RESUMO
Polyelectrolyte multilayers (PEM) loaded with bioactive molecules such as proteins serve as excellent mimics of an extracellular matrix and may find applications in fields such as biomedicine and cell biology. A question which is crucial to the successful employment of PEMs is whether conformation and bioactivity of the loaded proteins is preserved. In this work, the polarized attenuated total reflection Fourier transform infrared (ATR-FTIR) technique is applied to investigate the conformation of the protein lysozyme (Lys) loaded into the poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers. Spectra are taken from the protein in the PEMs coated onto an ATR crystal during protein adsorption and desorption. For comparison, a similar investigation is performed for the case of Lys in contact with the uncoated crystal. The study highlights the presence of both "tightly" and "poorly bound" Lys fractions in the PEM. These fractions differ in their conformation and release behavior from the PEM upon washing. Comparison of spectra recorded with different polarizations suggests preferential orientation of alpha helical structures, beta sheets and turns in the "tightly bound" Lys. In contrast, the "poorly bound" fraction shows isotropic orientation and its conformation is well preserved.
RESUMO
To implement a specific function, cells recognize multiple physical and chemical cues and exhibit molecular responses at their interfaces - the boundary regions between the cell lipid-based membrane and the surrounding extracellular matrix (ECM). Mimicking the cellular external microenvironment presents a big challenge in nanoarchitectonics due to the complexity of the ECM and lipid membrane fragility. This study reports an approach for the assembly of a lipid bilayer, mimicking the cellular membrane, placed on top of a polyelectrolyte multilayer cushion made of hyaluronic acid and poly-L-lysine - a nanostructured biomaterial, which represents a 3D artificial ECM. Model proteins, lysozyme and α-lactalbumin, (which have similar molecular masses but carry opposite net charges) have been employed as soluble signalling molecules to probe their interaction with these hybrids. The formation of a lipid bilayer and the intermolecular interactions in the hybrid structure are monitored using a quartz crystal microbalance and confocal fluorescence microscopy. Electrostatic interactions between poly-L-lysine and the externally added proteins govern the transport of proteins into the hybrid. Designed ECM-cell mimicking hybrids open up new avenues for modelling a broad range of cell membranes and ECM and their associated phenomena, which can be used as a tool for synthetic biology and drug screening.
Assuntos
Bicamadas Lipídicas , Polilisina , Polieletrólitos , Bicamadas Lipídicas/química , Polilisina/química , Membrana Celular , Matriz ExtracelularRESUMO
HYPOTHESIS: Recently, the anomalous shrinkage of surface-supported hyaluronate/poly-l-lysine (HA/PLL) microgels (µ-gels), which exceeds that reported for any other multilayer-based systems, has been reported [1]. The current study investigates the capability of these unique µ-gels for the encapsulation and retention of macromolecules, and proposes the shrinkage-driven assembly of biopolymer-based µ-gels as a novel tool for one-step surface biofunctionalization. EXPERIMENTS: A set of dextrans (DEX) and their charged derivatives - carboxymethyl (CM)-DEX and diethylaminoethyl (DEAE)-DEX - has been utilized to evaluate the effects of macromolecular mass and net charge on µ-gel shrinkage and macromolecule entrapment. µ-gels formation on the surface of silicone catheters exemplifies their potential to tailor biointerfaces. FINDINGS: Shrinkage-driven µ-gel formation strongly depends on the net charge and mass content of encapsulated macromolecules. Inclusion of neutral DEX decreases the degree of shrinkage several times, whilst charged DEXs adopt to the backbone of oppositely charged polyelectrolytes, resulting in shrinkage comparable to that of non-loaded µ-gels. Retention of CM-DEX in µ-gels is significantly higher compared to DEAE-DEX. These insights into the mechanisms of macromolecular entrapment into biopolymer-based µ-gels promotes fundamental understanding of molecular dynamics within the multilayer assemblies. Organization of biodegradable µ-gels at biomaterial surfaces opens avenues for their further exploitation in a diverse array of bioapplications.
Assuntos
Microgéis , GéisRESUMO
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
RESUMO
While the enteral delivery of proteolytic enzymes is widely established for combating many diseases as an alternative to antibiotic treatment, their local delivery only emerges as administration route enabling sustained release in a controlled manner on site. The latest requires the development of drug delivery systems suitable for encapsulation and preservation of enzymatic proteolytic activity. This study proposes hybrid microspheres made of mucin and biodegradable porous crystals of calcium carbonate (CC) as the carriers for chymotrypsin (CTR) delivery. CTR is impregnated into CC and hybrid CC/mucin (CCM) microspheres by means of sorption without any chemical modification. The loading of the CC with mucin enhances CTR retention on hybrid microspheres (adsorption capacity of ≈8.7 mg g-1 vs 4.7 mg g-1 ), recharging crystal surface due to the presence of mucin and diminishing the average pore diameter of the crystals from 25 to 8 nm. Mucin also retards recrystallization of vaterite into nonporous calcite improving stability of CCM microspheres upon storage. Proteolytic activity of CTR is preserved in both CC and CCM microspheres, being pH dependent. Temperature-induced inactivation of CTR significantly diminishes by CTR encapsulation into CC and CCM microspheres. Altogether, these findings indicate promises of hybrid mucin-vaterite microspheres for mucosal application of proteases.
