Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Hum Mutat ; 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646703

RESUMO

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

3.
Genet Med ; 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31316167

RESUMO

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.

5.
J Med Genet ; 55(12): 803-813, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30287594

RESUMO

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.

6.
Eur J Hum Genet ; 26(9): 1288-1293, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29891876

RESUMO

Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant skeletal dysplasia characterised by metaphyseal flaring of the long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, brachydactyly, dental anomalies and mild osteoporosis. To date, only one large French Canadian family and a Finnish woman have been reported with the condition. In both, intragenic duplication encompassing exons 3-5 of the RUNX2 gene was identified. We describe a new, three-generation family with clinical features of MDMHB and an intragenic tandem duplication of RUNX2 exons 3-6. Dental problems were the primary presenting feature in all four affected individuals. We compare the features in our family to those previously reported in MDMHB, review the natural history of this condition and highlight the importance of considering an underlying skeletal dysplasia in patients presenting with significant dental problems and other suggestive features, including disproportionate short stature and/or digital anomalies.

7.
Front Genet ; 9: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922329

RESUMO

Repeats in coding and non-coding regions have increasingly been associated with many human genetic disorders, such as Richieri-Costa-Pereira syndrome (RCPS). RCPS, mostly characterized by midline cleft mandible, Robin sequence and limb defects, is an autosomal-recessive acrofacial dysostosis mainly reported in Brazilian patients. This disorder is caused by decreased levels of EIF4A3, mostly due to an increased number of repeats at the EIF4A3 5'UTR. EIF4A3 5'UTR alleles are CG-rich and vary in size and organization of three types of motifs. An exclusive allelic pattern was identified among affected individuals, in which the CGCA-motif is the most prevalent, herein referred as "disease-associated CGCA-20nt motif." The origin of the pathogenic alleles containing the disease-associated motif, as well as the functional effects of the 5'UTR motifs on EIF4A3 expression, to date, are entirely unknown. Here, we characterized 43 different EIF4A3 5'UTR alleles in a cohort of 380 unaffected individuals. We identified eight heterozygous unaffected individuals harboring the disease-associated CGCA-20nt motif and our haplotype analyses indicate that there are more than one haplotype associated with RCPS. The combined analysis of number, motif organization and haplotypic diversity, as well as the observation of two apparently distinct haplotypes associated with the disease-associated CGCA-20nt motif, suggest that the RCPS alleles might have arisen from independent unequal crossing-over events between ancient alleles at least twice. Moreover, we have shown that the number and sequence of motifs in the 5'UTR region is associated with EIF4A3 repression, which is not mediated by CpG methylation. In conclusion, this study has shown that the large number of repeats in EIF4A3 does not represent a dynamic mutation and RCPS can arise in any population harboring alleles with the CGCA-20nt motif. We also provided further evidence that EIF4A3 5'UTR is a regulatory region and the size and sequence type of the repeats at 5'UTR may contribute to clinical variability in RCPS.

8.
Arch Dis Child ; 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954740

RESUMO

OBJECTIVE: There is limited information on the psychosocial impact of growing up with Silver-Russell syndrome (SRS), characterised by slow growth in utero leading to short stature in adulthood. Such information could aid families in making difficult treatment decisions and guide management strategies for health professionals. We aimed to explore the lived experience of people with SRS across the lifespan. DESIGN/SETTING/PATIENTS: In-depth, semi-structured interviews were conducted between January 2015 and October 2016 with a sample of 15 adults (six women) with genetically confirmed SRS from the UK. Qualitative interviews were transcribed and coded to identify similarities and differences: codes were then grouped to form overarching themes. RESULTS: Four themes were identified from participant accounts: (1) appearance-related concerns extending beyond height; (2) strategies to deal with real and perceived threats; (3) women's experiences of pain, disability and feeling older than their years; and (4) feeling overlooked in romantic relationships. These themes show that other factors, beyond short stature, affect patient well-being and indicate a mismatch between patient need and healthcare provision. CONCLUSIONS: Challenges in SRS during childhood and adolescence were central to the psychosocial impact of SRS, and were not limited to height. These challenges, as well as symptoms such as pain and fatigue for women, have not previously been documented. To help individuals with SRS develop strategies to manage psychosocial issues, we recommend clinicians incorporate psychological services as an integral part of multidisciplinary teams managing individuals with SRS during childhood, adolescence and adulthood.

9.
Am J Med Genet A ; 176(5): 1238-1244, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29681091

RESUMO

Pathogenic variants in Zinc Finger DHHC-Type Containing 9 (ZDHHC9) gene have been identified as the cause of X-linked intellectual disability (XLID) in a small number of families. There are a total of 11 reported pathogenic variants in ZDHHC9 in the literature. The majority of reported variants are familial point mutations. There is one report of XLID associated with a de novo mutation in ZDHHC9, and one family with intragenic deletion within ZDHHC9 detected by array CGH. Although initial reports of families with ZDHHC9 pathogenic variants suggested a nonsyndromic XLID, more recent reports suggest a syndromic phenotype with facial dysmorphism. Here we report four patients with pathogenic variants in ZDHHC9, a family with two siblings and their maternal uncle who presented with XLID due to intragenic deletion of ZDHHC9 detected by array CGH and an 11-year-old boy with a de novo pathogenic missense variant in ZDHHC9, which is the first recurrent ZDHHC9 mutation. Our patients had some distinctive facial features in common, including elongated and down-slanting palpebral fissures and high hairline. Marfanoid habitus and seizures that have been previously reported in association with pathogenic variants in ZDHHC9 were absent in our cohort. Clinical information on patients with ZDHHC9-associated XLID is very scarce. New reports of families with detailed clinical description will add to the existing knowledge and help understand the condition better.

10.
J Med Genet ; 55(7): 497-504, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574422

RESUMO

BACKGROUND: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. METHODS: Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. RESULTS: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. CONCLUSION: The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.

11.
Nat Genet ; 50(5): 767, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29440723

RESUMO

In the version of this article initially published, Wendy Bickmore and Madapura Pradeepa were incorrectly not indicated as corresponding authors. The error has been corrected in the HTML and PDF versions of the paper.

12.
Nat Genet ; 50(3): 329-332, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29379197

RESUMO

We found that the clinical phenotype associated with BRD4 haploinsufficiency overlapped with that of Cornelia de Lange syndrome (CdLS), which is most often caused by mutation of NIPBL. More typical CdLS was observed with a de novo BRD4 missense variant, which retained the ability to coimmunoprecipitate with NIPBL, but bound poorly to acetylated histones. BRD4 and NIPBL displayed correlated binding at super-enhancers and appeared to co-regulate developmental gene expression.

13.
Eur J Hum Genet ; 26(1): 64-74, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180823

RESUMO

Whole-gene duplications and missense variants in the HUWE1 gene (NM_031407.6) have been reported in association with intellectual disability (ID). Increased gene dosage has been observed in males with non-syndromic mild to moderate ID with speech delay. Missense variants reported previously appear to be associated with severe ID in males and mild or no ID in obligate carrier females. Here, we report the largest cohort of patients with HUWE1 variants, consisting of 14 females and 7 males, with 15 different missense variants and one splice site variant. Clinical assessment identified common clinical features consisting of moderate to profound ID, delayed or absent speech, short stature with small hands and feet and facial dysmorphism consisting of a broad nasal tip, deep set eyes, epicanthic folds, short palpebral fissures, and a short philtrum. We describe for the first time that females can be severely affected, despite preferential inactivation of the affected X chromosome. Three females with the c.329 G > A p.Arg110Gln variant, present with a phenotype of mild ID, specific facial features, scoliosis and craniosynostosis, as reported previously in a single patient. In these females, the X inactivation pattern appeared skewed in favour of the affected transcript. In summary, HUWE1 missense variants may cause syndromic ID in both males and females.

14.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Sequenciamento Completo do Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
15.
J Med Genet ; 55(1): 28-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29021403

RESUMO

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Adolescente , Criança , Sequência Conservada , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Domínios Proteicos , Síndrome , Termodinâmica
16.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28041643

RESUMO

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Assuntos
Análise Mutacional de DNA , Variação Genética/genética , Genoma Humano/genética , Doenças Retinianas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Sequência de Bases , Coroideremia/genética , Grupos Étnicos/genética , Exoma/genética , Feminino , Genes Recessivos/genética , Humanos , Íntrons/genética , Masculino , Mutação , Doenças Raras/genética
18.
Nat Rev Endocrinol ; 13(2): 105-124, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585961

RESUMO

This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.


Assuntos
Gerenciamento Clínico , Internacionalidade , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/terapia , Hormônio Liberador de Gonadotropina/uso terapêutico , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Síndrome de Silver-Russell/metabolismo
19.
Hum Genet ; 135(8): 919-921, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27245168

RESUMO

Joubert Syndrome (JS) is an inherited ciliopathy associated with mutations in genes essential in primary cilium function. Whole exome sequencing in a multiplex consanguineous family from India revealed a KIAA0556 homozygous single base pair deletion mutation (c.4420del; p.Met1474Cysfs*11). Knockdown of the gene in zebrafish resulted in a ciliopathy phenotype, rescued by co-injection of wildtype cDNA. Affected siblings present a mild and classical form of Joubert syndrome allowing for further delineation of the JS associated genotypic spectrum.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Ciliopatias/genética , Códon sem Sentido/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas Associadas aos Microtúbulos/genética , Retina/anormalidades , Anormalidades Múltiplas/fisiopatologia , Adulto , Animais , Cerebelo/fisiopatologia , Criança , Pré-Escolar , Cílios/efeitos dos fármacos , Cílios/patologia , Ciliopatias/fisiopatologia , DNA Complementar/administração & dosagem , Modelos Animais de Doenças , Exoma/genética , Anormalidades do Olho/fisiopatologia , Feminino , Técnicas de Silenciamento de Genes , Homozigoto , Humanos , Doenças Renais Císticas/fisiopatologia , Masculino , Linhagem , Fenótipo , Retina/fisiopatologia , Peixe-Zebra/genética
20.
Am J Med Genet A ; 170A(5): 1115-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26971886

RESUMO

Cerebro-Costo-Mandibular syndrome (CCMS) is a rare autosomal dominant condition comprising branchial arch-derivative malformations with striking rib-gaps. Affected patients often have respiratory difficulties, associated with upper airway obstruction, reduced thoracic capacity, and scoliosis. We describe a series of 12 sporadic and 4 familial patients including 13 infants/children and 3 adults. Severe micrognathia and reduced numbers of ribs with gaps are consistent findings. Cleft palate, feeding difficulties, respiratory distress, tracheostomy requirement, and scoliosis are common. Additional malformations such as horseshoe kidney, hypospadias, and septal heart defect may occur. Microcephaly and significant developmental delay are present in a small minority of patients. Key radiological findings are of a narrow thorax, multiple posterior rib gaps and abnormal costo-transverse articulation. A novel finding in 2 patients is bilateral accessory ossicles arising from the hyoid bone. Recently, specific mutations in SNRPB, which encodes components of the major spliceosome, have been found to cause CCMS. These mutations cluster in an alternatively spliced regulatory exon and result in altered SNRPB expression. DNA was available from 14 patients and SNRPB mutations were identified in 12 (4 previously reported). Eleven had recurrent mutations previously described in patients with CCMS and one had a novel mutation in the alternative exon. These results confirm the specificity of SNRPB mutations in CCMS and provide further evidence for the role of spliceosomal proteins in craniofacial and thoracic development.


Assuntos
Anormalidades Múltiplas/genética , Fissura Palatina/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Costelas/anormalidades , Proteínas Centrais de snRNP/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Criança , Pré-Escolar , Fissura Palatina/complicações , Fissura Palatina/fisiopatologia , Éxons , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Micrognatismo/complicações , Micrognatismo/fisiopatologia , Mutação , Costelas/crescimento & desenvolvimento , Costelas/fisiopatologia , Escoliose/complicações , Escoliose/genética , Escoliose/fisiopatologia , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA