Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Chemosphere ; 289: 133238, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896427

RESUMO

Fipronil (FP) is an emerging insecticide which could induce reproductive toxicity in male rats at very low dosage, but the occurrence of FP and its transformation products (FPs) in human seminal plasma and their impacts on human semen quality have not been documented. In this study, FPs including FP, fipronil desulfinyl (FP-DES), fipronil sulfone (FP-SFO), fipronil amide (FP-AM), and fipronil sulfide (FP-SFI), were measured in seminal plasma samples (n = 200), which were collected from Shijiazhuang, north China. The cumulative concentration of FPs (ΣFPs), in the seminal plasma samples ranged from 0.003 to 0.180 ng/mL (median: 0.043 ng/mL). FP-SFO was the major target analyte (median: 0.040 ng/mL), accounting for approximately 42.3-100.0% of the ΣFPs. Significantly higher exposure levels of FPs were found in the overweight or obese group (≥25 kg/m2) vs. the normal BMI group (18.5-25 kg/m2) (ΣFPs: 0.047 vs. 0.033 ng/mL), never smoking group vs. current smoking group (ΣFPs: 0.057 vs. 0.037 ng/mL), and low sexual frequency group (<1 time/week) vs. high sexual frequency group (≥3 times/week) (ΣFPs: 0.048 vs. 0.030 ng/mL). No significant association between FPs and impaired semen quality parameter was found in this study. This is the first time to report FPs' occurrence in human seminal plasma and variations in their concentrations among people with different demographic and behavioral characteristics. Further studies on adverse effects of exposure to FPs on reproductive function are needed.


Assuntos
Inseticidas , Sêmen , Animais , China , Humanos , Inseticidas/análise , Inseticidas/toxicidade , Masculino , Pirazóis , Ratos , Sêmen/química , Análise do Sêmen
2.
Chemosphere ; 287(Pt 2): 132065, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34496338

RESUMO

Human beings are extensively and concurrently exposed to multiple volatile organic compounds (VOCs, including some Class I human carcinogens), which may induce oxidative stress in human body. Data on urinary metabolites of VOCs (mVOCs) among young children are limited. No studies have examined their inter-day variability of mVOCs and their associations with oxidative stress biomarkers (OSBs) using repeated urine samples from children. In this study, we measured twenty one mVOCs and three OSBs [8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA], and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid)] in 390 urine samples of 130 children (three samples on three consecutive days provided by each participant) aged 0-7 years from September 2018 to January 2019 in Shenzhen, south China, and Wuhan, central China. HPMMA (3-hydroxypropyl-1-methyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine), 3HPMA (3-hydroxypropyl mercapturic acid/N-Acetyl-S-(3-hydroxypropyl)-l-cysteine), and ATCA (2-aminothiazoline-4-carboxylic acid) had higher specific gravity-adjusted median concentrations (1 383, 286, and 273 µg/L, respectively) than the others. Intraclass correlation coefficients of mVOCs ranged from 0.29 to 0.71. After false-discovery rate (FDR, defined as FDR q-value < 0.05) adjustment, linear mixed-effects models revealed that 14 mVOCs were positively associated with 8-OHdG (ß range: 0.09-0.37), 11 mVOCs were positively associated with 8-OHG (ß range: 0.08-0.30), and 11 mVOCs were positively associated with HNEMA (ß range: 0.21-0.70) in urine. Considering the weight of the mVOC index accounted for the associations, based on the weighted quantile sum regression model, parent compounds of DHBMA (3,4-dihydroxybutyl mercapturic acid/N-Acetyl-S-(3,4-dihydroxybutyl)-l-cysteine) and t,t-MA (trans,trans-muconic acid) should be listed as priority VOCs for management to mitigate health risks. For the first time, this study characterized the inter-day variability of urinary mVOCs and their associations with selected OSBs (8-OHdG, 8-OHG, and NHEMA) in young, healthy Chinese children.


Assuntos
Compostos Orgânicos Voláteis , 8-Hidroxi-2'-Desoxiguanosina , Biomarcadores , Criança , Pré-Escolar , China , Humanos , Lactente , Recém-Nascido , Estresse Oxidativo
3.
Environ Pollut ; 292(Pt B): 118469, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752792

RESUMO

Although it is a probable human carcinogen, propylene oxide is widely applied in industry and daily life. However, data on neurodevelopmental effects of propylene oxide exposure among children are extremely limited. We aimed to determine the urinary concentrations of propylene oxide metabolite among school-aged children and evaluate the potential association of propylene oxide exposure with risk of dyslexia. A total of 355 dyslexic children and 390 controls were recruited from three cities (Jining, Wuhan, and Hangzhou) in China, between 2017 and 2020. Urinary N-acetyl-S-(2-hydroxypropyl)-L-cysteine (i.e., 2-hydroxypropyl mercapturic acid; 2-HPMA) was measured as the biomarker of propylene oxide exposure. The detection frequency of 2-HPMA was 100%. After adjusting for potential confounders, the odds ratio (OR) for dyslexia per 2-fold increase in urinary 2-HPMA was 1.19 [95% confidence interval (95% CI): 1.01, 1.40, P = 0.042]. Compared with the lowest quartile of urinary 2-HPMA concentrations, children with the highest quartile of 2-HPMA had a 1.63-fold (95% CI: 1.03, 2.56, P = 0.036) significantly increased risk of dyslexia, with a dose-response relationship (P-trend = 0.047). This study provides epidemiological data on the potential association between propylene oxide exposure and the risk of dyslexia in children. Further studies are warranted to confirm the findings and reveal the underlying biological mechanisms.


Assuntos
Dislexia , Compostos de Epóxi , Acetilcisteína , Criança , Cidades , Dislexia/induzido quimicamente , Dislexia/epidemiologia , Humanos
4.
Sci Total Environ ; 817: 152639, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34971688

RESUMO

Previous studies implied that elevated exposure to parabens may result in increased oxidative stress. However, the association between exposure to paraben derivatives and oxidative stress biomarkers in children has been rarely studied. This study examined the associations between exposure to paraben derivatives and oxidative stress biomarkers in Chinese children. Nine targeted compounds of parabens and their derivatives including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), p-hydrox4ybenzoic acid (p-HB), 3,4-dihydroxy benzoic acid (3,4-DHB), benzoic acid, methyl 3,4-dihydroxybenzoate (rOH-MeP), and ethyl 3,4-dihydroxybenzoate (rOH-EtP) were detected in urine collected from 139 children from South and Central China. Additionally, 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), and 4-hydroxy-2-nonenal mercapturic acid (HNE-MA) were measured as oxidative stress biomarkers. All targeted compounds (except for BuP) were frequently detected in urine (detection frequencies ranged 80.8%-100%). Linear mixed effects model revealed that all targeted compounds (with detection frequencies >50%), except for EtP, were significantly associated with an increase in 8-OHdG. rOH-EtP was found to be significantly associated with 8-OHG (ß = 0.12; 95% confidence interval [95% CI]: 0.08, 0.16) positively. In addition, PrP and benzoic acid were associated with elevated levels of HNE-MA. Weighted quantile sum regression revealed that co-exposure to the targeted compounds was positively associated with 8-OHdG (ß = 0.17; 95% CI: 0.12, 0.22), 8-OHG (ß = 0.14; 95% CI: 0.10, 0.18), and HNE-MA (ß = 0.43; 95% CI: 0.27, 0.59); rOH-EtP and benzoic acid were the major contributors for the combined effects on oxidative stress of nucleic acids and lipid, respectively. Our findings provide new evidence for the effects of exposure to paraben derivatives on nucleic acid oxidative damage and lipid peroxidation in children.

5.
Sci Total Environ ; : 151852, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34826485

RESUMO

Exposure to organophosphate (OP) insecticides has been found to be related to neurodevelopmental disorders in children. However, no study has examined the association between OP insecticide exposure and the risk of dyslexia among children. We aimed to explore the association between OP insecticide exposure, indicated by urinary dialkylphosphate metabolites (DAPs), and the risk of dyslexia among Chinese Han children from three cities. A total of 845 children (422 dyslexics and 423 non-dyslexics) from Tongji Reading Environment and Dyslexia research program were included in the current case-control study. We measured six DAPs in urine samples, collected from November 2017 to December 2020. Logistic regression models were used to estimate odds ratios (ORs) for the association between DAPs and dyslexia risk, adjusting for potential confounders. The detection frequencies of DAPs were above 97.5%, except for diethyldithiophosphate and dimethyldithiophosphate. Diethyl phosphate metabolites (DEs) were significantly associated with the risk of dyslexia. Compared with the lowest quartile, the adjusted ORs of dyslexia risk for the highest quartile of urinary diethylthiophosphate (DETP) and diethylphosphate (DEP) were 1.82 (1.04, 3.20) and 1.85 (1.08, 3.17), respectively. In addition, the adjusted ORs for dyslexia per 10-fold of urinary DEP, DETP, and ∑DEs concentration were 1.87 (1.12, 3.13), 1.55 (1.03, 2.35), and 1.91 (1.13, 3.21), respectively. Analyses stratified by gender indicated that such associations were more significant among boys. This study suggested that exposure to OP insecticides may be related to dyslexia among Chinese Han children from the three studied cities. However, our results should be interpreted with caution because of the case-control design and the fact that only one-spot urine sample was collected from the children. More studies with children living in China are necessary concerning the relatively high levels of urinary OP metabolites in our study.