Assuntos
Carbonato de Cálcio , Quimotripsina , Carbonato de Cálcio/química , Microesferas , Mucinas , Peptídeo Hidrolases , ProteínasRESUMO
Former studies have demonstrated a strong interest toward the crystallization of CaCO3 polymorphs in solution. Nowadays, CaCO3 crystallization on solid surfaces is extensively being studied using biomolecules as substrates for the control of the growth aiming at various applications of CaCO3. Calcium carbonate exists in an amorphous state, as three anhydrous polymorphs (aragonite, calcite and vaterite), and as two hydrated polymorphs (monohydrocalcite and ikaite). The vaterite polymorph is considered as one of the most attractive forms due to its large surface area, biocompatibility, mesoporous nature, and other features. Based on physical or chemical immobilization approaches, vaterite can be grown directly on solid surfaces using various (bio)molecules, including synthetic polymers, biomacromolecules such as proteins and peptides, carbohydrates, fibers, extracellular matrix components, and even biological cells such as bacteria. Herein, the progress on the modification of solid surfaces by vaterite CaCO3 crystals is reviewed, focusing on main findings and the mechanism of vaterite growth initiated by various substances mentioned above, as well as the discussion of the applications of such modified surfaces.
RESUMO
Hydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.g. enzymes) makes them a particularly useful component in hydrogels. In this study, micro/nanoparticles containing various ratios of Ca2+/Mg2+ with sizes ranging from 1 to 8 µm were prepared and mixed with gellan gum (GG) solution to study the in-situ formation of hydrogel-particle composites. The particles provide multiple functionalities: 1) they efficiently crosslink GG to induce hydrogel formation through the release of the divalent cations (Ca2+/Mg2+) known to bind to GG polymer chains; 2) they enhance mechanical properties of the hydrogel from 2 up to 100 kPa; 3) the samples most efficiently promoting cell growth were found to contain two types of minerals: vaterite and hydroxymagnesite, which enhanced cells proliferation and hydroxyapatite formation. The results demonstrate that such composite materials are attractive candidates for applications in bone regeneration.
Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/farmacologia , Regeneração Óssea , Carbonato de Cálcio/química , Durapatita/farmacologia , Hidrogéis/farmacologiaRESUMO
Surface-enhanced Raman scattering (SERS) is a powerful analytical tool for label-free analysis that has found a broad spectrum of applications in material, chemical, and biomedical sciences. In recent years, a great interest has been witnessed in the rational design of SERS substrates to amplify Raman signals and optionally allow for the selective detection of analytes, which is especially essential and challenging for biomedical applications. In this study, hard templating of noble metals is proposed as a novel approach for the design of one-component tailor-made SERS platforms. Porous Au microparticles were fabricated via dual ex situ adsorption of Au nanoparticles and in situ reduction of HAuCl4 on mesoporous sacrificial microcrystals of vaterite CaCO3. Elimination of the microcrystals at mild conditions resulted in the formation of stable mesoporous one-component Au microshells. SERS performance of the microshells at very low 0.4 µW laser power was probed using rhodamine B and bovine serum albumin showing enhancement factors of 2 × 108 and 8 × 108, respectively. The proposed strategy opens broad avenues for the design and scalable fabrication of one-component porous metal particles that can serve as superior SERS platforms possessing both excellent plasmonic properties and the possibility of selective inclusion of analyte molecules and/or SERS nanotags for highly specific SERS analysis.
Assuntos
Ouro , Nanopartículas Metálicas , Soroalbumina Bovina , Análise Espectral RamanRESUMO
The polymer layer-by-layer assembly is accounted among the most attractive approaches for the design of advanced drug delivery platforms and biomimetic materials in 2D and 3D. The multilayer capsules can be made of synthetic or biologically relevant (e.g., natural) polymers. The biopolymers are advantageous for bioapplications; however, the design of such "biocapsules" is more challengeable due to intrinsic complexity and lability of biopolymers. Until now, there are no systematic studies that report the formation mechanism for multilayer biocapsules templated upon CaCO3 crystals. This work evaluates the structure-property relationship for 16 types of capsules made of different biopolymers and proposes the capsule formation mechanism. The capsules have been fabricated upon mesoporous cores of vaterite CaCO3, which served as a sacrificial template. Stable capsules of polycations poly-l-lysine or protamine and four different polyanions were successfully formed. However, capsules made using the polycation collagen and dextran amine underwent dissolution. Formation of the capsules has been correlated with the stability of the respective polyelectrolyte complexes at increased ionic strength. All formed capsules shrink upon core dissolution and the degree of shrinkage increased in the series of polyanions: heparin sulfate < dextran sulfate < chondroitin sulfate < hyaluronic acid. The same trend is observed for capsule adhesiveness to the glass surface, which correlates with the decrease in polymer charge density. The biopolymer length and charge density govern the capsule stability and internal structure; all formed biocapsules are of a matrix-type, other words are microgels. These findings can be translated to other biopolymers to predict biocapsule properties.
Assuntos
Carbonato de Cálcio/química , Polímeros/química , Cápsulas , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Polieletrólitos/química , PorosidadeRESUMO
The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63-67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10-50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.
Assuntos
Bentonita/química , Argila/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Temperatura , Purificação da ÁguaRESUMO
Poly(N-isopropylacrylamide) (pNIPAM) hydrogels have broad potential applications as drug delivery vehicles because of their thermoresponsive behavior. pNIPAM loading/release performances are directly affected by the gel network structure. Therefore, there is a need with the approaches for accurate design of 3D pNIPAM assemblies with the structure ordered at the nanoscale. This study demonstrates size-selective spontaneous loading of macromolecules (dextrans 10-500 kDa) into pNIPAM microgels by microgel heating from 22 to 35 °C (microgels collapse and trap dextrans) followed by the dextran release upon further cooling down to 22 °C (microgels swell back) . This temperature-mediated behavior is fully reversible. The structure of pNIPAM microgels was tailored via hard templating and cross-linking of the hydrogel using sacrificial mesoporous cores of vaterite CaCO3 microcrystals. In addition, the fabrication of hollow thermoresponsive pNIPAM microshells has been demonstrated, utilizing vaterite microcrystals that had narrower pores. The proposed approach for heating-triggered encapsulation and cooling-triggered release into/from pNIPAM microgels may pave the ways for applications of pNIPAM hydrogels for skin and transdermal cooling-responsive drug delivery in the future.
Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Microgéis/química , Carbonato de Cálcio/química , Dextranos/química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Transição de Fase , Porosidade , TemperaturaRESUMO
CaCO3 crystals have been known for a long time as naturally derived and simply fabricated nano(micro)-sized materials able to effectively host and release various molecules. This review summarises the use of CaCO3 crystals as versatile carriers to host, protect and release antimicrobials, offering a strong tool to tackle antimicrobial resistance, a serious global health problem. The main methods for the synthesis of CaCO3 crystals with different properties, as well as the approaches for the loading and release of antimicrobials are presented. Finally, prospects to utilize the crystals in order to improve the therapeutic outcome and combat antimicrobial resistance are highlighted. Ultimately, this review intends to provide an in-depth overview of the application of CaCO3 crystals for the smart and controlled delivery of antimicrobial agents and aims at identifying the advantages and drawbacks as well as guiding future works, research directions and industrial applications.
Assuntos
Anti-Infecciosos , Carbonato de CálcioRESUMO
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
RESUMO
Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1-2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.
RESUMO
Encapsulation of enzymes allows to preserve their biological activities in various environmental conditions, such as exposure to elevated temperature or to proteases. This is particularly relevant for in vivo applications, where proteases represent a severe obstacle to maintaining the activity of enzymes. Polyelectrolyte multilayer capsules are suitable for enzyme encapsulation, where CaCO3 particles and temperature-dependent capsule formation are the best templates and the most adequate method, respectively. In this work, these two areas are combined and, ALP (alkaline phosphatase), which is a robust and therapeutically relevant enzyme, is encapsulated into thermally shrunk polyelectrolyte multilayer (PDADMAC/PSS)4 capsules templated on calcium carbonate particles (original average diameter: ≈3.5 µm). The activity of the encapsulated enzyme and the optimal temperature range for encapsulation are investigated. The enzymatic activity is almost four times higher upon encapsulation when the temperature range for encapsulation is situated just above the glass transition temperature (40 °C), while its optimal conditions are dictated, on the one hand, by the enzyme activity (better at lower temperatures) and, on the other hand, by the size and mechanical properties of capsules (better at higher temperatures).
Assuntos
Fosfatase Alcalina/metabolismo , Carbonato de Cálcio/química , Polieletrólitos/química , Temperatura , Cápsulas , Microscopia de Força Atômica , Tamanho da Partícula , Polietilenos/química , Compostos de Amônio Quaternário/químicaRESUMO
The fast development of protein therapeutics has resulted in a high demand for advanced delivery carriers that can effectively host therapeutic proteins, preserve their bioactivity and release them on demand. Accordingly, vaterite CaCO3 crystals have attracted special attention as sacrificial templates for protein encapsulation in micro- and nanoparticles (capsules and beads, respectively) under mild biofriendly conditions. This study aimed to better understand the mechanism of protein loading into crystals as a primary step for protein encapsulation. The loading of three therapeutic proteins (250 kDa catalase, 5.8 kDa insulin, and 6.5 kDa aprotinin) was investigated for crystals with different porosities. However, unexpectedly, the protein loading capacity was not consistent with the protein molecular weight. It solely depends on the inter-protein interactions in the bulk solution in the presence of crystals and that inside the crystals. The smallest protein aprotinin aggregates in the bulk (its aggregate size is about 100 nm), which prohibits its loading into the crystals. Insulin forms hexamers in the bulk, which can diffuse into the crystal pores but tend to aggregate inside the pores, suppressing protein diffusion inward. Catalase, the largest protein tested, does not form any aggregates in the bulk and diffuses freely into the crystals; however, its diffusion into small pores is sterically restricted. These findings are essential for the encapsulation of protein therapeutics by means of templating based on CaCO3 crystals and for the engineering of protein-containing microparticles having desired architectures.
Assuntos
Carbonato de Cálcio/química , Sistemas de Liberação de Medicamentos , Proteínas/química , Proteínas/metabolismo , Peso Molecular , Porosidade , Ligação ProteicaRESUMO
A new strategy for ELISA-based detection in small volumes based on porous antibody-containing protein microparticles was developed and employed for the determination of human immunoglobulin G demonstrating both increase in sensitivity and decrease in antibody consumption by ten times compared to a conventional planar ELISA.
Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G/química , Microesferas , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Imunoglobulina G/imunologia , Limite de Detecção , Modelos Moleculares , Porosidade , Conformação ProteicaRESUMO
The self-assembly of polymers is a powerful tool for producing various functional materials with a high precision from nano- to macroscale [...].
RESUMO
Mesoporous vaterite CaCO3 crystals are nowadays one of the most popular vectors for loading of fragile biomolecules like proteins due to biocompatibility, high loading capacity, cost effective and simple loading procedures. However, recent studies reported the reduction of bioactivity for protein encapsulation into the crystals in water due to rather high alkaline pH of about 10.3 caused by the crystal hydrolysis. In this study we have investigated how to retain the bioactivity and control the release rate of the enzyme superoxide dismutase (SOD) loaded into the crystals via co-synthesis. SOD is widely used as an antioxidant in ophthalmology and its formulations with high protein content and activity as well as opportunities for a sustained release are highly desirable. Here we demonstrate that SOD co-synthesis can be done at pH 8.5 in a buffer without affecting crystal morphology. The synthesis in the buffer allows reaching the high loading efficiency of 93%, high SOD content (24 versus 15 w/w % for the synthesis in water), and order of magnitude higher activity compared to the synthesis in water. The enormous SOD concentration into crystals of 10-2â¯M is caused by the entrapment of SOD aggregates into the crystal pores. The SOD released from crystals at physiologically relevant ionic strength fully retains its bioactivity. As found by fitting the release profiles using zero-order and Baker-Lonsdale models, the SOD release mechanism is governed by both the SOD aggregate dissolution and by the diffusion of SOD molecules thorough the crystal pores. The latest process contributes more in case of the co-synthesis in the buffer because at higher pH (co-synthesis in water) the unfolded SOD molecules aggregate stronger. The release is bi-modal with a burst (ca 30%) followed by a sustained release and a complete release due to the recrystallization of vaterite crystals to non-porous calcite crystals. The mechanism of SOD loading into and release from the crystals as well as perspectives for the use of the crystals for SOD delivery in ophthalmology are discussed. We believe that together with a fundamental understanding of the vaterite-based protein encapsulation and protein release, this study will help to establish a power platform for a mild and effective encapsulation of fragile biomolecules like proteins at bio-friendly conditions.
Assuntos
Carbonato de Cálcio/metabolismo , Oftalmologia , Superóxido Dismutase/metabolismo , Carbonato de Cálcio/química , Cápsulas/química , Cápsulas/metabolismo , Cristalização , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Porosidade , Superóxido Dismutase/química , Propriedades de Superfície , TermodinâmicaRESUMO
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.