Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
2.
Genet Med ; 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33239752

RESUMO

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.

3.
Brain ; 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33242881

RESUMO

KCNN2 encodes the small conductance calcium-activated potassium channel 2 (SK2). Rodent models with spontaneous Kcnn2 mutations show abnormal gait and locomotor activity, tremor and memory deficits, but human disorders related to KCNN2 variants are largely unknown. Using exome sequencing, we identified a de novo KCNN2 frameshift deletion in a patient with learning disabilities, cerebellar ataxia and white matter abnormalities on brain MRI. This discovery prompted us to collect data from nine additional patients with de novo KCNN2 variants (one nonsense, one splice site, six missense variants and one in-frame deletion) and one family with a missense variant inherited from the affected mother. We investigated the functional impact of six selected variants on SK2 channel function using the patch-clamp technique. All variants tested but one, which was reclassified to uncertain significance, led to a loss-of-function of SK2 channels. Patients with KCNN2 variants had motor and language developmental delay, intellectual disability often associated with early-onset movement disorders comprising cerebellar ataxia and/or extrapyramidal symptoms. Altogether, our findings provide evidence that heterozygous variants, likely causing a haploinsufficiency of the KCNN2 gene, lead to novel autosomal dominant neurodevelopmental movement disorders mirroring phenotypes previously described in rodents.

4.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053334

RESUMO

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.

5.
Genet Med ; 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820247

RESUMO

PURPOSE: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. METHODS: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 . These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. RESULTS: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. CONCLUSION: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.

6.
Am J Hum Genet ; 107(3): 544-554, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730804

RESUMO

RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Animais , Criança , Drosophila melanogaster/genética , Feminino , Técnicas de Silenciamento de Genes , Variação Genética/genética , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Locomoção/genética , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Convulsões/fisiopatologia , Sequenciamento Completo do Exoma
7.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721402

RESUMO

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Assuntos
Carcinogênese/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Pré-Escolar , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/fisiopatologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Sequenciamento Completo do Exoma , Proteínas ras/genética
8.
Eur J Hum Genet ; 28(7): 943-946, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32144365

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder of the cilia, often resulting in a phenotype of obesity, rod-cone dystrophy, a variable degree of intellectual disability, polydactyly, renal problems, and/or hypogonadism in males or genital abnormalities in females. We here report the case of an 11-year-old girl who presented with postaxial polydactyly, retinal dystrophy, and childhood obesity, suggesting Bardet-Biedl syndrome. She had no renal problems, developmental delay, or intellectual disability. Genetic testing revealed compound heterozygous variants in the IFT74 gene (c.371_372del p.Gln124Argfs*9 and c.16850-1G>T p.?). We here report the second patient with Bardet-Biedl syndrome due to biallelic IFT74 variants. Both patients have obesity, polydactyly, retinal dystrophy, and no renal abnormalities. The present case however, has normal intellect, whereas the other patient has intellectual disability. We hereby confirm IFT74 as a BBS gene and encourage diagnostic genetic testing laboratories to add IFT74 to their BBS gene panels.

9.
Clin Cancer Res ; 26(2): 505-517, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31649042

RESUMO

PURPOSE: In breast cancer, response rates to immune therapies are generally low and differ significantly across molecular subtypes, urging a better understanding of immunogenicity and immune evasion. EXPERIMENTAL DESIGN: We interrogated large gene-expression data sets including 867 node-negative, treatment-naïve breast cancer patients (microarray data) and 347 breast cancer patients (whole-genome sequencing and transcriptome data) according to parameters of T cells as well as immune microenvironment in relation to patient survival. RESULTS: We developed a 109-immune gene signature that captures abundance of CD8 tumor-infiltrating lymphocytes (TIL) and is prognostic in basal-like, her2, and luminal B breast cancer, but not in luminal A or normal-like breast cancer. Basal-like and her2 are characterized by highest CD8 TIL abundance, highest T-cell clonality, highest frequencies of memory T cells, and highest antigenicity, yet only the former shows highest expression level of immune and metabolic checkpoints and highest frequency of myeloid suppressor cells. Also, luminal B shows a high antigenicity and T-cell clonality, yet a low abundance of CD8 TILs. In contrast, luminal A and normal-like both show a low antigenicity, and notably, a low and high abundance of CD8 TILs, respectively, which associates with T-cell influx parameters, such as expression of adhesion molecules. CONCLUSIONS: Collectively, our data argue that not only CD8 T-cell presence itself, but rather T-cell clonality, T-cell subset distribution, coinhibition, and antigen presentation reflect occurrence of a CD8 T-cell response in breast cancer subtypes, which have been aborted by distinct T-cell-suppressive mechanisms, providing a rationale for subtype-specific combination immune therapies.


Assuntos
Apresentação do Antígeno/imunologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Linfócitos T CD8-Positivos/imunologia , Células Clonais/imunologia , Bases de Dados Genéticas/estatística & dados numéricos , Subpopulações de Linfócitos T/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Prognóstico , Receptor ErbB-2/metabolismo , Taxa de Sobrevida , Microambiente Tumoral/imunologia
10.
J Clin Invest ; 130(3): 1431-1445, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31794431

RESUMO

Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.


Assuntos
Hipocampo/enzimologia , Histona Acetiltransferases/metabolismo , Deficiência Intelectual/enzimologia , Neocórtex/enzimologia , Células-Tronco Neurais/enzimologia , Acetilação , Animais , Células HEK293 , Hipocampo/patologia , Histona Acetiltransferases/genética , Humanos , Deficiência Intelectual/patologia , Camundongos , Camundongos Knockout , Neocórtex/patologia , Células-Tronco Neurais/patologia , Nucleossomos/genética , Nucleossomos/metabolismo
11.
Brain ; 142(11): 3351-3359, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504246

RESUMO

Using trio exome sequencing, we identified de novo heterozygous missense variants in PAK1 in four unrelated individuals with intellectual disability, macrocephaly and seizures. PAK1 encodes the p21-activated kinase, a major driver of neuronal development in humans and other organisms. In normal neurons, PAK1 dimers reside in a trans-inhibited conformation, where each autoinhibitory domain covers the kinase domain of the other monomer. Upon GTPase binding via CDC42 or RAC1, the PAK1 dimers dissociate and become activated. All identified variants are located within or close to the autoinhibitory switch domain that is necessary for trans-inhibition of resting PAK1 dimers. Protein modelling supports a model of reduced ability of regular autoinhibition, suggesting a gain of function mechanism for the identified missense variants. Alleviated dissociation into monomers, autophosphorylation and activation of PAK1 influences the actin dynamics of neurite outgrowth. Based on our clinical and genetic data, as well as the role of PAK1 in brain development, we suggest that gain of function pathogenic de novo missense variants in PAK1 lead to moderate-to-severe intellectual disability, macrocephaly caused by the presence of megalencephaly and ventriculomegaly, (febrile) seizures and autism-like behaviour.


Assuntos
Deficiência Intelectual/genética , Megalencefalia/genética , Convulsões/genética , Quinases Ativadas por p21/genética , Actinas/metabolismo , Adolescente , Transtorno Autístico/genética , Criança , Pré-Escolar , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Deficiência Intelectual/psicologia , Masculino , Megalencefalia/psicologia , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Fosforilação , Convulsões/psicologia , Transdução de Sinais/genética , Sequenciamento Completo do Exoma , Adulto Jovem , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/química , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Hum Mutat ; 40(12): 2230-2238, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433103

RESUMO

Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications. Variant classifications of nearly 100,000 unique variants were catalogued and compared in a centralized MOLGENIS database. Variants classified by more than one center were labeled as "consensus" when classifications agreed, and shared internationally with LOVD and ClinVar. When classifications opposed (LB/B vs. LP/P), they were labeled "conflicting", while other nonconsensus observations were labeled "no consensus". We assessed our classifications using the InterVar software to compare to ACMG 2015 guidelines, showing 99.7% overall consistency with only 0.3% discrepancies. Differences in classifications between Dutch labs or between Dutch labs and ACMG were mainly present in genes with low penetrance or for late onset disorders and highlight limitations of the current 5-tier classification system. The data sharing boosted the quality of DNA diagnostics in Dutch labs, an initiative we hope will be followed internationally. Recently, a positive match with a case from outside our consortium resulted in a more definite disease diagnosis.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Disseminação de Informação/métodos , Confiabilidade dos Dados , Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Guias como Assunto , Humanos , Laboratórios , Países Baixos , Análise de Sequência de DNA
13.
Am J Med Genet A ; 179(7): 1276-1286, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31124279

RESUMO

Lysine-specific demethylase 6B (KDM6B) demethylates trimethylated lysine-27 on histone H3. The methylation and demethylation of histone proteins affects gene expression during development. Pathogenic alterations in histone lysine methylation and demethylation genes have been associated with multiple neurodevelopmental disorders. We have identified a number of de novo alterations in the KDM6B gene via whole exome sequencing (WES) in a cohort of 12 unrelated patients with developmental delay, intellectual disability, dysmorphic facial features, and other clinical findings. Our findings will allow for further investigation in to the role of the KDM6B gene in human neurodevelopmental disorders.


Assuntos
Variação Genética , Histona Desmetilases com o Domínio Jumonji/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino
14.
Neurology ; 92(11): e1225-e1237, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737337

RESUMO

OBJECTIVE: To describe the leukodystrophy caused by pathogenic variants in LARS2 and KARS, encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively. METHODS: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in LARS2 or KARS. Clinical information, brain MRIs, and postmortem brain autopsy data were collected. We assessed aminoacylation activities of purified mutant recombinant mitochondrial leucyl tRNA synthase and performed aminoacylation assays on patients' lymphoblasts and fibroblasts. RESULTS: Patients had a combination of early-onset deafness and later-onset neurologic deterioration caused by progressive brain white matter abnormalities on MRI. Female patients with LARS2 pathogenic variants had premature ovarian failure. In 2 patients, MRI showed additional signs of early-onset vascular abnormalities. In 2 other patients with LARS2 and KARS pathogenic variants, magnetic resonance spectroscopy revealed elevated white matter lactate, suggesting mitochondrial disease. Pathology in one patient with LARS2 pathogenic variants displayed evidence of primary disease of oligodendrocytes and astrocytes with lack of myelin and deficient astrogliosis. Aminoacylation activities of purified recombinant mutant leucyl tRNA synthase showed a 3-fold loss of catalytic efficiency. Aminoacylation assays on patients' lymphoblasts and fibroblasts showed about 50% reduction of enzyme activity. CONCLUSION: This study adds LARS2 and KARS pathogenic variants as gene defects that may underlie deafness, ovarian failure, and leukodystrophy with mitochondrial signature. We discuss the specific MRI characteristics shared by leukodystrophies caused by mitochondrial tRNA synthase defects. We propose to add aminoacylation assays as biochemical diagnostic tools for leukodystrophies.


Assuntos
Aminoacil-tRNA Sintetases/genética , Encéfalo/diagnóstico por imagem , Surdez/genética , Leucoencefalopatias/genética , Lisina-tRNA Ligase/genética , Doenças Ovarianas/genética , Adulto , Bioensaio , Encéfalo/patologia , Criança , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Imagem por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mitocôndrias , Doenças Ovarianas/diagnóstico por imagem , Doenças Ovarianas/patologia , Doenças Ovarianas/fisiopatologia , Aminoacilação de RNA de Transferência
15.
Neurogenetics ; 20(1): 1-8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30535813

RESUMO

Here, we report brain white matter alterations in individuals clinically and genetically diagnosed with periodontal Ehlers-Danlos syndrome, a rare disease characterized by premature loss of teeth and connective tissue abnormalities. Eight individuals of two families clinically diagnosed with periodontal Ehlers-Danlos syndrome were included in the present study and underwent general physical, dental, and neurological examination. Whole exome sequencing was performed, and all patients included in the study underwent MRI of the brain. Whole exome sequencing revealed heterozygous C1R mutations c.926G>T (p.Cys309Phe, Family A) and c.149_150TC>AT (p.Val50Asp, Family B). All adult individuals (n = 7; age range 31 to 68 years) investigated by MRI had brain white matter abnormalities. The MRI of one investigated child aged 8 years was normal. The MRI pattern was suggestive of an underlying small vessel disease that is progressive with age. As observed in other leukoencephalopathies related to microangiopathies, the extent of the white matter changes was disproportionate to the neurologic features. Medical history revealed recurrent headaches or depression in some cases. Neurological examination was unremarkable in all individuals but one had mild cognitive decline and ataxia and experienced a seizure. The observation that periodontal Ehlers-Danlos syndrome caused by missense mutations in C1R is consistently associated with a leukoencephalopathy opens a new pathogenic link between the classical complement pathway, connective tissue, brain small vessels, and brain white matter abnormalities.


Assuntos
Encéfalo/patologia , Complemento C1r/genética , Síndrome de Ehlers-Danlos/genética , Leucoencefalopatias/genética , Adulto , Idoso , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Criança , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Feminino , Humanos , Leucoencefalopatias/complicações , Leucoencefalopatias/diagnóstico , Imagem por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem
17.
Am J Hum Genet ; 103(3): 431-439, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100084

RESUMO

ADP-ribosylation, the addition of poly-ADP ribose (PAR) onto proteins, is a response signal to cellular challenges, such as excitotoxicity or oxidative stress. This process is catalyzed by a group of enzymes referred to as poly(ADP-ribose) polymerases (PARPs). Because the accumulation of proteins with this modification results in cell death, its negative regulation restores cellular homeostasis: a process mediated by poly-ADP ribose glycohydrolases (PARGs) and ADP-ribosylhydrolase proteins (ARHs). Using linkage analysis and exome or genome sequencing, we identified recessive inactivating mutations in ADPRHL2 in six families. Affected individuals exhibited a pediatric-onset neurodegenerative disorder with progressive brain atrophy, developmental regression, and seizures in association with periods of stress, such as infections. Loss of the Drosophila paralog Parg showed lethality in response to oxidative challenge that was rescued by human ADPRHL2, suggesting functional conservation. Pharmacological inhibition of PARP also rescued the phenotype, suggesting the possibility of postnatal treatment for this genetic condition.

18.
Am J Med Genet A ; 176(5): 1216-1221, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681102

RESUMO

Spondylocostal dysostosis (SCD) is a rare disorder characterized by vertebral segmentation defects and malformations of the ribs. SCD patients have some degree of (kypho)scoliosis, short stature and suffer from respiratory impairment due to the reduced size of their thoracic cage. Mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2 are known to cause different subtypes of SCD. Here, we report on a male neonate with an apparent distinct SCD-like phenotype only partly overlapping the previously described SCD subtypes. The proband presented with severe rib malformations (missing, fused, bifid, and hypoplastic ribs), vertebral malformations (intervertebral fusions of the laminae and irregular ossification of the vertebral bodies), and a mild scoliosis. Clear segmentation defects of the vertebral bodies were lacking. Other dysmorphic features were present as well. Severe respiratory insufficiency was present from birth. Whole exome sequencing identified a homozygous start-loss variant in DMRT2 (NM_006557.6: c.1A > T p.[Met1?]) being a likely cause of the SCD-like phenotype in the proband. Mutations in DMRT2 (OMIM#604935) have not been described in relation to SCD-related phenotypes in humans before. However, Dmrt2 knock-out mice exhibit severe rib and vertebral defects that strikingly overlap with the radiological phenotype of the proband reported here. Therefore, it seems plausible that mutations in DMRT2 are associated with a different (novel) subtype of SCD mainly characterized by severe rib anomalies but lacking clear segmentation defects of the vertebral bodies.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Homozigoto , Mutação , Fenótipo , Costelas/anormalidades , Coluna Vertebral/anormalidades , Fatores de Transcrição/genética , Alelos , Evolução Fatal , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Recém-Nascido , Masculino , Radiografia , Costelas/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada Espiral , Sequenciamento Completo do Exoma
19.
Am J Hum Genet ; 102(4): 676-684, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576217

RESUMO

Hypomyelinating leukodystrophies are genetic disorders characterized by insufficient myelin deposition during development. They are diagnosed on the basis of both clinical and MRI features followed by genetic confirmation. Here, we report on four unrelated affected individuals with hypomyelination and bi-allelic pathogenic variants in EPRS, the gene encoding cytoplasmic glutamyl-prolyl-aminoacyl-tRNA synthetase. EPRS is a bifunctional aminoacyl-tRNA synthetase that catalyzes the aminoacylation of glutamic acid and proline tRNA species. It is a subunit of a large multisynthetase complex composed of eight aminoacyl-tRNA synthetases and its three interacting proteins. In total, five different EPRS mutations were identified. The p.Pro1115Arg variation did not affect the assembly of the multisynthetase complex (MSC) as monitored by affinity purification-mass spectrometry. However, immunoblot analyses on protein extracts from fibroblasts of the two affected individuals sharing the p.Pro1115Arg variant showed reduced EPRS amounts. EPRS activity was reduced in one affected individual's lymphoblasts and in a purified recombinant protein model. Interestingly, two other cytoplasmic aminoacyl-tRNA synthetases have previously been implicated in hypomyelinating leukodystrophies bearing clinical and radiological similarities to those in the individuals we studied. We therefore hypothesized that leukodystrophies caused by mutations in genes encoding cytoplasmic aminoacyl-tRNA synthetases share a common underlying mechanism, such as reduced protein availability, abnormal assembly of the multisynthetase complex, and/or abnormal aminoacylation, all resulting in reduced translation capacity and insufficient myelin deposition in the developing brain.


Assuntos
Alelos , Aminoacil-tRNA Sintetases/genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Evolução Fatal , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Imagem por Ressonância Magnética , Masculino , Adulto Jovem
20.
Am J Med Genet A ; 176(3): 597-608, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359884

RESUMO

Rubinstein-Taybi syndrome (RSTS) is a multiple congenital anomalies syndrome associated with mutations in CREBBP (70%) and EP300 (5-10%). Previous reports have suggested an increased incidence of specific benign and possibly also malignant tumors. We identified all known individuals diagnosed with RSTS in the Netherlands until 2015 (n = 87) and studied the incidence and character of neoplastic tumors in relation to their CREBBP/EP300 alterations. The population-based Dutch RSTS data are compared to similar data of the Dutch general population and to an overview of case reports and series of all RSTS individuals with tumors reported in the literature to date. Using the Nationwide Network and Registry of Histopathology and Cytopathology in the Netherlands (PALGA Foundation), 35 benign and malignant tumors were observed in 26/87 individuals. Meningiomas and pilomatricomas were the most frequent benign tumors and their incidence was significantly elevated in comparison to the general Dutch population. Five malignant tumors were observed in four persons with RSTS (medulloblastoma; diffuse large-cell B-cell lymphoma; breast cancer; non-small cell lung carcinoma; colon carcinoma). No clear genotype-phenotype correlation became evident. The Dutch population-based data and reported case studies underscore the increased incidence of meningiomas and pilomatricomas in individuals with RSTS. There is no supporting evidence for an increased risk for malignant tumors in individuals with RSTS, however, due to the small numbers this risk may not be fully dismissed.


Assuntos
Neoplasias/epidemiologia , Neoplasias/etiologia , Síndrome de Rubinstein-Taybi/complicações , Síndrome de Rubinstein-Taybi/epidemiologia , Adolescente , Adulto , Biomarcadores Tumorais , Criança , Pré-Escolar , Proteína p300 Associada a E1A/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias/diagnóstico , Países Baixos/epidemiologia , Sistema de Registros , Síndrome de Rubinstein-Taybi/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...