Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31984742

RESUMO

Boron-cross-linked cobalt(II) pseudoclathrochelate was obtained by the template reaction of 2-acetylpyrazoloxime, phenylboronic acid, and a new DMF cobalt(II) solvato complex with a decachloro-closo-decaborate dianion. As confirmed by single-crystal X-ray diffraction, this complex crystallizes with two symmetry-independent cobalt(II) pseudoclathrochelate cations, one decachloro-closo-decaborate dianion, one benzene, one dichloromethane solvent molecule, and two molecules of DMF. The latter act as pseudocapping fragments to the monocapped tris-pyrazoloximate ligands by forming N-H···O hydrogen bonds with their pyrazole groups. The CoIIN6-coordination polyhedra adopt a nearly ideal TP geometry with distortion angles φ equal to 1.22(16) and 2.58(17)° for two symmetry-independent pseudoclathrochelate cations, both containing the encapsulated cobalt(II) ion in its high-spin state (Co-N 2.115(4)-2.198(3) Å). Magnetic properties of this complex were studied both by dc-magnetometry and by solution-state NMR spectroscopy to reveal a high magnetic anisotropy, thus suggesting a large magnetic susceptibility tensor anisotropy (25.8 × 10-32 m3 at 298 K) and a large negative zero-field splitting energy (-85 cm-1). The results of magnetometry studies in the ac magnetic field suggest a single molecule magnet behavior of this TP complex with an effective magnetization reversal barrier of approximately 130 cm-1. Its pseudocapping DMF molecules that form H-bonds with tris-pyrazoloximate fragments are easy to substitute by strong H-bond acceptors, such as chloride ions and di- and tetramethylureas, thus affecting the magnetic properties of a whole pseudomacrobicyclic paramagnetic system.

2.
Chemphyschem ; 20(8): 1001-1005, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30897255

RESUMO

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm-1 ), results in a large magnetization reversal barrier U of 205 cm-1 . Its effective value, however, is much lower (101 cm-1 ), even though there is practically no contribution from quantum tunneling to magnetization relaxation.

3.
Inorg Chem ; 57(24): 15330-15340, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30495930

RESUMO

Zero-field splitting (ZFS) of three high-spin Co(I) ( S = 1) clathrochelate complexes was determined by frequency-domain Fourier-transform THz-EPR (FD-FT THz-EPR). The following axial and rhombic ZFS values ( D and E, respectively) were determined: [N( n-Bu)4]CoI(GmCl2)3(BPh)2 (1, D/ hc = +16.43(1) cm-1, E/ hc = 0.0(1) cm-1), [P(Me2N)4]CoI(GmCl2)3(BPh)2 (2, D/ hc = +16.67(4) cm-1, E/ hc = 0.0(1) cm-1), and [P(C6H5)4]CoI(GmCl2)3(BPh)2 (3, D/ hc = +16.72(2) cm-1, E/ hc = 0.24(3) cm-1). Complementary susceptibility χ T measurements and quantum chemistry calculations on 1 revealed hard-axis-type magnetic anisotropy and allowed for a correlation of ZFS and the electronic structure. Increased rhombicity of 3 as compared to 1 and 2 was assigned to symmetry changes of the ligand structure induced by the change of the counterion. 1 and 3 exhibited temperature-dependent ZFS values. Possible reasons for this phenomenon, such as structural changes and weak chain-like intermolecular antiferromagnetic interactions, are discussed.

4.
Chem Commun (Camb) ; 54(28): 3436-3439, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29424850

RESUMO

The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.

5.
Dalton Trans ; 47(4): 1036-1052, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29257161

RESUMO

An ability of the ribbed-functionalized iron(ii) clathrochelates to induce a CD output in interactions with a protein, covalent bonding or supramolecular interactions with a low-molecular-weight chiral inductor, was discovered. The interactions of CD inactive, carboxyl-terminated iron(ii) clathrochelates with serum albumin induced their molecular asymmetry, causing an appearance of strong CD signals in the range of 350-600 nm, whereas methyl ester and amide clathrochelate derivatives remained almost CD inactive. The CD spectra of carboxyl-terminated clathrochelates on supramolecular interactions or covalent bonding with (R)-(+)-1-phenylethylamine gave a substantially lower CD output than with albumin, affected by both the solvent polarity and the isomerism of clathrochelate's ribbed substituents. In supramolecular assemblies, the bands were most intensive for ortho-substituted carboxyl-terminated clathrochelates. The ortho- and meta-phenylethylamide cage complexes in tetrachloromethane inverted the signs of their CD bands compared with those in acetonitrile. It was suggested that the tris-dioximate metal clathrochelates possess a Russian doll-like molecular system. Because of the distorted TP-TAP geometry, their coordination polyhedron had no inversion centre and possessed an inherent chirality together with the equiprobability of its left(Λ)- and right(Δ)-handle twists. The selective fixation of one of these C3-distorted conformations resulted in the appearance of the CD signal in the range of their visible metal-to-ligand charge transfer bands. Calculations by DFT methods were used to illustrate the possible conformations of the macrobicyclic molecules, as well as the intramolecular interactions between the cage framework and optically active distal substituents responsible for the chirality induction of the metal-centred coordination polyhedra.

6.
ACS Omega ; 3(5): 4941-4946, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458710

RESUMO

Variable-temperature NMR spectroscopy has recently emerged as a new alternative to the magnetometry methods for studying single molecule magnets. Its use is based on an accurate determination of magnetic susceptibility tensor anisotropy Δχ, which is not always achievable due to some contact contribution to NMR chemical shifts and possible conformational dynamics. Here, we applied this approach to cholesteryl-substituted cage cobalt(II) complexes featuring a very large magnetic anisotropy. Conformational rigidity and large size of the cholesteryl substituent with many magnetically nonequivalent nuclei resulted in an excellent convergence of experimental and calculated 1H and 13C chemical shifts, thus allowing for the determination of Δχ value for all of the synthesized cobalt(II) complexes with a very high accuracy and providing a more reliable zero-field splitting energy for further calculations.

7.
Inorg Chem ; 56(12): 6943-6951, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28541691

RESUMO

High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.5 × 10-32 m3 mol-1) and a high effective barrier to magnetization reversal (up to 70.5 cm-1). The origin of this large magnetic anisotropy is a negative value of zero-field splitting energy that reaches -86 cm-1 according to magnetometry and NMR measurements.

8.
ACS Omega ; 2(10): 6852-6862, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457271

RESUMO

The study tackles one of the challenges in developing platinum-free molecular electrocatalysts for hydrogen evolution, which is to seek for new possibilities to ensure large turnover numbers by stabilizing electrocatalytic intermediates. These species are often much more reactive than the initial electrocatalysts, and if not properly stabilized by a suitable choice of functionalizing substituents, they have a limited long-time activity. Here, we describe new iron and cobalt(II) cage complexes (clathrochelates) that in contrast to many previously reported complexes of this type do not act as electrocatalysts for hydrogen evolution. We argue that the most probable reason for this behavior is an excessive stabilization of the metal(I) species by perfluoroaryl ribbed groups, resulting in an unprecedented long-term stability of the metal(I) complexes even in acidic solutions.

9.
Inorg Chem ; 55(22): 11867-11882, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27801586

RESUMO

The first hybrid di- and trinuclear iron(II)-zirconium(IV) and iron(II)-hafnium(IV) macrobicyclic complexes with one or two apical 5,10,15,20-tetraphenylporphyrin fragments were obtained using transmetalation reaction between n-butylboron-triethylantimony-capped or bis(triethylantimony)-capped iron(II) clathrochelate precursors and dichlorozirconium(IV)- or dichlorohafnium(IV)-5,10,15,20-tetraphenylporphyrins under mild conditions. New di- and trinuclear porphyrinoclathrochelates of general formula FeNx3((Bn-Bu)(MTPP)) and FeNx3(MTPP)2 [M = Zr, Hf; TPP = 5,10,15,20-tetraporphyrinato(2-); Nx = nioximo(2-)] were characterized by one-dimensional (1H and 13C{1H}) and two-dimensional (COSY and HSQC) NMR, high-resolution electrospray ionization mass spectrometry, UV-visible, and magnetic circular dichroism spectra, single-crystal X-ray diffraction experiments, as well as elemental analyses. Redox properties of all complexes were probed using electrochemical and spectroelectrochemical approaches. Electrochemical and spectroelectrochemical data suggestive of a very weak, if any, long-range electronic coupling between two porphyrin π-systems in FeNx3(MTPP)2 complexes. Density functional theory and time-dependent density functional theory calculations were used to correlate spectroscopic signatures and redox properties of new compounds with their electronic structures.

