Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15192, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645637

RESUMO

Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden.

3.
Eur J Hum Genet ; 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177775

RESUMO

Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss.

4.
Eur J Hum Genet ; 26(8): 1167-1179, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29725052

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly. Although not directly life threatening, it contributes to loss of autonomy and is associated with anxiety, depression and cognitive decline. To search for genetic risk factors underlying ARHL, a large whole-genome sequencing (WGS) approach has been carried out in a cohort of 212 cases and controls, both older than 50 years to select genes characterized by a burden of variants specific to cases or controls. Accordingly, the total variation load per gene was compared and two groups were detected: 375 genes more variable in cases and 371 more variable in controls. In both cases, Gene Ontology analysis showed that the largest enrichment for biological processes (fold > 5, p-value = 0.042) was the "sensory perception of sound", suggesting cumulative genetic effects were involved. Replication confirmed 141 genes, while additional analysis based on natural selection led to a prioritization of 21 genes. The majority of them (20 out of 21) showed positive expression in mouse cochlea cDNA and were associated with two functional pathways. Among them, two genes were previously associated with hearing (CSMD1 and PTRPD) and re-sequenced in a large Italian cohort of ARHL patients (N = 389). Results led to the identification of six coding variants not detected in cases so far, suggesting a possible protective role, which requires investigation. In conclusion, we show that this multistep strategy (WGS, selection, expression, pathway analysis and targeted re-sequencing) can provide major insights into the molecular characterization of complex diseases such as ARHL.

5.
Nat Genet ; 50(5): 652-656, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29662168

RESUMO

Hair color is one of the most recognizable visual traits in European populations and is under strong genetic control. Here we report the results of a genome-wide association study meta-analysis of almost 300,000 participants of European descent. We identified 123 autosomal and one X-chromosome loci significantly associated with hair color; all but 13 are novel. Collectively, single-nucleotide polymorphisms associated with hair color within these loci explain 34.6% of red hair, 24.8% of blond hair, and 26.1% of black hair heritability in the study populations. These results confirm the polygenic nature of complex phenotypes and improve our understanding of melanin pigment metabolism in humans.

6.
Elife ; 72018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29355479

RESUMO

Age-related hearing loss (ARHL) is the most common sensory deficit in the elderly. The disease has a multifactorial etiology with both environmental and genetic factors involved being largely unknown. SLC7A8/SLC3A2 heterodimer is a neutral amino acid exchanger. Here, we demonstrated that SLC7A8 is expressed in the mouse inner ear and that its ablation resulted in ARHL, due to the damage of different cochlear structures. These findings make SLC7A8 transporter a strong candidate for ARHL in humans. Thus, a screening of a cohort of ARHL patients and controls was carried out revealing several variants in SLC7A8, whose role was further investigated by in vitro functional studies. Significant decreases in SLC7A8 transport activity was detected for patient's variants (p.Val302Ile, p.Arg418His, p.Thr402Met and p.Val460Glu) further supporting a causative role for SLC7A8 in ARHL. Moreover, our preliminary data suggest that a relevant proportion of ARHL cases could be explained by SLC7A8 mutations.

7.
Hypertension ; 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28739976

RESUMO

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

8.
Nat Genet ; 47(11): 1294-1303, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414677

RESUMO

Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Reparo do DNA , Predisposição Genética para Doença/genética , Hipotálamo/metabolismo , Transdução de Sinais/genética , Adulto , Fatores Etários , Envelhecimento/genética , Feminino , Redes Reguladoras de Genes/genética , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Humanos , Menopausa/genética , Pessoa de Meia-Idade , Modelos Genéticos , Fenótipo , Reprodução/genética
9.
BMC Med Genomics ; 8: 48, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26264041

RESUMO

BACKGROUND: The genetic basis of hearing loss in humans is relatively poorly understood. In recent years, experimental approaches including laboratory studies of early onset hearing loss in inbred mouse strains, or proteomic analyses of hair cells or hair bundles, have suggested new candidate molecules involved in hearing function. However, the relevance of these genes/gene products to hearing function in humans remains unknown. We investigated whether single nucleotide polymorphisms (SNPs) in the human orthologues of genes of interest arising from the above-mentioned studies correlate with hearing function in children. METHODS: 577 SNPs from 13 genes were each analysed by linear regression against averaged high (3, 4 and 8 kHz) or low frequency (0.5, 1 and 2 kHz) audiometry data from 4970 children in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth-cohort at age eleven years. Genes found to contain SNPs with low p-values were then investigated in 3417 adults in the G-EAR study of hearing. RESULTS: Genotypic data were available in ALSPAC for a total of 577 SNPs from 13 genes of interest. Two SNPs approached sample-wide significance (pre-specified at p = 0.00014): rs12959910 in CBP80/20-dependent translation initiation factor (CTIF) for averaged high frequency hearing (p = 0.00079, ß = 0.61 dB per minor allele); and rs10492452 in L-plastin (LCP1) for averaged low frequency hearing (p = 0.00056, ß = 0.45 dB). For low frequencies, rs9567638 in LCP1 also enhanced hearing in females (p = 0.0011, ß = -1.76 dB; males p = 0.23, ß = 0.61 dB, likelihood-ratio test p = 0.006). SNPs in LCP1 and CTIF were then examined against low and high frequency hearing data for adults in G-EAR. Although the ALSPAC results were not replicated, a SNP in LCP1, rs17601960, is in strong LD with rs9967638, and was associated with enhanced low frequency hearing in adult females in G-EAR (p = 0.00084). CONCLUSIONS: There was evidence to suggest that multiple SNPs in CTIF may contribute a small detrimental effect to hearing, and that a sex-specific locus in LCP1 is protective of hearing. No individual SNPs reached sample-wide significance in both ALSPAC and G-EAR. This is the first report of a possible association between LCP1 and hearing function.


Assuntos
Fatores de Iniciação em Eucariotos/genética , Audição/genética , Internacionalidade , Proteínas dos Microfilamentos/genética , Parto , Polimorfismo de Nucleotídeo Único , Adulto , Animais , Criança , Estudos de Coortes , Feminino , Loci Gênicos/genética , Genótipo , Audição/fisiologia , Humanos , Lactente , Estudos Longitudinais , Masculino , Camundongos , Emissões Otoacústicas Espontâneas , Ratos
10.
Hum Mol Genet ; 24(19): 5655-64, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188009

RESUMO

Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.


Assuntos
Caderinas/genética , Estudo de Associação Genômica Ampla/métodos , Audição/fisiologia , Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/genética , Animais , Ásia Central , Caderinas/metabolismo , Surdez/genética , Predisposição Genética para Doença , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Humanos , Itália , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência de RNA/métodos
11.
Nature ; 523(7561): 459-462, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26131930

RESUMO

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Assuntos
Estatura/genética , Cognição , Homozigoto , Evolução Biológica , Pressão Sanguínea/genética , LDL-Colesterol/genética , Estudos de Coortes , Escolaridade , Feminino , Volume Expiratório Forçado/genética , Genoma Humano/genética , Humanos , Medidas de Volume Pulmonar , Masculino , Fenótipo
12.
Hum Hered ; 77(1-4): 175-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25060281

RESUMO

Qatar is a sovereign state located on the Eastern coast of the Arabian Peninsula in the Persian Gulf. Its native population consists of 3 major subgroups: people of Arabian origin or Bedouins, those from an Eastern or Persian ancestry and individuals with African admixture. Historically, all types of consanguineous marriages have been and still are common in the Qatari population, particularly among first and double-first cousins. Thus, there is a higher risk for most inherited diseases including hereditary hearing loss (HHL). In particular, a hearing loss prevalence of 5.2% has been reported in Qatar, with parental consanguinity being more common among affected individuals as compared with unaffected ones. Our recent molecular results confirm a high homogeneity and level of inbreeding in Qatari HHL patients. Among all HHL genes, GJB2, the major player worldwide, accounts for a minor proportion of cases and at least 3 additional genes have been found to be mutated in Qatari patients. Interestingly, one gene, BDP1, has been described to cause HHL only in this country. These results point towards an unexpected level of genetic heterogeneity despite the high level of inbreeding. This review provides an up-to-date picture of HHL in Qatar and of the impact of consanguinity on this disease.


Assuntos
Consanguinidade , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Padrões de Herança/genética , Conexinas , Homozigoto , Humanos , Linhagem , Prevalência , Análise de Componente Principal , Catar/epidemiologia , Fator de Transcrição TFIIIB/genética
13.
Hum Mol Genet ; 23(23): 6407-18, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25060954

RESUMO

Hearing function is known to be heritable, but few significant and reproducible associations of genetic variants have been identified to date in the adult population. In this study, genome-wide association results of hearing function from the G-EAR consortium and TwinsUK were used for meta-analysis. Hearing ability in eight population samples of Northern and Southern European ancestry (n = 4591) and the Silk Road (n = 348) was measured using pure-tone audiometry and summarized using principal component (PC) analysis. Genome-wide association analyses for PC1-3 were conducted separately in each sample assuming an additive model adjusted for age, sex and relatedness of subjects. Meta-analysis was performed using 2.3 million single-nucleotide polymorphisms (SNPs) tested against each of the three PCs of hearing ability in 4939 individuals. A single SNP lying in intron 6 of the salt-inducible kinase 3 (SIK3) gene was found to be associated with hearing PC2 (P = 3.7×10(-8)) and further supported by whole-genome sequence in a subset. To determine the relevance of this gene in the ear, expression of the Sik3 protein was studied in mouse cochlea of different ages. Sik3 was expressed in murine hair cells during early development and in cells of the spiral ganglion during early development and adulthood. Our results suggest a developmental role of Sik3 in hearing and may be required for the maintenance of adult auditory function.


Assuntos
Audição/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores Etários , Animais , Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Grupo com Ancestrais do Continente Europeu , Estudo de Associação Genômica Ampla , Humanos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único
14.
J Am Soc Nephrol ; 25(8): 1869-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24578125

RESUMO

Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P<0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 µg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P<0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.


Assuntos
Grupo com Ancestrais do Continente Europeu/genética , Variação Genética/genética , Uromodulina/urina , Creatinina/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Uromodulina/genética
15.
PLoS One ; 9(1): e85352, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454846

RESUMO

Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment.


Assuntos
Replicação do DNA , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Audição/genética , Adulto , Animais , Genótipo , Células Ciliadas Auditivas/metabolismo , Humanos , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Estria Vascular/metabolismo
16.
PLoS One ; 8(12): e80323, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312468

RESUMO

Nonsyndromic Hereditary Hearing Loss is a common disorder accounting for at least 60% of prelingual deafness. GJB2 gene mutations, GJB6 deletion, and the A1555G mitochondrial mutation play a major role worldwide in causing deafness, but there is a high degree of genetic heterogeneity and many genes involved in deafness have not yet been identified. Therefore, there remains a need to search for new causative mutations. In this study, a combined strategy using both linkage analysis and sequencing identified a new mutation causing hearing loss. Linkage analysis identified a region of 40 Mb on chromosome 5q13 (LOD score 3.8) for which exome sequencing data revealed a mutation (c.7873 T>G leading to p.*2625Gluext*11) in the BDP1 gene (B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB) in patients from a consanguineous Qatari family of second degree, showing bilateral, post-lingual, sensorineural moderate to severe hearing impairment. The mutation disrupts the termination codon of the transcript resulting in an elongation of 11 residues of the BDP1 protein. This elongation does not contain any known motif and is not conserved across species. Immunohistochemistry studies carried out in the mouse inner ear showed Bdp1 expression within the endothelial cells in the stria vascularis, as well as in mesenchyme-derived cells surrounding the cochlear duct. The identification of the BDP1 mutation increases our knowledge of the molecular bases of Nonsyndromic Hereditary Hearing Loss and provides new opportunities for the diagnosis and treatment of this disease in the Qatari population.


Assuntos
Cromossomos Humanos Par 5/genética , Exoma , Doenças Genéticas Inatas/genética , Perda Auditiva Funcional/genética , Mutação , Fator de Transcrição TFIIIB/genética , Animais , Cromossomos Humanos Par 5/metabolismo , Ducto Coclear/metabolismo , Ducto Coclear/patologia , Conexinas , Análise Mutacional de DNA , Feminino , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Ligação Genética , Perda Auditiva Funcional/metabolismo , Humanos , Escore Lod , Masculino , Camundongos , Linhagem , Fator de Transcrição TFIIIB/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA