Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Chromosome Res ; 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34988746

RESUMO

Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.

2.
Phytomedicine ; 94: 153810, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798519

RESUMO

BACKGROUND: Osteoporosis affects more than half the patients with type 2 diabetes mellitus (T2DM). Up to data, there is no effective clinical practice in managing type 2 diabetes osteoporosis (T2DOP) because of its complex pathogenesis. Gegen Qinlian Decoction (GQD) has been used for the long-term management of T2DM. However, the underlying mechanism of GQD in the treatment of T2DOP remains unknown. PURPOSE: To reveal the role of GQD in T2DOP and its potential therapeutic targets in the management of T2DOP. STUDY DESIGN: The effect of GQD on T2DOP was observed in db/db mice in four groups: model group, GQD low-dose group (GQD-L), GQD high-dose group (GQD-H), and metformin (positive control) group. C57BL/6J mice were used as the negative control group. METHODS: Quantitative phytochemical analysis of GQD was performed using high-performance liquid chromatography (HPLC). Micro-CT and hematoxylin-eosin (H&E) staining were used to evaluate bone histomorphometry. To screen for candidate targets of GQD, a cytokine antibody array was used, followed by bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to determine expression levels. RESULTS: The major active components of GQD were confirmed by HPLC. Micro-CT and H&E staining showed that bone mass was significantly increased in the GQD-H group compared with the model group. Antibody arrays revealed that the expression of insulin-like growth factor binding protein 3 (IGFBP3) was elevated in the GQD-H group. The MAPK pathway was identified using bioinformatics analysis. Additionally, the levels of osteoclastogenesis-related genes, including cathepsin K (Ctsk), acid phosphatase 5 (Acp5), matrix metallopeptidase 9 (Mmp9), and ATPase H+ transporting V0 subunit D2 (Atp6v0d2) were significantly decreased in the GQD-H group. Compared with the model group, high-dosage GQD inhibited phosphorylation of extracellular signal-regulated kinases (ERKs) and P38 mitogen-activated protein kinase (MAPK) and the expression of c-Fos and nuclear factor of activated T cells 1 (NFATc1). CONCLUSION: GQD plays a protective role in T2DOP by upregulating IGFBP3 expression and downregulating the IGFBP3/MAPK/NFATc1 signaling pathway. IGFBP3 in serum may also be a novel biomarker in the treatment of T2DOP. Our current findings not only expand the application of GQD, but also provide a theoretical basis and guidance for T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Animais , Citocinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC , Osteoporose/tratamento farmacológico , Proteínas Quinases , Transdução de Sinais
3.
J Hazard Mater ; 426: 128098, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952499

RESUMO

The nanoparticles of zeolitic imidazolate framework (ZIF-67) were synthesized and added to ethanolamine/deep eutectic solvent solution to form nanofluid system. The dynamic removal performance of prepared nanofluid system for hydrogen sulfide was investigated. For the system based on choline chloride and urea, the introduction of nanoparticles showed significant enhancement effect on the desulfurization performance. The optimal mass fraction of nanoparticles in nanofluid systems were identified as 0.1%. Besides, the experimental results showed that the prepared nanofluid systems have high regeneration performance, and the presence of moderate moisture is beneficial to the regeneration process. The absorbents and nanoparticles before and after absorption were characterized by Fourier transform infrared spectra, nuclear magnetic resonance, scanning electron microscope, energy dispersive spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The characterization results showed that the surface of nanoparticle was covered by CoS2 after absorption.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34852333

RESUMO

The effect of epitaxial stress on Jahn-Teller distortion in epitaxial LaMnO3 (LMO) films has been investigated. Both 2θ-ω scans and reciprocal space maps indicate that LMO samples are subjected to compressive stress. Obvious Laue oscillations can be detected in 2θ-ω scans, indicating the high quality of samples. Reciprocal space maps of symmetry peak (001) and asymmetry peak (-103) imply different epitaxial stress for LMO films deposited on different substrates. Raman spectra measurements reveal that the degree of Jahn-Teller distortion can be well tuned via the epitaxial stress which may further influence on the electron localization in the films. This study might benefit to understanding the correlation between crystalline structure and electrical transport properties of LMO films and related LMO-based superlattices.

5.
Front Plant Sci ; 12: 739671, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868124

RESUMO

In all organisms, splicing occurs through the formation of spliceosome complexes, and splicing auxiliary factors are essential during splicing. U2AF65 is a crucial splicing cofactor, and the two typical RNA-recognition motifs at its center recognize and bind the polypyrimidine sequence located between the intron branch site and the 3'-splice site. U2AF65A is a member of the U2AF65 gene family, with pivotal roles in diseases in mammals, specifically humans; however, few studies have investigated plant U2AF65A, and its specific functions are poorly understood. Therefore, in the present study, we systematically identified U2AF65A in plant species from algae to angiosperms. Based on 113 putative U2AF65A sequences from 33 plant species, phylogenetic analyses were performed, followed by basic bioinformatics, including the comparisons of gene structure, protein domains, promoter motifs, and gene expression levels. In addition, using rice as the model crop, we demonstrated that the OsU2AF65A protein is localized to the nucleus and cytoplasm, and it is involved in responses to various stresses, such as drought, high salinity, low temperature, and heavy metal exposure (e.g., cadmium). Using Arabidopsis thaliana and rice mutants, we demonstrated that U2AF65A is involved in the accumulation of plant biomass, growth of hypocotyl upon thermal stimulation, and reduction of tolerance of high temperature stress. These findings offer an overview of the U2AF65 gene family and its stress response functions, serving as the reference for further comprehensive functional studies of the essential specific splicing cofactor U2AF65A in the plant kingdom.

6.
Front Chem ; 9: 766078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858942

RESUMO

The excellent properties of nanomaterials have been confirmed in many fields, but their effects on plants are still unclear. In this study, different concentrations of bismuth vanadate (BV) were added to the growth medium to analyze the growth of seedlings, including taproots, lateral roots, leaf stomata, root activity, and superoxide anion O2 .- generation. Gene expression levels related to root growth were determined by quantitative PCR in Arabidopsis thaliana. The results showed that BV promoted the growth of taproots and the development of lateral roots, enhanced the length of the extension zone in roots, increased the number and size of leaf stomata and root activity, reduced the accumulation of ROS in seedlings, and changed the expression levels of genes related to polyamines or hormones. At the same time, we investigated the antibacterial activity of BV against a variety of common pathogens causing crop diseases. The results showed that BV could effectively inhibit the growth of Fusarium wilt of cotton and rice sheath blight. These results provide a new prospect for the development of nanomaterial-assisted plants, which is expected to become one of the ways to solve the problem of controlling and promoting the development of plants. At the same time, it also provides a reference for the study of the effect of BV on plants.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34956386

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome featuring ectopic lipid accumulation in hepatocytes. NAFLD has been a severe threat to humans with a global prevalence of over 25% yet no approved drugs for the treatment to date. Previous studies showed that procyanidin B2 (PCB2), an active ingredient from herbal cinnamon, has an excellent hepatoprotective effect; however, the mechanism remains inconclusive. The present study aimed to investigate the protective effect and underlying mechanism of PCB2 on PA-induced cellular injury in human hepatoma HepG2 cells. Our results showed that PA-induced oxidative stress, calcium disequilibrium, and subsequent endoplasmic reticulum stress (ERS) mediated cellular injury, with elevated protein levels of GRP78, GRP94, CHOP, and hyperphosphorylation of PERK and IRE1α as well as the increased ratio of Bax/Bcl-2, which was restored by PCB2 in a concentration-dependent manner, proving the excellent antiapoptosis effect. In addition, 4-phenylbutyric acid (4-PBA), the ER stress inhibitor, increased cell viability and decreased protein levels of GRP78 and CHOP, which is similar to PCB2, and thapsigargin (TG), the ER stress agonist, exhibited conversely meanwhile partly counteracted the hepatic protection of PCB2. What is more, upregulated protein expression of p-IKKα/ß, p-NF-κB p65, NLRP3, cleaved caspase 1, and mature IL-1ß occurred in HepG2 cells in response to PA stress while rescued with the PCB2 intervention. In conclusion, our study demonstrated that PA induces ERS in HepG2 cells and subsequently activates downstream NLRP3 inflammasome-mediated cellular injury, while PCB2 inhibits NLRP3/caspase 1/IL-1ß pathway, inflammation, and apoptosis with the presence of ERS, thereby promoting cell survival, which may provide pharmacological evidence for clinical approaches on NAFLD.

8.
Front Plant Sci ; 12: 685054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925390

RESUMO

Plant cytochrome P450 (P450) participates in a wide range of biosynthetic reactions and targets a variety of biological molecules. These reactions lead to various fatty acid conjugates, plant hormones, secondary metabolites, lignin, and various defensive compounds. In our previous research, transcriptome analysis was performed on the salt-tolerant upland cotton "Tongyan No. 1." Many differentially expressed genes (DEGs) belong to the P450 family, and their domains occur widely in plants. In this current research, P450 genes were identified in Gossypium hirsutum with the aid of bioinformatics methods for investigating phylogenetic relations, gene structure, cis-elements, chromosomal localization, and collinearity within a genome. qRT-PCR was conducted to analyze P450 gene expression patterns under salt stress. The molecular weights of the 156 P450 genes were in the range of 5,949.6-245,576.3 Da, and the length of the encoded amino acids for all the identified P450 genes ranged from 51 to 2,144. P450 proteins are divided into four different subfamilies based on phylogenetic relationship, gene structure, and chromosomal localization of gene replication. The length of P450 genes in upland cotton differs greatly, ranging from 1,500 to 13,000 bp. The number of exons in the P450 family genes ranged from 1 to 9, while the number of introns ranged from 0 to 8, and there were similar trends within clusters. A total of 31 cis-acting elements were identified by analyzing 1,500 bp promoter sequences. Differences were found in cis-acting elements among genes. The consistency between qRT-PCR and previous transcriptome analysis of salt tolerance DEGs indicated that they were likely to be involved in the salt tolerance of cotton seedlings. Our results provide valuable information on the evolutionary relationships of genes and functional characteristics of the gene family, which is beneficial for further study of the cotton P450 gene family.

9.
Front Plant Sci ; 12: 761668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925411

RESUMO

Flower color is the decisive factor that affects the commercial value of ornamental flowers. Therefore, it is important to study the regulation of flower color formation in lily to discover the positive and negative factors that regulate this important trait. In this study, MYB transcription factors (TFs) were characterized to understand the regulatory mechanism of anthocyanin biosynthesis in lily. Two R2R3-MYB TFs, LvMYB5, and LvMYB1, were found to regulate anthocyanin biosynthesis in lily flowers. LvMYB5, which has an activation motif, belongs to the SG6 MYB protein subgroup of Arabidopsis thaliana. Transient expression of LvMYB5 indicated that LvMYB5 can promote coloration in Nicotiana benthamiana leaves, and that expression of LvMYB5 increases the expression levels of NbCHS, NbDFR, and NbANS. VIGS experiments in lily petals showed that the accumulation of anthocyanins was reduced when LvMYB5 was silenced. Luciferase assays showed that LvMYB5 can promote anthocyanin synthesis by activating the ANS gene promoter. Therefore, LvMYB5 plays an important role in flower coloration in lily. In addition, the transient expression experiment provided preliminary evidence that LvMYB1 (an R2R3-MYB TF) inhibits anthocyanin synthesis in lily flowers. The discovery of activating and inhibitory factors related to anthocyanin biosynthesis in lily provides a theoretical basis for improving flower color through genetic engineering. The results of our study provide a new direction for the further study of the mechanisms of flower color formation in lilies.

10.
Sci Rep ; 11(1): 22515, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795358

RESUMO

The rotational hydraulic damper has advantages in the design and control of rotational machines. This paper presents a novel hydraulic rotational damper with the characteristic of adjusting the damping coefficient. It is composed of a shell, a gap, a rotor shaft, sliding vanes, a valve, and a motor, just like a combination of a sliding pump system and a valve driven by a motor. A new cam ring slot designed to guide the radial motion of sliding vanes could reduce friction resistance force, which will also benefit the design of the sliding pump. The damping coefficient model of this damper is established based on dynamic analysis. Series of numerical simulations validate the impact of factors on the damping coefficient. Frictional resistances have little influence on the damping coefficient during most conditions. The total coefficient is positively correlative with the angular velocity and the valve angle. Therefore, changing the valve angle according to the rotor shaft's angular speed could adjust the damping coefficient.

11.
J Transl Med ; 19(1): 432, 2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34657624

RESUMO

BACKGROUND: Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. METHODS: Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. RESULTS: GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. CONCLUSIONS: MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Proteínas Nucleares , Neoplasias Gástricas/genética , Proteína Gli2 com Dedos de Zinco/genética
12.
Cancer Manag Res ; 13: 7885-7895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703310

RESUMO

The incidence and mortality rate of breast cancer (BC) in women currently ranks first worldwide, and neoadjuvant chemotherapy (NAC) is widely used in patients with BC. A variety of imaging assessment methods have been used to predict and evaluate the response to NAC. Ultrasound (US) has many advantages, such as being inexpensive and offering a convenient modality for follow-up detection without radiation emission. Although conventional grayscale US is typically used to predict the response to NAC, this approach is limited in its ability to distinguish viable tumor tissue from fibrotic scar tissue. Contrast-enhanced ultrasound (CEUS) combined with a time-intensity curve (TIC) not only provides information on blood perfusion but also reveals a variety of quantitative parameters; elastography has the potential capacity to predict NAC efficiency by evaluating tissue stiffness. Both CEUS and elastography can greatly improve the accuracy of predicting NAC responses. Other US techniques, including three-dimensional (3D) techniques, quantitative ultrasound (QUS) and US-guided near-infrared (NIR) diffuse optical tomography (DOT) systems, also have advantages in assessing NAC response. This paper reviews the different US technologies used for predicting NAC response in BC patients based on the previous literature.

13.
Front Plant Sci ; 12: 731664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512706

RESUMO

The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.

14.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464356

RESUMO

Ovarian cancer is characterized by aberrant activation of the mitogen-activated protein kinase (MAPK), highlighting the importance of targeting the MAPK pathway as an attractive therapeutic strategy. However, the clinical efficacy of MEK inhibitors is limited by intrinsic or acquired drug resistance. Here, we established patient-derived ovarian cancer models resistant to MEK inhibitors and demonstrated that resistance to the clinically approved MEK inhibitor trametinib was associated with enhancer reprogramming. We also showed that enhancer decommissioning induced the downregulation of negative regulators of the MAPK pathway, leading to constitutive ERK activation and acquired resistance to trametinib. Epigenetic compound screening uncovered that HDAC inhibitors could alter the enhancer reprogramming and upregulate the expression of MAPK negative regulators, resulting in sustained MAPK inhibition and reversal of trametinib resistance. Consequently, a combination of HDAC inhibitor and trametinib demonstrated a synergistic antitumor effect in vitro and in vivo, including patient-derived xenograft mouse models. These findings demonstrated that enhancer reprogramming of the MAPK regulatory pathway might serve as a potential mechanism underlying MAPK inhibitor resistance and concurrent targeting of epigenetic pathways and MAPK signaling might provide an effective treatment strategy for advanced ovarian cancer.

15.
Medicine (Baltimore) ; 100(33): e26982, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414976

RESUMO

OBJECTIVE: : To study the correlation between alcohol consumption and the risks of liver, esophageal squamous cell carcinoma (ESCC), and gastric cancers in China mainland by meta-analysis. METHODS: : We systematically searched electronic databases to identify the case-control studies that reported the association between alcohol consumption and the risks of liver, ESCC, and gastric cancers from January 1, 2010 to April 1, 2020. The Newcastle-Ottawa Scale (NOS) was used to evaluate literature quality, and I2 analyzes were used to evaluate the heterogeneity. RESULTS: : A total of 2855-related studies were retrieved. After conditional screening, we included 26 case-control studies for meta-analysis. Meta-analysis showed that alcohol consumption was associated with increased risks of liver, ESCC, and gastric cancers (total pooled odds ratio [OR], 1.83; 95% confidence interval [CI], 1.58-2.11; liver cancer OR, 1.83; 95% CI, 1.39-2.40; ESCC OR, 2.00; 95% CI, 1.66-2.40; gastric-cancer OR, 1.54; 95% CI, 1.10-2.15). Subgroup analysis results showed that the pooled ORs of volume of alcohol consumed, years of drinking, age of starting drinking, and drinking status were 1.71 (95% CI, 1.36-2.15), 1.65 (95% CI, 1.33-2.06), 1.38 (95% CI, 0.98-1.94), and 2.00 (95% CI, 1.42-2.81), respectively. Regression analysis showed that geographical region was a source of heterogeneity. CONCLUSION: : Alcohol consumption increased the risks of liver cancer, ESCC, and gastric cancers in China. Volume of alcohol consumed, years of drinking, age of starting drinking, and drinking status were all significant factors for these risks.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Neoplasias Esofágicas/diagnóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Gástricas/diagnóstico , Adulto , Consumo de Bebidas Alcoólicas/epidemiologia , China/epidemiologia , Correlação de Dados , Neoplasias Esofágicas/epidemiologia , Humanos , Neoplasias Hepáticas/epidemiologia , Razão de Chances , Neoplasias Gástricas/epidemiologia
16.
Front Genet ; 12: 676751, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434216

RESUMO

Telomeres form the ends of linear chromosomes and usually comprise protein complexes that bind to simple repeated sequence motifs that are added to the 3' ends of DNA by the telomerase reverse transcriptase (TERT). One of the primary functions attributed to telomeres is to solve the "end-replication problem" which, if left unaddressed, would cause gradual, inexorable attrition of sequences from the chromosome ends and, eventually, loss of viability. Telomere-binding proteins also protect the chromosome from 5' to 3' exonuclease action, and disguise the chromosome ends from the double-strand break repair machinery whose illegitimate action potentially generates catastrophic chromosome aberrations. Telomeres are of special interest in the blast fungus, Pyricularia, because the adjacent regions are enriched in genes controlling interactions with host plants, and the chromosome ends show enhanced polymorphism and genetic instability. Previously, we showed that telomere instability in some P. oryzae strains is caused by novel retrotransposons (MoTeRs) that insert in telomere repeats, generating interstitial telomere sequences that drive frequent, break-induced rearrangements. Here, we sought to gain further insight on telomeric involvement in shaping Pyricularia genome architecture by characterizing sequence polymorphisms at chromosome ends, and surrounding internalized MoTeR loci (relics) and interstitial telomere repeats. This provided evidence that telomere dynamics have played historical, and likely ongoing, roles in shaping the Pyricularia genome. We further demonstrate that even telomeres lacking MoTeR insertions are poorly preserved, such that the telomere-adjacent sequences exhibit frequent presence/absence polymorphism, as well as exchanges with the genome interior. Using TERT knockout experiments, we characterized chromosomal responses to failed telomere maintenance which suggested that much of the MoTeR relic-/interstitial telomere-associated polymorphism could be driven by compromised telomere function. Finally, we describe three possible examples of a phenomenon known as "Adaptive Telomere Failure," where spontaneous losses of telomere maintenance drive rapid accumulation of sequence polymorphism with possible adaptive advantages. Together, our data suggest that telomere maintenance is frequently compromised in Pyricularia but the chromosome alterations resulting from telomere failure are not as catastrophic as prior research would predict, and may, in fact, be potent drivers of adaptive polymorphism.

17.
Genome ; 64(11): 985-995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34253086

RESUMO

Cotton (Gossypium L.) is the most important fiber crop worldwide. Here, transcriptome analysis was conducted on developing fibers of a G. mustelinum introgression line, IL9, and its recurrent parent, PD94042, at 17 and 21 days post-anthesis (dpa). Differentially expressed genes (DEGs) of PD94042 and IL9 were identified. Gene Ontology (GO) enrichment analysis showed that the annotated DEGs were rich in two main biological processes and two main molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis likewise showed that the annotated DEGs were mainly enriched in metabolic pathways and biosynthesis of secondary metabolites. In total, 52 DEGs were selected as candidate genes based on comparison of the DEGs and GO function annotation information. Quantitative real-time PCR (RT-qPCR) analysis results for 12 randomly selected DEGs were consistent with transcriptome analysis. SNP identification based on G. mustelinum chromatin segment introgression showed that 394 SNPs were identified in 268 DEGs, and two genes with known functions were identified within fiber strength quantitative trait loci (QTL) regions or near the confidence intervals. We identified 52 key genes potentially related to high fiber strength in a G. mustelinum introgression line and provided significant insights into the study of cotton fiber quality improvement.

18.
Appl Microbiol Biotechnol ; 105(14-15): 5915-5929, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34292355

RESUMO

Arginine is an important amino acid involved in processes such as cell signal transduction, protein synthesis, and sexual reproduction. To understand the biological roles of arginine biosynthesis in pathogenic fungi, we used Cpa1, the carbamoyl phosphate synthase arginine-specific small chain subunit in Saccharomyces cerevisiae as a query to identify its ortholog in the Magnaporthe oryzae genome and named it MoCpa1. MoCpa1 is a 471-amino acid protein containing a CPSase_sm_chain domain and a GATase domain. MoCpa1 transcripts were highly expressed at the conidiation, early-infection, and late-infection stages of the fungus. Targeted deletion of the MoCPA1 gene resulted in a ΔMocpa1 mutant exhibiting arginine auxotrophy on minimum culture medium (MM), confirming its role in de novo arginine biosynthesis. The ΔMocpa1 mutant presented significantly decreased sporulation with some of its conidia being defective in morphology. Furthermore, the ΔMocpa1 mutant was nonpathogenic on rice and barley leaves, which was a result of defects in appressorium-mediated penetration and restricted invasive hyphal growth within host cells. Addition of exogenous arginine partially rescued conidiation and pathogenicity defects on the barley and rice leaves, while introduction of the MoCPA1 gene into the ΔMocpa1 mutant fully complemented the lost phenotype. Further confocal microscopy examination revealed that MoCpa1 is localized in the mitochondria. In summary, our results demonstrate that MoCpa1-mediated arginine biosynthesis is crucial for fungal development, conidiation, appressorium formation, and infection-related morphogenesis in M. oryzae, thus serving as an attractive target for mitigating obstinate fungal plant pathogens. KEY POINTS: • MoCpa1 is important for aerial hyphal growth and arginine biosynthesis. • MoCpa1 is pivotal for conidial morphogenesis and appressorium formation. • MoCpa1 is crucial for full virulence in M. oryzae.


Assuntos
Magnaporthe , Oryza , Arginina , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Esporos Fúngicos/metabolismo
19.
BMC Plant Biol ; 21(1): 344, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289812

RESUMO

BACKGROUND: Maize (Zea mays ssp. mays) is the most abundantly cultivated and highly valued food commodity in the world. Oil from maize kernels is highly nutritious and important for the diet and health of humans, and it can be used as a source of bioenergy. A better understanding of genetic basis for maize kernel oil can help improve the oil content and quality when applied in breeding. RESULTS: In this study, a KUI3/SC55 recombinant inbred line (RIL) population, consisting of 180 individuals was constructed from a cross between inbred lines KUI3 and SC55. We phenotyped 19 oil-related traits and subsequently dissected the genetic architecture of oil-related traits in maize kernels based on a high-density genetic map. In total, 62 quantitative trait loci (QTLs), with 2 to 5 QTLs per trait, were detected in the KUI3/SC55 RIL population. Each QTL accounted for 6.7% (qSTOL1) to 31.02% (qBELI6) of phenotypic variation and the total phenotypic variation explained (PVE) of all detected QTLs for each trait ranged from 12.5% (OIL) to 52.5% (C16:0/C16:1). Of all these identified QTLs, only 5 were major QTLs located in three genomic regions on chromosome 6 and 9. In addition, two pairs of epistatic QTLs with additive effects were detected and they explained 3.3 and 2.4% of the phenotypic variation, respectively. Colocalization with a previous GWAS on oil-related traits, identified 19 genes. Of these genes, two important candidate genes, GRMZM2G101515 and GRMZM2G022558, were further verified to be associated with C20:0/C22:0 and C18:0/C20:0, respectively, according to a gene-based association analysis. The first gene encodes a kinase-related protein with unknown function, while the second gene encodes fatty acid elongase 2 (fae2) and directly participates in the biosynthesis of very long chain fatty acids in Arabidopsis. CONCLUSIONS: Our results provide insights on the genetic basis of oil-related traits and a theoretical basis for improving maize quality by marker-assisted selection.


Assuntos
Óleo de Milho/genética , Óleo de Milho/metabolismo , Produtos Agrícolas/genética , Zea mays/genética , Mapeamento Cromossômico , Marcadores Genéticos , Variação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
20.
J Hazard Mater ; 419: 126394, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34148002

RESUMO

The desulfurization and regeneration performance of nanofluids composed of oxidizing ionic liquids and four inert nanoparticles are investigated. The addition of different nanoparticles has been proved to have enhancement effect on the H2S removal performance of oxidizing ionic liquids. The nanofluids with SiO2 nanoparticles showed the most significant strengthening desulfurization performance as well as regeneration performance. The optimal weight ratio of SiO2 nanoparticles in nanofluids was confirmed as 0.5%. The regeneration efficiency of the optimal nanofluid system can exceed 88%, which is far higher than that before the addition of SiO2 nanoparticles. The mass transfer coefficient increased significantly after the addition of nanoparticles. The nanoparticles and nanofluids before and after absorption were characterized by Fourier transform infrared spectra, nuclear magnetic resonance, scanning electron microscope, transmission electron microscope, energy dispersive spectrum and X-ray photoelectron spectroscopy. It was found that the structure and morphology of SiO2 nanoparticles remained basically unchanged in the absorption-regeneration process. The main final desulfurization product was identified as sulfate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...