen MJ, Rebagliato M, Slama R, Tiemeier H, Verhulst FC, Volk HE, Pershagen G, Brunekreef B, Sunyer J. 2016. Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies: the ESCAPE Project. Environ Health Perspect 124:133-140; http://dx.doi.org/10.1289/ehp.1408483.


Assuntos
Poluição do Ar/efeitos adversos , Transtorno Autístico/epidemiologia , Material Particulado/toxicidade , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Óxidos de Nitrogênio/metabolismo , Gravidez
20.
Early Hum Dev ; 91(8): 483-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073892

RESUMO

BACKGROUND: Vitamin D is essential for proper neurodevelopment and cognitive and behavioral function. We examined associations between autism spectrum disorder (ASD) and common, functional polymorphisms in vitamin D pathways. METHODS: Children aged 24-60 months enrolled from 2003 to 2009 in the population-based CHARGE case-control study were evaluated clinically and confirmed to have ASD (n=474) or typical development (TD, n=281). Maternal, paternal, and child DNA samples for 384 (81%) families of children with ASD and 234 (83%) families of TD children were genotyped for: TaqI, BsmI, FokI, and Cdx2 in the vitamin D receptor (VDR) gene, and CYP27B1 rs4646536, GC rs4588, and CYP2R1 rs10741657. Case-control logistic regression, family-based log-linear, and hybrid log-linear analyses were conducted to produce risk estimates and 95% confidence intervals (CI) for each allelic variant. RESULTS: Paternal VDR TaqI homozygous variant genotype was significantly associated with ASD in case-control analysis (odds ratio [OR] [CI]: 6.3 [1.9-20.7]) and there was a trend towards increased risk associated with VDR BsmI (OR [CI]: 4.7 [1.6-13.4]). Log-linear triad analyses detected parental imprinting, with greater effects of paternally-derived VDR alleles. Child GC AA-genotype/A-allele was associated with ASD in log-linear and ETDT analyses. A significant association between decreased ASD risk and child CYP2R1 AA-genotype was found in hybrid log-linear analysis. There were limitations of low statistical power for less common alleles due to missing paternal genotypes. CONCLUSIONS: This study provides preliminary evidence that paternal and child vitamin D metabolism could play a role in the etiology of ASD; further research in larger study populations is warranted.


Assuntos
Transtorno do Espectro Autista/genética , Colestanotriol 26-Mono-Oxigenase/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Adulto , Estudos de Casos e Controles , Pré-Escolar , Família 2 do Citocromo P450 , Pai , Feminino , Humanos , Masculino , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...