10.
J Phys Chem Lett ; 7(20): 4111-4116, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27689621

RESUMO

A large barrier to magnetization reversal, a signature of a good single-molecule magnet (SMM), strongly depends on the structural environment of a paramagnetic metal ion. In a crystalline state, where SMM properties are usually measured, this environment is influenced by crystal packing, which may be different for the same chemical compound, as in polymorphs. Here we show that polymorphism can dramatically change the magnetic behavior of an SMM even with a very rigid coordination geometry. For a cobalt(II) clathrochelate, it results in an increase of the effective barrier from 109 to 180 cm-1, the latter value being the largest one reported to date for cobalt-based SMMs. Our finding thus highlights the importance of identifying possible polymorphic phases in search of new, even more efficient SMMs.

11.
J Am Chem Soc ; 138(6): 2046-54, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26854982

RESUMO

It is possible to control the geometry and the composition of metallasupramolecular assemblies via the aspect ratio of their ligands. This point is demonstrated for a series of iron- and palladium-based coordination cages. Functionalized clathrochelate complexes with variable aspect ratios were used as rod-like metalloligands. A cubic Fe(II)8L12 cage was obtained from a metalloligand with an intermediate aspect ratio. By increasing the length or by decreasing the width of the ligand, the self-assembly process resulted in the clean formation of tetrahedral Fe(II)4L6 cages instead of cubic cages. In a related fashion, it was possible to control the geometry of Pd(II)-based coordination cages. A metalloligand with a large aspect ratio gave an entropically favored tetrahedral Pd(II)4L8 assembly, whereas an octahedral Pd(II)6L12 cage was formed with a ligand of the same length but with an increased width. The aspect ratio can also be used to control the composition of dynamic mixtures of Pd(II) cages. Out of two metalloligands with only marginally different aspect ratios, one gave rise to a self-sorted collection of Pd(II)4L8 and Pd(II)6L12 cages, whereas the other did not.

12.
Dalton Trans ; 45(12): 5328-33, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26902835

RESUMO

Phosphorylation reactions of an iron(II) dichloroclathrochelate FeBd2(Cl2Gm)(BF)2 (where Bd(2-) and Cl2Gm(2-) are α-benzildioxime and dichloroglyoxime dianions, respectively) with diphenylphosphine oxide and diethyl thiophosphite were performed under phase-transfer conditions. In the case of diethyl thiophosphite as a P-nucleophile, the best yields were obtained in the dichloromethane-50% NaOH aqueous solution-5 mol% triethylbenzylammonium chloride (TEBAC) system. The use of different molar ratios of a macrobicycle precursor and this thiophosphorylating agent allowed us to obtain both the mono- and the diphosphorylated cage complexes. Nucleophilic substitution with diphenylphosphine oxide was performed in the K2CO3-acetonitrile-5 mol% TEBAC system, giving only the corresponding monophosphorylated iron(II) complex in high yield even in the presence of an excess of this P-nucleophile. The phosphorus(v)-containing clathrochelate product was reduced with an excess of silicoform to give an iron(II) macrobicycle with an inherent diphenylphosphine group in an almost quantitative yield, which was then characterized by (31)P{(1)H} NMR and single-crystal X-ray diffraction; it easily undergoes re-oxidation to the initial clathrochelate. The synthesized phosphorus(v)-containing cage complexes were characterized using elemental analysis, MALDI-TOF mass, IR, UV-Vis, (1)H, (11)B, (13)C{(1)H}, (19)F{(1)H} and (31)P{(1)H} NMR spectra, and by single-crystal X-ray diffraction.

13.
Bioorg Med Chem Lett ; 26(2): 626-629, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631314

RESUMO

We observed that electrophilic iron(II)-clathrochelates exhibit significant cytotoxicity in human promyelocytic leukemia cells (IC50=6.5±4.6µM), which correlates with the enhancement of intracellular oxidative stress (17-fold increase with respect to the cells treated with the solvent only). Based on in vitro studies we suggested that this effect is caused by alkylation of glutathione leading to inhibition of the cellular antioxidative system and by catalytic generation of reactive oxygen species by products of the alkylation reaction.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Células Precursoras de Granulócitos/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Alquilação/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa/metabolismo , Células Precursoras de Granulócitos/metabolismo , Células Precursoras de Granulócitos/patologia , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
J Am Chem Soc ; 137(31): 9792-5, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26199996

RESUMO

Single-molecule magnets (SMMs) with one transition-metal ion often rely on unusual geometry as a source of magnetically anisotropic ground state. Here we report a cobalt(II) cage complex with a trigonal prism geometry showing single ion magnet behavior with very high Orbach relaxation barrier of 152 cm(-1). This, to our knowledge, is the largest reported relaxation barrier for a cobalt-based mononuclear SMM. The trigonal prismatic coordination provided by the macrocyclic ligand gives intrinsically more stable molecular species than previously reported SMMs, thus making this type of cage complexes more amendable to possible functionalization that will boost their magnetic anisotropy even further.

15.
Inorg Chem ; 54(12): 5827-38, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26017024

RESUMO

Template condensation of dichloroglyoxime with n-hexadecylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded n-hexadecylboron-capped iron and cobalt(II) hexachloroclathrochelates. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-vis, (1)H and (13)C{(1)H} NMR, (57)Fe Mössbauer spectroscopies, SQUID magnetometry, electron paramagnetic resonance, and cyclic voltammetry (CV) and by X-ray crystallography. The multitemperature single-crystal X-ray diffraction, SQUID magnetometry, and differential scanning calorimetry experiments were performed to study the temperature-induced spin-crossover [for the paramagnetic cobalt(II) complex] and the crystal-to-crystal phase transitions (for both of these clathrochelates) in the solid state. Analysis of their crystal packing using the molecular Voronoi polyhedra and the Hirshfeld surfaces reveals the structural rearrangements of the apical long-chain alkyl substituents resulting from such phase transitions being more pronounced for a macrobicyclic cobalt(II) complex. Its fine-crystalline sample undergoes the gradual and fully reversible spin transition centered at approximately 225 K. The density functional theory calculated parameters for an isolated molecule of this cobalt(II) hexachloroclathrochelate in its low- and high-spin states were found to be in excellent agreement with the experimental data and allowed to localize the spin density within a macrobicyclic framework. CV of the cobalt(II) complex in the cathodic range contains one reversible wave assigned to the Co(2+/+) redox couple with the reduced anionic cobalt(I)-containing species stabilized by the electronic effect of six strong electron-withdrawing chlorine substituents. The quasireversible character of the Fe(2+/+) wave suggests that the anionic iron(I)-containing macrobicyclic species undergo substantial structural changes and side chemical reactions after such metal-centered reduction.

16.
Dalton Trans ; 44(8): 3773-84, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25607531

RESUMO

Pentafluorophenylboron-capped iron and cobalt(II) hexachloroclathrochelate precursors were obtained by the one-pot template condensation of dichloroglyoxime with pentafluorophenylboronic acid on iron and cobalt(II) ions under vigorous reaction conditions in trifluoroacetic acid media. These reactive precursors easily undergo nucleophilic substitution with (per)fluoroarylthiolate anions, giving (per)fluoroarylsulfide macrobicyclic complexes with encapsulated iron and cobalt(II) ions; nucleophilic substitution of the cobalt(II) hexachloroclathrochelate precursor with a pentafluorophenylsulfide anion gave the target hexasulfide monoclathrochelate and the mixed-valence Co(III)Co(II)Co(III) bis-clathrochelate as a side product. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (57)Fe Mössbauer (for the X-rayed iron complexes), (1)H, (11)B, (13)C and (19)F NMR spectroscopies and by X-ray diffraction; their redox and electrocatalytic behaviors were studied using cyclic voltammetry and gas chromatography. As can be seen from the single-crystal X-ray diffraction data, the second superhydrophobic shell of such caged metal ions is formed by fluorine atoms of both the apical and ribbed (per)fluoroaryl peripheral groups. The main bond distances and chelate N=C-C=N angles in their molecules are similar, but rotational elongation (contraction) along the molecular C3-pseudoaxes, accompanied by changes in the geometry of the corresponding MN6-coordination polyhedra from a trigonal prism to a trigonal antiprism, allowed encapsulating Fe(2+), Co(2+) and Co(3+) ions. The nature of an encapsulated metal ion and its oxidation state affect the M-N bond lengths, and, for cobalt(ii) clathrochelate with an electronic configuration d(7) the Jahn-Teller structural effect is observed as an alternation of the Co-N distances. Pentafluorophenylboron-capped hexachloroclathrochelate precursors, giving stable catalytically active metal(I)-containing intermediates due to the electron-withdrawing effect of their six ribbed chlorine substituents, were found to show moderate electrocatalytic activity in a 2H(+)/H2 hydrogen-forming reaction. In the case of their ribbed-functionalized sulfide derivatives, the strong electron-withdrawing (per)fluoroaryl groups do not stabilize the reduced electrocatalytically active metal(i)-containing species as their mesomeric effect is absent or substantially decreased by steric hindrances between them.

17.
Dalton Trans ; 44(5): 2476-87, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25559125

RESUMO

Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.

18.
Dalton Trans ; 43(48): 17934-48, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25056255

RESUMO

Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra. As follows from CV data, the C-C conjugated iron(II) bis-clathrochelates undergo stepwise electrochemical reduction and oxidation giving mixed-valence Fe(II)Fe(I) and Fe(II)Fe(III) bis-cage intermediates.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos Ferrosos/química , Carbono/química , Quelantes/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Halogenação , Cinética , Conformação Molecular , Oxirredução
19.
Dalton Trans ; 43(25): 9677-89, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24834900

RESUMO

Nucleophilic substitution of an iron(ii) dichloroclathrochelate with diphenylphosphine sulfide under PTC afforded a monophosphorylated cage complex. This precursor undergoes further nucleophilic substitution with mono- and diamines giving P,N-substituted mono- and bis-clathrochelates; those with thiophosphoryl and pyridyl groups were used as N,S-donor macrobicyclic ligands toward the palladium(ii) ion. In the resulting Pd,Fe-binuclear 1 : 1 complexes, the clathrochelate moieties retain the geometry, characteristic of low-spin iron(ii) complexes, with a minor distortion caused by intramolecular interactions. The Pd(2+) ion has a twisted square-planar N2SCl-environment. The complexes thus obtained proved to be efficient catalysts of the Suzuki cross-coupling reaction.

20.
Inorg Chem ; 53(6): 3062-71, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24559424

RESUMO

Chloride ion-aided one-pot template self-assembly of a mixed pyrazoloxime ligand with phenylboronic acid on a corresponding metal(II) ion as a matrix afforded the first boron-capped zinc, cobalt, iron, and manganese pseudoclathrochelate tris-pyrazoloximates. The presence of a pseudocross-linking hydrogen-bonded chloride ion is critical for their formation, as the same chloride-capped complexes were isolated even in the presence of large excesses of bromide and iodide ions. As revealed by X-ray diffraction, all complexes are capped with a chloride ion via three N-H···Cl hydrogen bonds that stabilize their pseudomacrobicyclic frameworks. The MN6 coordination polyhedra possess a distorted trigonal prismatic geometry, with the distortion angles φ between their nonequivalent N3 bases of approximately 0°. Temperature dependences of the effective magnetic moment for the paramagnetic complexes showed the encapsulated metal(II) ions to be in a high-spin state in the temperature range of 2-300 K. In the case of the iron(II) pseudoclathrochelate, density functional theory (DFT) and time-dependent DFT calculations were used to assess its spin state as well as the (57)Fe Mössbauer and UV-vis-NIR parameters. Cyclic voltammetry studies performed for these pseudomacrobicyclic complexes showed them to undergo irreversible or quasi-reversible metal-localized oxidations and reductions. As no changes are observed in the presence of a substantial excess of bromide ion, no anion-exchange reaction occurs, and thus the pseudoclathrochelates have a high affinity toward chloride anions in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA