Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(35): e2202971, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35817958

RESUMO

Devices with tunable magnetic noncollinearity are important components of superconducting electronics and spintronics, but they typically require epitaxial integration of several complex materials. The spin-polarized neutron reflectometry measurements on La1-x Srx MnO3 homojunction arrays with modulated Sr concentration reported herein have led to the discovery of magnetic fan structures with highly noncollinear alignment of Mn spins and an emergent periodicity twice as large as the array's unit cell. The neutron data show that these magnetic superstructures can be fully long-range ordered, despite the gradual modulation of the doping level created by charge transfer and chemical intermixing. The degree of noncollinearity can be effectively adjusted by low magnetic fields. Notwithstanding their chemical and structural simplicity, oxide homojunctions thus show considerable promise as a platform for tunable complex magnetism and as a powerful design element of spintronic devices.

2.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215576

RESUMO

Vapor phase infiltration into a self-assembled block copolymer (BCP) to create a hybrid material in one of the constituent blocks can enhance the etch selectivity for pattern transfer. Multiple pulse infiltration into carbohydrate-based high-χ BCP has previously been shown to enable sub-10 nm feature pattern transfer. By optimizing the amount of infiltrated material, the etch selectivity should be further improved. Here, an investigation of semi-static sequential infiltration synthesis of trimethyl aluminum (TMA) and water into maltoheptaose (MH) films, and into hydroxyl-terminated poly(styrene) (PS-OH) films, was performed, by varying the process parameters temperature, precursor pulse duration, and precursor exposure length. It was found that, by decreasing the exposure time from 100 to 20 s, the volumetric percentage on included pure Al2O3 in MH could be increased from 2 to 40 vol% at the expense of a decreased infiltration depth. Furthermore, the degree of infiltration was minimally affected by temperature between 64 and 100 °C. Shorter precursor pulse durations of 10 ms TMA and 5 ms water, as well as longer precursor pulses of 75 ms TMA and 45 ms water, were both shown to promote a higher degree, 40 vol%, of infiltrated alumina in MH. As proof of concept, 12 nm pitch pattern transfer into silicon was demonstrated using the method and can be concluded to be one of few studies showing pattern transfer at such small pitch. These results are expected to be of use for further understanding of the mechanisms involved in sequential infiltration synthesis of TMA/water into MH, and for further optimization of carbohydrate-based etch masks for sub-10 nm pattern transfer. Enabling techniques for high aspect ratio pattern transfer at the single nanometer scale could be of high interest, e.g., in the high-end transistor industry.

3.
ACS Appl Nano Mater ; 4(5): 5141-5151, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34308267

RESUMO

Sequential infiltration synthesis (SIS) into poly(styrene)-block-maltoheptaose (PS-b-MH) block copolymer using vapors of trimethyl aluminum and water was used to prepare nanostructured surface layers. Prior to the infiltration, the PS-b-MH had been self-assembled into 12 nm pattern periodicity. Scanning electron microscopy indicated that horizontal alumina-like cylinders of 4.9 nm diameter were formed after eight infiltration cycles, while vertical cylinders were 1.3 nm larger. Using homopolymer hydroxyl-terminated poly(styrene) (PS-OH) and MH films, specular neutron reflectometry revealed a preferential reaction of precursors in the MH compared to PS-OH. The infiltration depth into the maltoheptaose homopolymer film was found to be 2.0 nm after the first couple of cycles. It reached 2.5 nm after eight infiltration cycles, and the alumina incorporation within this infiltrated layer corresponded to 23 vol % Al2O3. The alumina-like material, resulting from PS-b-MH infiltration, was used as an etch mask to transfer the sub-10 nm pattern into the underlying silicon substrate, to an aspect ratio of approximately 2:1. These results demonstrate the potential of exploiting SIS into carbohydrate-based polymers for nanofabrication and high pattern density applications, such as transistor devices.

4.
IUCrJ ; 8(Pt 3): 455-461, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953931

RESUMO

It has been known for decades that a ferromagnetic sample can depolarize a transmitted neutron beam. This effect was used and developed into the neutron-depolarization technique to investigate the magnetic structure of ferromagnetic materials. Since the polarization evolves continuously as the neutrons move through the sample, the initial spin states on scattering will be different at different depths within the sample. This leads to a contamination of the measured spin-dependent neutron-scattering intensities by the other spin-dependent cross sections. The effect has rarely been considered in polarized neutron-scattering experiments even though it has a crucial impact on the observable signal. A model is proposed to describe the depolarization of a neutron beam traversing a ferromagnetic sample, provide the procedure for data correction and give guidelines to choose the optimum sample thickness. It is experimentally verified for a small-angle neutron-scattering geometry with samples of the nanocristalline soft-magnet Vitroperm (Fe73Si16B7Nb3Cu1). The model is general enough to be adapted to other types of neutron-diffraction experiments and sample geometries.

5.
J Phys Chem C Nanomater Interfaces ; 125(12): 6877-6885, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33868545

RESUMO

Intercalation of dyes into thin multilayered graphene oxide (GO) films was studied by neutron reflectivity and X-ray diffraction. Methylene blue (MB) penetrates the interlayer space of GO in ethanol solution and remains intercalated after the solvent evaporation, as revealed by the expansion of the interlayer lattice and change in chemical composition. The sorption of MB by thin GO films is found to be significantly stronger compared to the sorption of Crystal violet (CV) and Rose bengal (RB). This effect is attributed to the difference in the geometrical shape of planar MB and essentially nonflat CV and RB molecules. Graphite oxides and restacked GO films are found to exhibit different methylene blue (MB) sorptions. MB sorption by precursor graphite oxide and thin spin-coated films of GO is significantly stronger compared to freestanding micrometer-thick membranes prepared by vacuum filtration. Nevertheless, the sorption capacity of GO membranes is sufficient to remove a significant part of the MB from diluted solutions tested for permeation in several earlier studies. High sorption capacity results in strong modification of the GO structure, which is likely to affect permeation properties of GO membranes. Therefore, MB is not suitable for testing size exclusion effects in the permeation of GO membranes. It is not only hydration or solvation diameter but also the exact geometrical shape of molecules that needs to be taken into account considering size effects for penetration of molecules between GO layers in membrane applications.

6.
Rev Sci Instrum ; 92(2): 023306, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648099

RESUMO

Graphite intercalation compounds (GICs) are a group of layered materials that are suitable as monochromators for cold neutrons. KC24 is a particularly interesting compound in this regard as it features a large c-axis lattice spacing of 8.74 Å, high reflectivity, and the possibility to produce large crystals with mosaicity that matches the beam divergence of cold neutron guides. GICs can be synthesized with different levels of intercalation, known as the stage of the compounds. Each stage displays a specific d-spacing. Impure GIC-monochromators containing multiple stages produce mixing of neutron wavelengths, which complicates data analysis on neutron reflectometers. We discuss the implications of GIC crystal purity and stage contamination for neutron reflectometry and show how GIC crystals can be characterized by time-of-flight neutron diffraction providing an efficient and quantifiable measure of the reflected wavelength spectrum. This allows taking into account multiple wavelength contaminations and ascertains the robustness of reflectometry measurements.

7.
Nanomaterials (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477868

RESUMO

Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from 10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films. Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized (itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Further, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a relation between the thickness-dependent structural and magnetic properties. The increase of the tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of the electronic and magnetic properties of magnetic Weyl semimetal thin films.

8.
Sci Rep ; 11(1): 1942, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479336

RESUMO

The strength of the interlayer exchange coupling in [Fe/MgO][Formula: see text](001) superlattices with 2 ≤ N ≤ 10 depends on the number of bilayer repeats (N). The exchange coupling is antiferromagnetic for all the investigated thicknesses while being nine times larger in a sample with N = 4 as compared to N = 2. The sequence of the magnetic switching in two of the samples (N = 4, N = 8) is determined using polarized neutron reflectometry. The outermost layers are shown to respond at the lowest fields, consistent with having the weakest interlayer exchange coupling. The results are consistent with the existence of quantum well states defined by the thickness of the Fe and the MgO layers as well as the number of repeats (N) in [Fe/MgO][Formula: see text](001)superlattices.

9.
Sci Rep ; 11(1): 17786, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493764

RESUMO

We have performed grazing incidence neutron small angle scattering using a fan shaped incident beam focused along one dimension. This allows significantly reduced counting times for measurements of lateral correlations parallel to an interface or in a thin film where limited depth resolution is required. We resolve the structure factor of iron inclusions in aluminium oxide and show that the ordering of silica particles deposited on a silicon substrate depends on their size. We report hexagonal packing for 50 nm but not for 200 nm silica spheres deposited by a modified Langmuir-Schaefer method on a silicon substrate. For the 200 nm particles we extract the particles shape from the form factor. Moreover, we report dense packing of the particles spread on a free water surface. We name this method π-GISANS to highlight that it differs from GISANS as it gives lateral information while averaging the in-depth structure.

10.
Phys Chem Chem Phys ; 22(34): 19162-19171, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812565

RESUMO

Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.

11.
J Chem Phys ; 148(19): 193806, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307199

RESUMO

Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

12.
J Colloid Interface Sci ; 511: 474-481, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29073553

RESUMO

The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) were investigated at the molecular level using neutron reflectometry. Representative PFASs with different chain length and functional groups were selected in this study including: perfluorobutane sulfonate (PFBS), perfluorohexanoate (PFHxA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA). All PFASs were found to interact with the bilayer by incorporation, indicating PFAS ability to accumulate once ingested or taken up by organisms. The interactions were observed to increase with chain length and vary with the functional group as SO2NH2(FOSA)>SO2O-(PFOS)>COO-(PFNA). The PFAS hydrophobicity, which is strongly correlated with perfluorocarbon chain length, was found to strongly influence the interactions. Longer chain PFASs showed higher tendency to penetrate into the bilayer compared to the short-chain compounds. The incorporated PFASs could for all substances but one (PFNA) be removed from the lipid membrane by gentle rinsing with water (2mLmin-1). Although short-chain PFASs have been suggested to be the potentially less bioaccumulative alternative, we found that in high enough concentrations they can also disturb the bilayer. The roughness and disorder of the bilayer was observed to increase as the concentration of PFASs increased (in particular for the high concentrations of short-chain substances i.e. PFHxA and PFBS), which can be an indication of aggregation of PFASs in the bilayer.

13.
Soft Matter ; 11(23): 4695-704, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25971712

RESUMO

Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.

14.
Nanoscale ; 6(20): 12151-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25208613

RESUMO

Graphene oxide membranes were recently suggested for applications in separation of ethanol from water using a vapor permeation method. Using isotope contrast, neutron reflectivity was applied to evaluate the amounts of solvents intercalated into a membrane from pure and binary vapors and to evaluate the selectivity of the membrane permeation. Particularly, the effect of D2O, ethanol and D2O-ethanol vapours on graphene oxide (GO) thin films (∼25 nm) was studied. The interlayer spacing of GO and the amount of intercalated solvents were evaluated simultaneously as a function of vapour exposure duration. The significant difference in neutron scattering length density between D2O and ethanol allows distinguishing insertion of each component of the binary mixture into the GO structure. The amount of intercalated solvent at saturation corresponds to 1.4 molecules per formula unit for pure D2O (∼1.4 monolayers) and 0.45 molecules per formula unit (one monolayer) for pure ethanol. This amount is in addition to H2O absorbed at ambient humidity. Exposure of the GO film to ethanol-D2O vapours results in intercalation of GO with both solvents even for high ethanol concentration. A mixed D2O-ethanol layer inserted into the GO structure is water enriched compared to the composition of vapours due to slower ethanol diffusion into GO interlayers.

15.
Artigo em Inglês | MEDLINE | ID: mdl-23944490

RESUMO

As a defined model of outer membranes of gram negative bacteria, we investigated the interaction of monolayers of lipopolysacchrides from Salmonella enterica rough strains R90 (LPS Ra) with natural and synthetic peptides. The fine structures perpendicular to the membrane plane and the ion distribution near the interface were determined by specular x-ray reflectivity (XRR) and grazing-incidence x-ray fluorescence (GIXF) in the presence and absence of divalent cations. The unique combination of XRR and GIXF allows for the quantitative identification of different modes of interactions in a high spatial resolution, which cannot be assessed by other experimental methods. Natural fish protamine disrupts the stratified membrane structures in the absence of Ca(2+) ions, while staying away from the membrane surface in the presence of Ca(2+) ions. In contrast, synthetic antisepsis peptide Pep 19-2.5 weakly adsorbs to the membrane and stays near the uncharged sugar units even in the absence of Ca(2+). In the presence of Ca(2+), Pep 19-2.5 can reach the negatively charged inner core without destroying the barrier capability against ions.


Assuntos
Antissepsia , Membrana Celular/metabolismo , Proteínas de Peixes/metabolismo , Peptídeos/metabolismo , Protaminas/metabolismo , Salmonella enterica/citologia , Espectrometria por Raios X , Ar , Cálcio/farmacologia , Proteínas de Peixes/química , Lipopolissacarídeos/metabolismo , Peptídeos/química , Protaminas/química , Ligação Proteica/efeitos dos fármacos , Eletricidade Estática , Água/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-23895353

RESUMO

Several 7-(hydroxy, amino, methylureido, and guanidino)alkynyl-substituted 8-aza-7-deaza- hypoxanthine analogues were investigated as potential universal nucleobases. 7-Aminobutynyl-8-aza-7-deazahypoxanthine was found to be the most promising quasi-universal nucleobase with improved hybridization and polymerase chain reaction (PCR) enhancing properties as compared to commonly used hypoxanthine (the nucleobase of inosine). It demonstrated improved ambiguity for pairing with A, T, and C bases and its base pairing properties can be summarized as follows: X:C∼X:A∼X:T > X:G. The improvement in PCR performance directly correlated with primer's Tm. Primers containing multiple 7-aminobutynyl-8-aza-7-deazahypoxanthines were successfully used without noticeable inhibition of Taq polymerase activity provided the modifications are positioned more than two bases away from the 3' end.


Assuntos
Hipoxantinas/química , Purinas/química , Pirimidinas/química , Hipoxantinas/síntese química , Oligonucleotídeos/síntese química , Oligonucleotídeos/química
17.
J Am Chem Soc ; 135(12): 4893-900, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23480792

RESUMO

A three-pronged approach has been used to design rational improvements in self-assembled monolayer field-effect transistors: classical molecular dynamics (MD) simulations to investigate atomistic structure, large-scale quantum mechanical (QM) calculations for electronic properties, and device fabrication and characterization as the ultimate goal. The MD simulations reveal the effect of using two-component monolayers to achieve intact dielectric insulating layers and a well-defined semiconductor channel. The QM calculations identify improved conduction paths in the monolayers that consist of an optimum mixing ratio of the components. These results have been used both to confirm the predictions of the calculations and to optimize real devices. Monolayers were characterized with X-ray reflectivity measurements and by electronic characterization of complete devices.

18.
J Chem Phys ; 137(20): 204907, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23206031

RESUMO

As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.


Assuntos
Proteínas de Membrana/química , Modelos Biológicos , Proteínas/química , Fluorescência , Ligação Proteica , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
19.
ACS Nano ; 5(11): 8579-90, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22004659

RESUMO

The efficiency of organic bulk heterojunction solar cells strongly depends on the multiscale morphology of the interpenetrating polymer-fullerene network. Understanding the molecular assembly and the identification of influencing parameters is essential for a systematic optimization of such devices. Here, we investigate the molecular ordering during the drying of doctor-bladed polymer-fullerene blends on PEDOT:PSS-coated substrates simultaneously using in situ grazing incidence X-ray diffraction (GIXD) and laser reflectometry. In the process of blend crystallization, we observe the nucleation of well-aligned P3HT crystallites in edge-on orientation at the interface at the instant when P3HT solubility is crossed. A comparison of the real-time GIXD study at ternary blends with the binary phase diagrams of the drying blend film gives evidence of strong polymer-fullerene interactions that impede the crystal growth of PCBM, resulting in the aggregation of PCBM in the final drying stage. A systematic dependence of the film roughness on the drying time after crossing P3HT solubility has been shown. The highest efficiencies have been observed for slow drying at low temperatures which showed the strongest P3HT interchain π-π-ordering along the substrate surface. By adding the "unfriendly" solvent cyclohexanone to a chlorobenzene solution of P3HT:PCBM, the solubility can be crossed prior to the drying process. Such solutions exhibit randomly orientated crystalline structures in the freshly cast film which results in a large crystalline orientation distribution in the dry film that has been shown to be beneficial for solar cell performance.

20.
Rev Sci Instrum ; 80(12): 123903, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20059150

RESUMO

We present a dedicated experimental spin-echo resolved grazing incidence scattering (SERGIS) setup for the investigation of surfaces and thin films exhibiting large lateral length scales. This technique uses the neutron spin to encode one in-plane component of the wave-vector transfer in a grazing angle scattering experiment. Instead of the scattering angle, the depolarization of the scattered beam is measured. This allows one to achieve a very high in-plane momentum resolution without collimation of the incident neutron beam in the corresponding direction. SERGIS can therefore offer an alternative or complementary method to conventional grazing incidence neutron scattering experiments. We describe the experimental setup installed at the neutron sources ILL (Grenoble) and FRM II (Garching) and present data obtained with this setup on various samples exhibiting characteristic mesoscopic length scales in the range of several hundred nanometers. We also derive general formulas and error margins for the analysis and interpretation of SERGIS data and apply them to the cases of a one-dimensional structure and of an island morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...