6.
Environ Pollut ; 291: 118225, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740295

RESUMO

Several transformation products (or metabolites) of neonicotinoid insecticides (NNIs) have been detected in drinking water, such as desnitro-imidacloprid and imidacloprid-urea. However, data on the occurrences of the metabolites of NNIs (mNNIs) in drinking water are mainly limited to the imidacloprid metabolites. To identify whether the potential metabolites of other widely used NNIs (such as acetamiprid, clothianidin, and thiamethoxam) occur in drinking water and to characterize their distribution profiles, twelve selected (mainly urea and desnitro/decyano) metabolites of NNIs were measured in drinking water samples (n = 884, including n = 789 for tap water, and n = 95 for shallow groundwater) that were collected from 32 provinces in mainland China and Hong Kong. Nearly 90% of the drinking water samples contained the detected mNNI residues. Among the selected mNNIs, thiamethoxam-urea (THM-urea: 76%) and decyano-acetamiprid (decyano-ACE: 73%) were frequently detected (median: 0.94 and 0.25 ng/L, respectively), which were followed by clothianidin-urea (CLO-urea: 45%), desnitro-thiamethoxam (DN-THM: 38%), and other mNNIs (detected in less than 30% of the water samples). Surface-water-sourced tap water had an approximately 8-10 times higher median cumulative concentration (ng/L) of the selected mNNIs (ΣmNNIs: 3.88) than the deep groundwater-sourced tap water (0.53) and groundwater that was directly used as drinking water (0.38). Higher ratios of THM-urea accounted for ΣTHM in north and northwest China than in south China could be partly explained by the decreasing soil pH values from north to south in China. The higher ratios of decyano-ACE accounted for ΣACE in south China than in north and northwest China could be attributable to the lower soil pH levels, higher temperatures, and greater light intensities in south China. The THM-urea, decyano-ACE, and ΣmNNIs levels in cities were found to be significantly higher than those in nonurban areas. The THM-urea levels in seven drinking water samples from Guangxi and Henan Provinces exceeded the guideline limit (100 ng/L) of the European Union. This is the first study to identify THM-urea, decyano-ACE, CLO-urea, and DN-THM in drinking water. To better assess the mass loadings of NNIs in drinking water, mNNIs should be considered in further studies.


Assuntos
Água Potável , Inseticidas , China , Água Potável/análise , Inseticidas/análise , Neonicotinoides/análise , Nitrocompostos
7.
Sci Total Environ ; : 151407, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808154

RESUMO

Animal studies have revealed that exposure to neonicotinoid insecticides (NNIs) could compromise male reproductive function; however, related data on the occurrence of NNIs and their specific metabolites in human seminal plasma are scarce. To explore the potential effects of NNI exposure on male semen quality, we determined the concentrations of NNIs and some of their metabolites (collectively defined as mNNIs) in seminal plasma samples collected from men (n = 191) who visited a fertility clinic in Shijiazhuang, North China from 2018 to 2019. Associations between the mNNI concentrations and semen quality parameters were assessed using linear regression models, adjusting for important covariates. In the seminal plasma samples, desmethyl-acetamiprid (DM-ACE, detection frequency: 98.4%), imidacloprid-olefin (IMI-olefin, detection frequency: 86.5%), and desmethyl-clothianidin (DM-CLO, detection frequency: 70.8%) were frequently detected at median concentrations of 0.052, 0.003, and 0.007 ng/mL, respectively; meanwhile other compounds were detected at less than the method detection limits. In the single-mNNI models, the IMI-olefin concentration was associated with decreased progressive motility [IMI-olefin concentration: percent change (%Δ) = -17.0; 95% confidence interval (CI) = -30.3, -0.92; the highest tertile compared with the lowest tertile: %Δ = -21.1; 95% CI = -37.5, -0.23]. Similar results were found in the multiple-mNNIs models. No other inverse associations were found between the other mNNI concentrations and semen quality parameters. This is the first study to identify the occurrence of mNNIs in the seminal plasma and the potential associations of their concentrations with human semen quality parameters. These findings imply an inverse association between the IMI-olefin concentration and semen quality.

8.
Sci Total Environ ; : 151806, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808166

RESUMO

Neonicotinoid insecticides (NNIs) are the most widely used insecticides globally and ubiquitous in the environment, which has led to widespread human exposure. However, studies on internal exposure levels of NNIs and their metabolites in pregnant women are scarce. In this study, we measured nine parent NNIs and ten main metabolites in 1224 urine samples donated by 408 pregnant women at three trimesters. In the urine samples, the unadjusted vs. specific gravity (SG) adjusted median concentrations and detection frequencies (DFs) of desmethyl-acetamiprid (DM-ACE; 1.01 vs. 1.08 ng/mL; DF: 99.7%), 5-hydroxy-imidacloprid (5-hydroxy-IMI; 0.54 vs. 0.56 ng/mL; 98.5%), imidacloprid-olefin (IMI-olefin; 0.41 vs. 0.44 ng/mL; 99.3%), and desnitro-imidacloprid (DN-IMI; 0.12 vs. 0.12 ng/mL; 90.4%) were higher than their corresponding parent NNIs, acetamiprid (ACE; <0.01 vs. <0.01 ng/mL; 26.4%) and imidacloprid (IMI; 0.04 vs. 0.04 ng/mL; 69.9%). The unadjusted and SG-adjusted median concentrations of clothianidin (CLO), thiamethoxam (THM), and desmethyl-clothianidin (DM-CLO) were 0.05 vs. 0.07, 0.05 vs. 0.06, and 0.04 vs. 0.05 ng/mL, with the DFs of 61.0%, 57.5%, and 75.7%, respectively. The cumulative exposure level, imidacloprid-equivalent total NNIs (IMIeq), was generated by the relative potency factor approach considering the toxic effects of NNIs and their metabolites. The unadjusted IMIeq varied from 0.17 ng/mL (SG-adjusted: 0.20) to 1969 ng/mL (SG-adjusted: 1817) with a median of 14.1 ng/mL (SG-adjusted: 14.1). A decreased trend was observed in urinary NNIs and their metabolites throughout the three trimesters. Maternal age, educational level, and household income were related to the concentrations of NNIs and their metabolites. DM-ACE, 5-hydroxy-IMI, and IMI-olefin were significantly lower in winter than in autumn; DN-IMI, THM, CLO, and DM-CLO were significantly higher in both summer and autumn than in winter. The maximum estimated daily intake of IMIeq [34.8 µg/kg-body weight (bw)/d] was lower than the chronic reference dose of IMI (57 µg/kg-bw/d) currently recommended by the United States Environmental Protection Agency. Human health risk of exposure to NNIs and their main metabolites warranted further studies.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34467478

RESUMO

Bentazone is a widely used post-emergence herbicide, while no data was available on its concentrations in tap water from China and in urine among the general population. It was determined in the source (Wuhan section of the Yangtze River watershed), treated, and tap water (n = 20, 20, and 170, respectively) in different seasons (2019) in Wuhan, central China. Also, urine samples (n = 38) collected from healthy adults in Wuhan (September 2020) were analyzed to characterize its urinary concentration. Bentazone was detected in all the source and treated water samples. Its concentrations in the source water in July were higher than those in February (median: 17.9 ng/L vs. 2.86 ng/L) (p < 0.05). It cannot be removed efficiently (27.8-27.9%) by conventional drinking water treatment using NaClO, but it can be efficiently removed by using chlorine dioxide or ozone combined with activated carbon. Bentazone was frequently detected (detection frequency: 96.3%) in 160 tap water samples (underwent conventional treatment) (median: 1.95 ng/L, range: <0.02-47.0 ng/L), while it was not detectable in tap water samples that underwent ozone combined with activated carbon. Seasonal variations were found, with the lowest median concentration (ng/L) in April (0.46) and the highest in July (17.6). In addition, bentazone was frequently (92.1%) detected in human urine samples (median: 0.02 ng/mL; range: < 0.01-0.11 ng/mL). The estimated daily intake of bentazone based on its median concentration in tap water (0.04 ng/kg-body weight [bw]/day) accounted for approximately 8% of that based on the median urinary concentration (0.48 ng/kg-bw/day). This is the first time to characterize its occurrence in drinking water from China and its occurrence in the urine of the general population.

10.
Sci Total Environ ; 801: 149733, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467936

RESUMO

Fungicides are widely used in agriculture worldwide. However, data on the occurrence of fungicides in drinking water are scarce. This study aimed to determine the occurrence of 12 selected fungicides in drinking water, the removal efficiency of conventional water treatment processes for fungicides, and the risk of fungicide exposure. In this study, source water (February and July), treated water (February and July), and tap water samples (February, April, July, and October) were collected from Wuhan, central China, in 2019. Seven of the twelve selected fungicides were 100% detected in the three types of water samples; tricyclazole was found with the highest concentrations in the source water phase (median: 15.2 ng/L; range: 4.21-67.9 ng/L). The concentrations of the 12 selected fungicides remaining in the treated water samples (median proportion of the remaining content: 77.5%) revealed that most of the target analytes may not be removed efficiently by conventional water treatment processes, though they could be removed efficiently by advanced treatment. Higher concentrations of the fungicides were observed in samples collected in July (median: 38.7 ng/L; range: 12.5-85.8 ng/L), followed by those in October (median: 21.8 ng/L; range: 10.2-58.8 ng/L), February (median: 9.82 ng/L; range: 5.63-93.3 ng/L), and April (median: 7.13 ng/L; range: 6.23-91.1 ng/L). The health risk assessment implied that estimated daily intake of these fungicides through tap water ingestion might pose a low risk to consumers, though risk associated with infant exposure to the fungicides requires further attention. This study provides baseline data on the occurrence, removal efficiencies, and seasonal variations of the selected fungicides in tap water from central China.


Assuntos
Água Potável , Fungicidas Industriais , Poluentes Químicos da Água , Azóis , China , Humanos , Estrobilurinas , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 289: 117913, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426205

RESUMO

General population are concurrently and extensively exposed to many volatile organic compounds (VOCs), including some Group 1 human carcinogens, such as 1,3-butadiene. However, only a few studies assessed internal exposure levels of VOCs; particularly, very limited studies have examined associations between the urinary concentrations of multiple VOC metabolites (mVOCs) and oxidative stress biomarkers (OSBs) among the general population. In this study, 21 mVOCs and three OSBs including 8-hydroxy-2'-deoxyguanosine (8-OHdG; for DNA), 8-hydroxyguanosine (8-OHG; for RNA), and 4-hydroxy nonenal mercapturic acid (HNEMA; for lipid) were measured in 406 urine samples collected from 128 healthy adults during autumn and winter of 2018 in Wuhan, central China, including repeated samples taken in 3 d from 75 volunteers. Inter-day reproducibility for most mVOCs was good to excellent; urinary concentrations of mVOCs in winter were generally higher than those in autumn. Risk assessment was conducted by calculating hazard quotients for the parent compounds, and the results suggested that acrolein, 1,3-butadiene, and cyanide should be considered as high-priority hazardous ones for management. After false-discovery adjustment, 16 of the studied mVOCs were positively associated with 8-OHdG and 8-OHG (ß values ranged from 0.04 to 0.48), and four mVOCs were positively associated with HNEMA (ß values ranged from 0.21 to 0.78). Weighted quantile sum regression analyses were used to assess associations of mVOC mixture and OSBs, and we found significantly positive associations between the mixture index and OSBs, among which the strongest mVOC contributors for the associations were 2-methylhippuric acid for both DNA (20%) and RNA (17%) oxidative damage, and trans,trans-muconic acid (50%) for lipid peroxidation. This study firstly reported good to excellent short-term reproducibility, seasonal difference in autumn and winter, and possible health risk in urinary concentrations of multiple mVOCs among the general population.


Assuntos
Compostos Orgânicos Voláteis , Adulto , Biomarcadores , China , Humanos , Estresse Oxidativo , Reprodutibilidade dos Testes , Estações do Ano
12.
Sci Total Environ ; 786: 147342, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964773

RESUMO

Fipronil (FP) is widely used as a highly effective insecticide worldwide, thereby raising concern about environmental contamination and risk for human health. However, data on the occurrence of FP and its transformation products (FPs) in human blood and urine are limited. In this study, 39 pairs of serum, plasma, blood cells (BCs), and urine samples were collected from adults in Wuhan, central China (2020), in order to characterize the concentration profiles of FPs in different matrices. FPs were also determined in serum samples (n = 226, including 57, 56, 56, and 57 samples for Wuhan, Huangshi, Nanjing, and Zhenjiang, respectively) collected from four cities of China (2015) to characterize the exposure levels of FPs among the general population and potential spatial variations. Fipronil sulfone (FP-SFO) was 100% detectable in blood samples, and it was the predominant metabolite (accounting for 86-95% of the cumulative concentrations of FPs [ΣFPs]), with the median concentrations (ng/mL) of 0.17, 0.16, and 0.03 in serum (range: 0.07-1.53), plasma (range: 0.06-1.41), and BCs (range: 0.01-0.24), respectively. The compositional profiles of FPs in serum, plasma, and BCs were similar; very strong positive correlations were observed between different blood matrices for FP-SFO (r = 0.94-0.97, p < 0.01) but not between blood and urine. The median ΣFPs (ng/mL) in the serum (0.20; range: 0.09-1.56) and the plasma samples (0.19; range: 0.09-1.43) was higher than that in BCs samples (0.04; range: 0.01-0.24). In the urine samples, only the major metabolite FP-SFO was detectable in approximately 10% of the samples. Additionally, the highest median ΣFPs (ng/mL) in the serum samples was found in Nanjing (0.56; range: 0.13-1.88), followed by Wuhan (0.34; range: 0.06-1.02), Huangshi (0.10; range: 0.03-0.60), and Zhenjiang (0.08; range: 0.02-0.42). The level of ΣFPs seemed to increase with city sizes and urbanization scale, though further studies are needed to confirm the variations with larger sample size. The estimated daily intake of ΣFPs based on the median concentration of samples from Nanjing (18.5 ng/kg-bw/d) was higher than that of Wuhan (11.3), Huangshi (3.40), and Zhenjiang (2.80). Dietary intake should be the major exposure route for the general population, while water or indoor dust accounted for <1% of the ΣFPs intake. This pilot study provided the first data on the profiles of FPs in paired human serum, plasma, BCs, and urine samples, and potential spatial variations of ΣFPs in China. FP-SFO and FP desulfinyl should be considered among priority substances worthy to be bio-monitored in China due to its moderated persistence and ubiquitous occurrence in human blood.


Assuntos
Inseticidas , Adulto , China , Cidades , Poeira/análise , Exposição Ambiental/análise , Humanos , Projetos Piloto , Pirazóis
13.
Sci Total Environ ; 787: 147614, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33992949

RESUMO

Acetaminophen (AAP) is the most widely used over-the-counter analgesic in the world; it is also a metabolite of industrial chemical aniline. It may predispose individuals to oxidative stress. However, the exposure profile of AAP in the general population in China and the associations between AAP and oxidative stress biomarkers have scarcely been investigated. In this study, we determined the urinary concentrations of AAP and evaluated its associations with 8-hydroxy-guanosine (8-OHG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), the most widely used biomarkers of nucleoside oxidation affecting RNA and DNA, in 393 urine samples collected from 131 healthy children (0-6.6 y) on three consecutive days from Wuhan, central China, and Shenzhen, south China. AAP was found in all urine samples, suggesting that exposure to AAP was ubiquitous in young children in central and south China. The median concentration of specific gravity (SG)-adjusted AAP was 9.21 ng/mL (range: 1.11-1 453 ng/mL). Good inter-day reproducibility was observed for SG-adjusted AAP concentrations (intraclass correlation coefficient, 0.75). The SG-adjusted urinary 8-OHdG and 8-OHG concentrations were positively correlated with AAP (ß = 0.08; 95% confidence interval [95% CI]: 0.02-0.13, and ß = 0.10; 95% CI: 0.04-0.15, respectively). The data indicated that AAP exposure might be associated with oxidative DNA and RNA damage in the general population with unintentional exposure. To our knowledge, this is the first report of AAP exposure in young healthy children in central and south China. This is also the first study to evaluate the inter-day variations in urinary AAP concentrations and to explore the associations between AAP exposure and oxidative stress biomarkers in the general population.


Assuntos
Acetaminofen , Guanosina , 8-Hidroxi-2'-Desoxiguanosina , Biomarcadores/metabolismo , Criança , Pré-Escolar , China , Desoxiguanosina , Humanos , Estresse Oxidativo , Reprodutibilidade dos Testes
14.
Water Res ; 189: 116630, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221583

RESUMO

Neonicotinoid insecticides (NNIs) are the most extensively used insecticides worldwide, threatening ecosystem and human health. However, nationwide studies of NNIs and their metabolites in drinking water are limited. In order to characterize the contamination status of NNIs in drinking water throughout China, we collected 884 drinking water samples including 789 tap water and 95 groundwater samples from 32 provinces (covering seven regions of mainland China: south, central, east, north, northeast, northwest, and southwest) and Hong Kong. Ten NNIs and six of their main metabolites were determined in the water samples. The relative potency factor method was used to assess the cumulative concentrations of NNIs and their metabolites (imidacloprid-equivalent total NNIs, IMIeq) based on the chronic reference doses (cRfDs) of the NNIs or the toxic effects of the mataboilites. The IMIeq varied among the studied regions, with a median concentration of 24.5 ng/L and a maximum concentration of 8,622 ng/L. The predominant NNIs in drinking water were acetamiprid (ACE) and imidacloprid (IMI). Compared with tap water derived from groundwater, much higher concentrations of IMIeq and NNIs were found in tap water derived from surface water. Different concentrations and patterns of NNIs in drinking water were observed in different regions, provinces, and capital cities, mainly due to regional and provincial differences in crop types and volumes of pesticide usage. The concentrations of NNIs in the drinking water of provincial capitals and small/medium cities were higher than the concentrations in rural areas. The estimated daily intake (EDI) of IMIeq was at least two orders of magnitude lower than the cRfD of IMI, while the NNIs in 16 drinking water samples exceeded the acceptable value (100 ng/L) recommended by the European Union. This study provided a nationwide profile of the occurrence of NNIs and their metabolites in the drinking water of China and the associated potential cumulative human health risks, taking into account of the toxicity differences between NNIs and their metabolites.


Assuntos
Água Potável , Inseticidas , Poluentes Químicos da Água , China , Cidades , Água Potável/análise , Ecossistema , Hong Kong , Humanos , Inseticidas/análise , Neonicotinoides/análise , Poluentes Químicos da Água/análise
15.
Chemosphere ; 267: 129225, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341734

RESUMO

Herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) and its analogues are widely used in agriculture. Although the occurrence of 2,4-D in urine has been widely reported in North America, it has scarcely been investigated in China, especially in young children. In addition, both invivo and in vitro studies have shown that high-level 2,4-D exposure is associated with oxidative stress, but their association in a general sensitive population has rarely been evaluated. In this study, 2,4-D and its analogues were measured in 417 urine samples collected from 139 children aged 0-7 during the non-peak season of pesticide application in Wuhan, central China, and Shenzhen, south China. Each of them provided three samples in three consecutive days. An oxidative stress biomarker, 8-hydroxy-2-deoxyguanosine (8-OHdG), was also measured. The geometric mean (GM) of unconjugated urinary 2,4-D concentration was 0.10 µg/L (corrected by urinary specific gravity, SG-corrected). After ß-glucuronidase hydrolysis, the GM of SG-corrected urinary 2,4-D was 0.15 µg/L, and the detection frequency was 100%. Moderate inter-day reproducibility was found within individuals, with an intraclass correlation coefficient of 0.68 for SG-corrected urinary deconjugated 2,4-D. The GM of estimated daily intake of 2,4-D was 6.05 ng/kg-bw/day. A significant positive correlation was found between urinary 2,4-D and 8-OHdG, whereas no association was found after SG-correction. This is the first study to characterize the occurrence of urinary 2,4-D, its inter-day reliability, and its association with urinary 8-OHdG in young children from China.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Estresse Oxidativo , Ácido 2,4-Diclorofenoxiacético , Biomarcadores , Criança , Pré-Escolar , China , Desoxiguanosina , Humanos , Lactente , Recém-Nascido , América do Norte , Reprodutibilidade dos Testes
16.
Sci Total Environ ; 750: 141507, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841807

RESUMO

Studies on the occurrence of emerging pesticides in surface and drinking water in Vietnam are limited. In this study, lake water (n = 7), river water (n = 1), tap water (n = 46), and bottled water (n = 3) collected from Hanoi and other four provinces in northern Vietnam were analyzed for selected pesticides (including insecticides such as neonicotinoids, fipronil, and chlorpyrifos; fungicide carbendazim; herbicides such as atrazine, terbuthylazine, simazine, 2,4-dichlorophenoxyacetic acid, 2-methyl-4-chlorophenoxyacetic acid, and bentazon) and some of their degradates by liquid chromatography-tandem mass spectrometry. Carbendazim (median: 86.7 ng/L) and triazines (49.3 ng/L) were the major pesticides found in lake water samples, followed by neonicotinoids and their degradation products (15.1 ng/L), chlorpyrifos and its degradate (13.4 ng/L), fipronil and its degradates (3.76 ng/L), chlorophenoxy acid herbicides (2.10 ng/L), and bentazon (0.62 ng/L). Triazines (164 ng/L) were the major pesticides in river water. Higher concentrations (median: 39.3 ng/L; range: 1.20-127) of selected pesticides were found in tap water from Hanoi than those from four other provinces studied (5.49 ng/L; 4.73-66.8 ng/L). Bottled water samples collected from Hanoi contained lower concentrations of pesticide residues (median: 3.54 ng/L, range: 2.18-8.09) than those of tap water samples. The calculated risks from pesticide exposure through ingestion of tap water by the general populations were low. However, fipronil concentrations in lake water exceeded the benchmark value recommended for freshwater in the United States or the Netherlands. Degradation of acetamiprid into desmethyl-acetamiprid was found in lake water.


Assuntos
Clorpirifos , Água Potável , Herbicidas , Praguicidas , Poluentes Químicos da Água , Benzimidazóis , Benzotiadiazinas , Carbamatos , Água Potável/análise , Herbicidas/análise , Neonicotinoides , Países Baixos , Praguicidas/análise , Pirazóis , Vietnã , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 741: 140110, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574918

RESUMO

No known data are available regarding the occurrence of fipronil (FP) in indoor dust in China, despite the fact that it is an emerging insecticide that is used extensively. In this study, FP and its derivatives (FPs), including fipronil sulfone (FP-SFO), fipronil sulfide, fipronil desulfinyl, and fipronil amide, were determined in indoor dust samples (n = 436) collected from three different cities in China between 2016 and 2019, namely Shenzhen (February and September 2019), Wuhan (October 2016, October 2018, and August 2019), and Taiyuan (October 2016), located in south, central, and north China, respectively. FP and FP-SFO were the major target analytes detected in all dust samples, accounting for approximately 68.6-90.1% of the cumulative concentration of FPs (ΣFPs). The ΣFPs values for the dust samples ranged from not detected (ND) to 33.6 µg/g (median ± median absolute deviation [MAD]: 7.12 ± 6.44 ng/g), with a detection frequency of 95.6%. The median value of the ΣFPs of the dust samples collected from Shenzhen (22.6 ± 15.6 ng/g) was higher than that found in the dust samples collected in Taiyuan 2016 (1.87 ± 1.65 ng/g) and Wuhan (6.43 ± 5.62 ng/g). Significantly higher ΣFPs were observed in the dust samples collected in urban areas than in the rural areas of Taiyuan and Wuhan. Furthermore, an increasing trend of FP (from 2016 to 2018) in the rural areas of Wuhan, and a seasonal variation (summer > autumn) in FP, FP-SFO, and ΣFPs in the dust samples from urban areas of Wuhan were observed. The estimated daily intake of FPs via dust ingestion for people in Shenzhen was approximately 12 times higher than in Taiyuan based on the samples analyzed. This is the first study to describe the occurrence and spatiotemporal variations of FPs in indoor dust in China.

18.
Sci Total Environ ; 741: 140227, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574922

RESUMO

Imidacloprid (IMI) is one of the most applied neonicotinoid insecticides worldwide. The occurrence of its degradates such as desnitro-imidacloprid (DN-IMI), imidacloprid-urea (IMI-urea), and desnitro-imidacloprid-olefin (DN-IMI-olefin) in environment water and their fate during drinking water treatment were seldom documented. In this study, IMI and its degradates were determined in source water (the Yangtze River and its largest tributary, the Hanshui River), treated water, and tap water (n = 20, 20, and 169, respectively) in different seasons of 2019 in Wuhan, central China. Their occurrence, removal efficiency, and seasonal variations were evaluated. Advanced water treatment with ozone combined with activated carbon might remove target analytes efficiently but conventional water treatment cannot. IMI and its degradates were 100% detectable in the conventionally treated water samples in July. IMI and DN-IMI decreased while IMI-urea, DN-IMI-olefin, imidacloprid-olefin (IMI-olefin), and 5-hydroxy-imidacloprid (5-OH-IMI) increased during conventional drinking water treatment. IMI and its degradates were found in the tap water samples treated conventionally (range: 1.17-32.0 ng/L for IMI; 0.57-7.00 ng/L for DN-IMI; 0.58-4.50 ng/L for IMI-urea; 0.04-0.65 ng/L for DN-IMI-olefin; < method detection limit [MDL]-0.80 ng/L for IMI-olefin; < MDL-0.35 ng/L for 5-OH-IMI). The concentrations of DN-IMI and IMI-urea observed in this study were higher than those observed in North America. Sodium sulfite did not increase the levels of DN-IMI and IMI-urea in tap water samples in the present study. This is the first study to demonstrate the occurrence of DN-IMI and IMI-urea in water in China and the occurrence of DN-IMI-olefin, IMI-olefin, and 5-OH-IMI in water.


Assuntos
Inseticidas/análise , Poluentes Químicos da Água/análise , China , Neonicotinoides , Nitrocompostos , América do Norte , Água
19.
Sci Total Environ ; 727: 138691, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498189

RESUMO

Data on chlorophenoxy herbicides (CPHs) in drinking water from China are scarce. This study was designed to describe the occurrence of CPHs in drinking water in China. In June 2019, drinking water samples including 789 tap water and 95 groundwater samples were collected from 31 provinces in mainland China and Hong Kong. Raw source, treated, and tap water samples (n = 20, 20, and 170, respectively) in Wuhan, Central China were also analyzed. 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were found in 71.2% and 74.9% of the samples nationwide, respectively. The cumulative concentration of CPHs (ΣCPHs) in tap water in China was up to 125 ng/L (median: 1.38 ng/L), and regional variations were found for ΣCPHs. The highest median ΣCPHs (3.95 ng/L) was found in Northeast China, followed by Central (3.40), South (2.71), East (2.43), Southwest (1.58), North (0.42), and Northwest China (0.30). The median ΣCPHs in groundwater was approximately five times lower than that in tap water. In addition, ΣCPHs were found in all the raw source water samples collected in Wuhan, Central China (median: 6.69 ng/L, range: 2.66-43.1 ng/L). The removal of 2,4-D and MCPA during conventional drinking water treatment was not efficient, removing approximately 0.91% and 17.4%, respectively. In a water plant with advanced treatment, they were efficiently removed. Seasonal variations were found in ΣCPHs in tap water from Wuhan, with the highest found in July (median: 21.2 ng/L), and the lowest in October (1.96 ng/L). The intake of CPHs via water ingestion was estimated as below 5 ng/kg-bw/day, much lower than the reference doses for 2,4-D (5 µg/kg-bw/day) and MCPA (4 µg/kg-bw/day). This is the first study to demonstrate the fate of CPHs during drinking water treatment and seasonal variations of CPHs in water from Wuhan, China. Moreover, this study provides an overview of ΣCPHs in tap water for many areas in China.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Água Subterrânea , Ácido 2,4-Diclorofenoxiacético , China , Água Potável , Poluentes Químicos da Água
20.
Environ Int ; 141: 105785, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32408217

RESUMO

While neonicotinoid insecticides (NNIs) have been widely used worldwide, limited studies have measured specific metabolites of imidacloprid (IMI, the most commonly used NNI) in human urine. To better understand human exposure to NNIs, 10 parent compounds, and 6 of their metabolites were analyzed in 408 urine samples collected from 129 healthy adults in Wuhan, Central China, during autumn and winter of 2018. These specimens included repeated urine samples taken in 3 d from 75 volunteers. The urinary concentrations of desnitro-imidacloprid (DN-IMI), imidacloprid-olefin (IMI-olefin), and desmethyl-acetamiprid (DM-ACE) were higher (4-40 times) than those of their parent compounds (IMI and acetamiprid, ACE). DN-IMI and IMI-olefin accounted for 92% of the urinary Σ3IMI (the sum of IMI and its specific metabolites measured). Positive correlations (r) were observed between DN-IMI and IMI (0.50), IMI-olefin and IMI (0.75), and DM-ACE and ACE (0.53). Good to excellent inter-day reliabilities (unadjusted intraclass correlation coefficients) were observed for IMI-olefin (0.61) and DM-ACE (0.81), while moderate inter-day reliability was observed for DN-IMI (0.43). The urinary NNI concentrations were significantly higher in autumn than in winter, and higher in urban areas than in rural areas, while no significant gender or age-related differences were observed. To our knowledge, this is the first report on DN-IMI and IMI-olefin in human urine.


Assuntos
Inseticidas , Adulto , Alcenos , China , Humanos , Inseticidas/análise , Neonicotinoides , Nitrocompostos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...