RESUMO
The emergence of quantum magnetism in nanographenes provides ample opportunities to fabricate purely organic devices for spintronics and quantum information. Although heteroatom doping is a viable way to engineer the electronic properties of nanographenes, the synthesis of doped nanographenes with collective quantum magnetism remains elusive. Here, a set of nitrogen-doped nanographenes (N-NGs) with atomic precision are fabricated on Au(111) through a combination of imidazole [2+2+2]-cyclotrimerization and cyclodehydrogenation reactions. High-resolution scanning probe microscopy measurements reveal the presence of collective quantum magnetism for nanographenes with three radicals, with spectroscopic features which cannot be captured by mean-field density functional theory calculations but can be well reproduced by Heisenberg spin model calculations. In addition, the mechanism of magnetic exchange interaction of N-NGs has been revealed and compared with their counterparts with pure hydrocarbons. Our findings demonstrate the bottom-up synthesis of atomically precise N-NGs which can be utilized to fabricate low-dimensional extended graphene nanostructures for realizing ordered quantum phases.
RESUMO
Global trade facilitates the introduction of invasive species that can cause irreversible damage to agriculture and the environment, as well as stored food products. The raisin moth (Cadra figulilella) is an invasive pest that poses a significant threat to fruits and dried foods. Climate change may exacerbate this threat by expanding moth's distribution to new areas. In this study, we used CLIMEX and MaxEnt niche modeling tools to assess the potential global distribution of the raisin moth under current and future climate change scenarios. Our models projected that the area of suitable distribution for the raisin moth could increase by up to 36.37% by the end of this century under high emission scenario. We also found that excessive precipitation decreased the probability of raisin moth establishment and that the optimum temperature range for the species during the wettest quarter of the year was 0-18 °C. These findings highlight the need for future research to utilize a combined modeling approach to predict the distribution of the raisin moth under current and future climate conditions more accurately. Our results could be used for environmental risk assessments, as well as to inform international trade decisions and negotiations on phytosanitary measures with regards to this invasive species.
RESUMO
BACKGROUND: Understanding where species occur using species distribution models has become fundamental to ecology. Although much attention has been paid to invasive species, questions about climate change related range shifts of widespread insect pests remain unanswered. Here, we incorporated bioclimatic factors and host plant availability into CLIMEX models to predict distributions under future climate scenarios of major cereal pests of the Sitobion grain aphid complex (Sitobion avenae, S. miscanthi, and S. akebiae). Additionally, we incorporated the application of irrigation in our models to explore the relevance of a frequently used management practice that may interact with effects of climate change of the pest distributions. RESULTS: Our models predicted that the area potentially at high risk of outbreaks of the Sitobion grain aphid complex would increase from 41.3% to 53.3% of the global land mass. This expansion was underlined by regional shifts in both directions: expansion of risk areas in North America, Europe, most of Asia, and Oceania, and contraction of risk areas in South America, Africa, and Australia. In addition, we found that host plant availability limited the potential distribution of pests, while the application of irrigation expanded it. CONCLUSION: Our study provides insights into potential risk areas of insect pests and how climate, host plant availability, and irrigation affect the occurrence of the Sitobion grain aphid complex. Our results thereby support agricultural policy makers, farmers, and other stakeholders in their development and application of management practices aimed at maximizing crop yields and minimizing economic losses. © 2023 Society of Chemical Industry.
RESUMO
Here, 20 Cu-20 Ni-54 NiFe2O4-6 NiO (wt%) cermets were prepared via the powder metallurgy process, and the electrolytic corrosion behavior of the cermets at 880 °C and 960 °C was studied through the microstructure analysis by SEM and EDS. Results show that the ceramic phase is seriously affected by chemical corrosion at 880 °C electrolysis, and it is difficult to form a dense ceramic surface layer. A dense ceramic surface layer is formed on the bottom of the anode electrolyzed at 960 °C, and the dense layer thickens with the extension of the electrolysis time. The formation of the dense surface layer is mainly caused by the oxidation of Ni. The oxidation rate of the metallic phase and the corrosion rate of the ceramic phase have an important effect on the formation of the dense layer. In the corrosion process of NiFe2O4 phase, preferential corrosion of Fe element occurs first, and then NiO phase is precipitated from NiFe2O4 phase. After the NiO is dissolved and corroded, the NiFe2O4 grains collapse and the ceramic phase peels off from the anode.
RESUMO
The response to visually evoked innate fear is essential for survival and impacts the cognition and behavior of animals to threats in the environment. However, contradictory findings of the interaction of fear and executive behaviors were reported by previous studies. To address this question, the present study investigated the effect of looming stimuli-driven visually innate fear on reward-associated conditioned response and reversal learning in mice with low or high motivation for sucrose. The mice with low motivation exposed to looming stimuli displayed reduced efficiency in the test of conditional response in the fixed ratio 1 schedule and impaired executive motivation as tested in the progressive ratio schedule of reinforcement. However, the high motivated mice exposed to looming stimuli showed an unaffected conditional response but an increased executive motivation. In the reversal learning program, looming stimuli at the middle stage caused deficits in cognitive flexibility in the mice with low and high motivation. Therefore, these results illuminate the impact of visually evoked innate fear on conditional response and reversal learning and further show that the impacts are relevant to internal motivation and external fear stimuli.
Assuntos
Reversão de Aprendizagem , Recompensa , Animais , Medo , Camundongos , Camundongos Endogâmicos C57BL , Motivação , Reversão de Aprendizagem/fisiologiaRESUMO
Although graphene exhibited excellent performance, its capability of electrochemical catalytic oxidation would significantly improve by modification via sulfur (S)-doping. However, due to the complicated doping species of heteroatoms, the detailed mechanism was still remained open for discussion. Thus, this first-attempt study tended to decipher such mechanism behind the direct and indirect oxidation by analyzing S species in S-graphene. The density functional theory (DFT) was adopted for reactive center calculation and confirmation of secondary active species, to discuss the degradation pathway. As the experimental and calculation results, the thiophene structure S was more favorable for electron acceptation in direct oxidation. Chloride reactive species, as the most effective secondary functionalities (rather than â¢OH), were favorably generated on the edge doped S position than thiophene structured S in defects, to further trigger the indirect oxidation. However, the extensive contents of reactive functionalities could act as trap for self-annihilation of chloride reactive species, resulting in poor electrocatalytic degradation of the pollutants. This study deepened the understanding of heteroatoms doping for electrochemical catalytic oxidation.
Assuntos
Grafite/química , Acetaminofen , Catálise , Oxirredução , EnxofreRESUMO
A palladium catalyzed selective C(sp3)-H arylation and acetoxylation of alcohols using a practical bidentate auxiliary were developed. Masked alcohols were selectively arylated at the ß-position with diverse aryl iodides for the first time. Moreover, an efficient and site-selective acetoxylation of various primary methyl, methylene, and benzylic C(sp3)-H bonds was performed by using cheap K2S2O8 as the external oxidant.
RESUMO
A novel palladium catalyzed highly para-selective C-H difluoromethylation of electron-deficient aromatic carbonyls was developed. Diverse substituted aromatic ketones and benzoates were selectively difluoromethylated at the remote para-site of carbonyl groups in moderate to good yields. Moreover, the difuoromethylation was also compatible with several complex bioactive molecules.
RESUMO
To explore the optimal hose length of micro-sprinkling hose irrigation in wheat fields, a field trial taking JiMai 22 as test material was carried out in two growing seasons (2015-2016 and 2016-2017). Three lengths of micro-sprinkling hoses with 80-mm width were used, including 60 m (T1), 80 m (T2) and 100 m (T3). The length of trial plot was equal to the hose length. The trial plots were divided to different sample sections every 20-m length along the irrigation direction, which were named as A, B, C, D and E sections, respectively, to examine the effects of micro-sprinkling hose irrigations with different hose lengths on soil water distribution, dry matter accumulation and grain yield of wheat fields. The results showed that: 1) After irrigation at the jointing and anthesis stages in the two growing seasons, the relative soil water content in the 0-40 cm soil layer showed T1
Assuntos
Irrigação Agrícola/métodos , Triticum/crescimento & desenvolvimento , Biomassa , Grão Comestível , Solo , ÁguaRESUMO
OBJECTIVE: To investigate the clinical applied anatomy in the region of anterior clinoid process, and to improve the therapeutic efficacy of clinoidal tumors. METHODS: Twelve patients with large meningiomas located in clinoid were surgically treated via the extended anterior and middle fossa combined with epidural approach between January 1998 and August 2004. The surgical outcome and follow-up results were reviewed retrospectively. Supraorbital-posterional approach and cranioorbital zygomatic approach were used when tumors involved cavernous sinus. Anterior clinoid process was grinded with high-speed drilling. Supply of tumors were blocked extradurally. Tumors were resected intradurally. RESULTS: Of the 12 cases in large meningiomas located in clinoid, 8 cases had total removal of tumors, 3 patients had subtotal removal. Of the 10 patients with pre-operative severe visual deterioration, 6 patients was markedly improved, one patient unchanged and one patient worsened post-operatively. No death was found in this group. CONCLUSIONS: Using epidural approach for clinoidal meningiomas and grinding anterior clinoid process was advantageous to block tumors base blood supply and detach infraclinoidal tumors from internal carotid artery. Supraorbital-pterional approach could minimize brain retraction and was advantageous to expose superior pole of giant tumors.