Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 10(21): 6910-6914, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31638400


The electrochemical properties of gas molecules are of great interest for both fundamental and applied research. In this study, we introduce a novel concept to systematically alter the electrochemical behavior and, in particular, the redox potential of neutral gas molecules. The concept is based on the use of an ion-binding agent, or "ionophore", to bind and stabilize the ionic electrochemical reaction product. We demonstrate that the ionophore-assisted electrochemical oxidation of hydrogen in a room-temperature ionic liquid electrolyte is shifted by almost 1 V toward more negative potentials in comparison to an ionophore-free electrolyte. The altered electrochemical response in the presence of the ionophore not only yields insights into the reaction mechanism but also can be used to determine the diffusion coefficient of the ionophore species. This ionophore-modulated electrochemistry of neutral gas molecules opens up new avenues for the development of highly selective electrochemical sensors.

J Phys Chem A ; 122(45): 8828-8839, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354136


High degrees of delithiation of layered transition metal oxide cathode active materials (NCMs and HE-NCM) for lithium-ion batteries (LIBs) was shown to lead to the release of singlet oxygen, which is accompanied by enhanced electrolyte decomposition. Here, we study the reactivity of chemically produced singlet oxygen with the commonly used cyclic and linear carbonate solvents for LIB electrolytes. On-line gassing analysis of the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) reveals different stability toward the chemical attack of singlet oxygen, which is produced in situ by photoexcitation of the Rose Bengal dye. Ab initio calculations and on-the-fly simulations reveal a possible reaction mechanism, confirming the experimental findings. In the case of EC, hydrogen peroxide and vinylene carbonate (VC) are found to be the products of the first reaction step of EC with singlet oxygen in the reaction cascade of the EC chemical decomposition. In contrast to EC, simulations suggested DMC to be stable in the presence of singlet oxygen, which was also confirmed experimentally. Hydrogen peroxide is detrimental for cycling of a battery. For all known cathode active materials, the potential where singlet oxygen is released is found to be already high enough to electrochemically oxidize hydrogen peroxide. The formed protons and/or water both react with the typically used LiPF6 salt to HF that then leads to transition metal dissolution from the cathode active materials. This study shows how important the chemical stability toward singlet oxygen is for today's battery systems and that a trade-off will have to be found between chemical and electrochemical stability of the solvent to be used.

Angew Chem Int Ed Engl ; 55(24): 6892-5, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27145532


Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells.