Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Senses ; 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32010937

RESUMO

Neuropeptide S (NPS) is an endogenous peptide recently recognized to be presented in the brainstem, and believed to play an important role in maintaining memory. The deletion of NPS or NPS receptor (NPSR) in mice shows a deficit in memory formation. Our recent studies have demonstrated that central administration of NPS facilitates olfactory function and ameliorates olfactory spatial memory impairment induced by muscarinic cholinergic receptor antagonist and N-methyl-D-aspartate receptor antagonist. However, it remains to be determined if endogenous NPS is an indispensable neuromodulator in the control of the olfactory spatial memory. In this study, we examined the effects of NPSR peptidergic antagonist [D-Val5]NPS (10 and 20 nmol, i.c.v.) and nonpeptidergic antagonist SHA 68 (10 and 50 mg/kg, i.p.) on the olfactory spatial memory using computer-assisted 4-hole-board olfactory spatial memory test in mice. Furthermore, immunofluorescence was employed to identify the distributions of c-Fos and NPSR immunoreactive (-ir) neurons in olfactory system and hippocampal formation known to closely relate to the olfactory spatial memory. [D-Val5]NPS dosing at 20 nmol and SHA 68 dosing at 50 mg/kg significantly decreased the number of visits to the two odorants interchanged spatially, switched odorants, in recall trial, and simultaneously reduced the percentage of Fos-ir in NPSR-ir neurons which were densely distributed in the anterior olfactory nucleus (AON), piriform cortex (Pir), subiculum (S), presubiculum (PrS) and parasubiculum (PaS). These findings suggest that endogenous NPS is a key neuromodulator in olfactory spatial memory.

2.
Curr Microbiol ; 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912220

RESUMO

A novel virulent phage, vB_KpnP_IME337, isolated from a hospital sewage in Beijing, China, that infects carbapenem-resistant Klebsiella pneumoniae KN2 capsular type was identified and characterized. Next-generation sequencing and genome analysis revealed that vB_KpnP_IME337 had a linear double-stranded genome with a length of 44,266 base pairs and G+C content of 53.7%. Fifty-two putative open reading frames were identified, and no transfer RNA-encoding genes were detected. BLASTn analysis revealed that phage vB_KpnP_IME337 had the highest sequence similarity with Klebsiella phage phiBO1E, with genome coverage of 79%. Based on morphology, phage vB_KpnP_IME337 was determined to belong to the family Podoviridae of the order Caudovirales. It was shown that phage vB_KpnP_IME337 had an infection duration of ~ 90 min and 10 min latent period, and a highly specific to host strain. In conclusion, phage vB_KpnP_IME337 may be a promising alternative candidate to antibiotic treatment for controlling diseases caused by drug-resistant K. pneumoniae.

3.
Dalton Trans ; 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31998903

RESUMO

Oxygen vacancies are recognized as the most prevalent defects in oxide materials. The effect of oxygen vacancies on the physicochemical properties of metal oxide semiconductors has attracted considerable attention in the photocatalysis field. But so far, the impact of oxygen vacancies on charge carrier transfer for photoelectrochemical water splitting has been unclear. In this work, TiO2 photoanodes with various oxygen vacancy concentrations were studied as metal oxide models to clarify the impact of oxygen vacancies on charge carrier transfer behaviors. The potential distribution and electrochemical impedance spectroscopy results indicate that the oxygen vacancies facilitate charge carrier diffusion in TiO2, but are disadvantageous for the charge carrier drift in the TiO2/electrolyte interface. The TiO2-400 photoanode with intermediate oxygen vacancy concentration exhibits the highest photocurrent density. It is expected that this work will provide reference to design and fabricate oxide semiconductors as photoanodes for higher charge carrier utilization in the field of solar-to-chemical energy conversion.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31993902

RESUMO

Siderite is a naturally occurring mineral that can be found extensively in coal. The structural evolution of siderite in the process of coaling and its performance in the transformation of NO in the presence of NH3 were investigated in this work. In addition, the effects of the coexisting component, including vapor, SO2, and the alkali metal K, were also discussed. Heat treatment was performed at 450, 500, 550, 600, and 700 °C to obtain siderite-derived α-Fe2O3, which was then evaluated in de-NOx via the selective catalytic reduction (SCR) of NO with NH3 in a fixed bed. The X-ray diffraction (XRD), the X-ray fluorescence spectrometer (XRF), N2 adsorption-desorption (BET), the X-ray photoelectron spectrometer (XPS), the scanning electron microscope (SEM), and the transmission electron microscope (TEM) were used to investigate the variations in the morphology and structure of the thermally treated siderite. The results showed that siderite was gradually oxidized and decomposed into α-Fe2O3 with a nanoporous structure and large surface area of 27.27 m2 g-1 after calcination under an air atmosphere. The α-Fe2O3 derived from siderite at 500 °C (H500) exhibited an excellent SCR performance, where the NO conversion rate was great than 90% between 250 and 300 °C due to the pore structure and high specific surface area, additional adsorbed oxygen states, abundant oligomeric Fe oxide clusters, and large amount of acid sites. Regardless of the vapor content, SO2 concentration, and reaction temperature, the α-Fe2O3 derived from siderite at 500 °C (H500) still favored the conversion of NO. When the reaction temperature was lower than 350 °C, H500 favored the conversion of NO even in the presence of an alkali metal (K). The experimental data demonstrated the positive effect of siderite-derived α-Fe2O3 in SCR technology and provided insight into NO behavior in coaling flue gas after NH3 injection.

5.
Sci Total Environ ; 712: 136480, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931206

RESUMO

Overexposure to manganese (Mn) can result in neurotoxicity and is associated with manganism, a Parkinson's-like neurological disorder. In addition, Mn can induce endoplasmic reticulum (ER) stress and autophagy. In this study, we used C57BL/6 mice to establish a model of manganism and found that Mn could induce cell injury. Our results also showed that Mn could initiate the unfolded protein response (UPR) signaling and autophagy, via initiation of the UPR signaling occurring earlier than autophagy. We further investigated the intrinsic relationship between the endoplasmic reticulum to nucleus 1(ERN1, also known as inositol requiring enzyme 1, IRE1) signaling pathway and autophagy induction in SH-SY5Y cells exposed to Mn. Our results revealed that autophagy activation was a protective response in Mn-induced toxicity. Additionally, we found that Jun N-terminal kinase (JNK) inhibition downregulated autophagy and interaction of c-Jun with the Beclin1 promoter. In addition, knockdown of IRE1 with the LV-IRE1 shRNA suppressed the expression of IRE1, TRAF2, p-ASK1, and p-JNK in Mn-treated SH-SY5Y cells. Furthermore, the expression of proteins associated with ASK1-TRAF2 complex formation and autophagy activation were reversed by the LV-IRE1 shRNA. These findings suggest that IRE1 was involved in the activation of JNK through the formation of the ASK1-TRAF2 complex, and JNK activation led to the induction of autophagy, which required Beclin1 transcription by c-Jun. In this study, we demonstrated that the IRE1 signaling pathway mediated the activation of JNK signaling via the formation of the ASK1-TRAF2 complex which could initiate autophagy and the protein c-Jun which regulates Beclin1 transcription in Mn-induced neurotoxicity.

6.
Biosci Rep ; 40(2)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31985779

RESUMO

Bone loss caused by inflammatory disease, such as peri-implantitis, poses a great challenge to clinicians for restoration. Emerging evidence indicates that microRNAs (miRNAs) are indispensable regulators of bone growth, development, and formation. In the present study, we found that microRNA-128 (miR-128) was differentially up-regulated during the osteogenic differentiation of rat bone marrow stem cells (rBMSCs). Overexpression of miR-128 promoted osteogenic differentiation of rBMSCs by up-regulating alkaline phosphatase (ALP), matrix mineralization, mRNA, and protein levels of osteogenic makers (e.g. RUNX2, BMP-2, and COLIA1), whereas inhibition of miR-128 suppressed osteoblastic differentiation in vitro. Mechanistically, miR-128 directly and functionally targeted Dickkopf2 (DKK2), which is a Wnt signaling pathway antagonist, and enhanced Wnt/ß-catenin signaling activity. Furthermore, the positive effect of miR-128 on osteogenic differentiation was apparently abrogated by DKK2 overexpression. Collectively, these results indicate that miR-128 promotes osteogenic differentiation of rBMSCs by targeting DKK2, which may provide a promising approach to the treatment of peri-implantitis.

7.
Arch Toxicol ; 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894355

RESUMO

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is a phosphorus-based flame retardant common in consumer goods and baby products. Concerns have been raised about TDCPP exposure and neurodevelopmental toxicity. However, the mechanism and early response for TDCPP-induced neurotoxicity are poorly understood. This study investigates the role of microglia-mediated neuroinflammation in TDCPP-induced neurotoxicity in mice and primary cells. TDCPP was administered to C57BL/6 pups (0, 5, or 50 mg/kg/day) via an oral gavage from postnatal days 10-38 (28 days). The results showed that TDCPP exposure for 28 days altered the gene expression of neuronal markers Tubb3, Nefh, and Nes, and led to apoptosis in the hippocampus. The mRNA levels of pro-inflammatory factors Il-1ß, Tnfα and Ccl2 dose dependently increased in the hippocampus at both 24 h and 28 days following exposure, accompanied by microglia activation characterized by an amoeboid-like phenotype. In in vitro studies using the primary microglia isolated from neonatal mice, exposure to TDCPP (0-100 µM) for 24 h resulted in cellular activation. It also increased the expression of genes responsible for inflammatory responses including surface markers and pro-inflammatory cytokines. These changes occurred in a dose-dependent fashion. Neurite outgrowth of primary mouse hippocampal neurons was inhibited by treatment with the conditioned medium harvested from microglia exposed to TDCPP. These results reveal that neonatal exposure to TDCPP induces neuronal damage through microglia-mediated inflammation. This provides insight into the mechanism of TDCPP's neurodevelopmental toxicity, and suggests that microglial cell is a sensitive responder for OPFRs exposure.

8.
Chemosphere ; 242: 125251, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896185

RESUMO

A novel nano-composite material (CMC-FeS@HA) combining the advantages of humic acid (HA) and FeS was synthesized to remediate hexavalent chromium (Cr(VI)) contaminated soil along with chromium (Cr) resistant microflora. The characteristic analysis confirmed the successful synthesis of the nano-composite, which provided further mechanism evidence of its detoxification effect on polluted soil. Energy Dispersive System analysis proved the adsorption of the microbe consortium (MC) for Cr. After remediation, Cr(VI) in all treatments was dramatically reduced and the leachable Cr in soil treated by CMC-FeS@HA and MC decreased 89.14% compared with control. The result of BCR sequential extraction showed that Cr was stabilized, whose form changed to oxidizable and residual from HOAC-extractable. Besides, CMC-FeS@HA, as a sustained-release acid with high biocompatibility, could continuously decrease the pH of strongly alkaline soil and created a suitable micro-ecological environment for soil microorganisms. Moreover, CMC-FeS@HA dramatically improved soil physicochemical property, soil microbial activity (dehydrogenase, hydrolase, urease, and invertase activities), and soil microecological diversity. In total, this study provided a useful technology for soil remediation, which innovatively combined chemical remediation and microbial-remediation with a positive effect on soil quality, providing a good approach for the multiple technology combination in the environmental cause.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31825591

RESUMO

Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.

10.
Life Sci ; 241: 117119, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794771

RESUMO

AIM: Mechanoelectric feedback (MEF) was related to malignant arrhythmias in heart failure (HF). Desmin is a cytoskeleton protein and could be involved in MEF as a mechanoelectrical transducer. In this study, we will discuss the role of desmin alterations in mechanical electrical feedback in heart failure and its mechanisms. METHODS: We used both an in vivo rat model and an in vitro cardiomyocyte model to address this issue. For the in vivo experiments, we establish a sham group, an HF group, streptomycin (SM) group, and an MDL-28170 group. The occurrence of ventricular arrhythmias (VA) was recorded in each group. For the in vitro cardiomyocyte model, we established an NC group, a si-desmin group, and a si-desmin + NBD IKK group. The expression of desmin, IKKß, p-IKKß, IKBα, p-NF-κB, and SERCA2 were detected in both in vivo and in vitro experiments. The content of Ca2+ in cytoplasm and sarcoplasmic were detected by confocal imaging in vitro experiments. RESULTS: An increased number of VAs were found in the HF group. SM and MDL-28170 can reduce desmin breakdown and the number of VAs in heart failure. The knockdown of desmin in the cardiomyocyte can activate the NF-κB pathway, decrease the level of SERCA2, and result in abnormal distribution of Ca2+. While treatment with NF-κB inhibitor can elevate the level of SERCA2 and alleviate the abnormal distribution of Ca2+. SIGNIFICANCE: Overall, desmin may participate in MEF through the NF-κB pathway. This study provides a potential therapeutic target for VA in HF.

11.
Sci Total Environ ; 703: 135604, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31771849

RESUMO

Novel iron/carbon composites were successfully prepared via coupling of cellulose with iron oxides (e.g. α-FeOOH, Fe2O3 and Fe(NO3)3·9H2O) at different temperatures under nitrogen atmosphere. Characterization by various techniques implied that chemical interaction between cellulose and Fe3O4/Fe0 existed in the as-prepared iron/carbon composites. The site of interaction between cellulose and iron precursors was illustrated (mainly combined with COO-). The self-reduction of Fe3+ to Fe2+ or even Fe0 and the interaction between carbon and Fe3O4/Fe0 in the calcination process realized the strong magnetism of the composites. Batch experiments and spectroscopic techniques indicated that the maximum adsorption capacity of MHC-7 for U(VI) (105.3 mg/g) was significantly higher than that of MGC-7 (86.0 mg/g) and MFC-7 (79.0 mg/g), indicating that Fe2O3 can be regarded as the remarkable iron resource for the iron/carbon composites. XPS results revealed that the oxygen-containing groups were responsible for the adsorption process of U(VI) on iron/carbon composites, and the adsorption of carbon and reduction of Fe0/Fe3O4 toward U(VI) were synergistic during the reaction process. In addition, the iron/carbon composites exhibited a good recyclability, recoverability and stability for U(VI) adsorption in the regeneration experiments. These findings demonstrated that the iron/carbon composites can be considered as valuable adsorbents in environmental cleanup and the Fe2O3 was a promising iron resource for the preparation of iron/carbon composites.

12.
Environ Pollut ; 257: 113558, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31708284

RESUMO

A soil heavy metal decontamination system was developed based on the immobilization of bioavailable metal fraction by iron-biochar nano-complex (BC@Fe3O4) and the uptake by Chromium (Cr) hyperaccumulator Leersia hexandra (L. hexandra) under the assistance of metal resistant microbe consortium (MC). In this system, L. hexandra was able to accumulate 485.1-785.0 mg kg-1 in root and 147.5-297.2 mg kg-1 of Cr in its aerial part. With MC assistance, more Cr could be translocated to the aerial part of L. hexandra, which dramatically improved its remediation potential. Meanwhile, BC@Fe3O4 application decreased bioavailable Cr in soil and reduced soil toxicity, which contributed to soil microbial community adaption and L. hexandra performance under high level of Cr concentration (elevated microbial activity, decreased plant stress response, enhanced L. hexandra growth and accumulation) without negative influence on accumulation efficiency. Moreover, details of the possible mechanistic insight into metal removal were discussed, which indicated a negative correlation of the extractable Cr with soil microecology and hyperaccumulator performance. Furthermore, the resistant bacteria successfully altered soil microbial community, enhanced its diversity, which was in favor of the soil quality improvement.

13.
J Hazard Mater ; 386: 121628, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744729

RESUMO

This study reported an efficient novel chromium reducing bacteria (Bacillus sp. CRB-B1) and investigated its removal mechanism. Bacillus sp. CRB-B1 could effectively reduce high level Cr(VI), under a wide range of shaking velocity (125-200 rpm), temperature (33-41 °C), pH (6-9). The co-existing ions Cd2+ and NO3- inhibited its Cr(VI) reduction capacity, while Cu2+ enhanced the reduction efficiency. In addition, Bacillus sp. CRB-B1 could reduce Cr(VI) using glucose and fructose as an electron donor. Micro-characterization analysis confirmed the Cr(VI) reduction and adsorption ability of Bacillus sp. CRB-B1. Cells degeneration result indicated that Cr(VI) removal was mainly bioreduction rather than biosorption. The cell-free suspension had a Cr(VI) removal rate of 68.5.%, which was significantly higher than that of cell-free extracts and cell debris, indicating Cr(VI) reduction mainly occurs extracellularly, and possibly mediated by extracellular reductase. The reduced Cr was mainly distributed in the extracellular suspension, and a small amount was accumulated in the cells. In conclusion, Bacillus sp. CRB-B1 was a highly efficient Cr(VI) reducing bacteria, which has potential in the remediation of Cr(VI)-containing water and soil.

14.
J Cell Mol Med ; 24(1): 328-341, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31639278

RESUMO

Overexposure to manganese (Mn) is neurotoxic. Our previous research has demonstrated that the interaction of endoplasmic reticulum (ER) stress and autophagy participates in the early stage of Mn-mediated neurotoxicity in mouse. However, the mechanisms of ER stress signalling pathways in the initiation of autophagy remain confused. In the current study, we first validated that ER stress-mediated cell apoptosis is accompanied by autophagy in SH-SY5Y cells. Then, we found that inhibiting ER stress with 4-phenylbutyrate (4-PBA) decreased ER stress-related protein expression and reduced cell apoptosis, whereas blocking autophagy with 3-methyladenine (3-MA) increased cell apoptosis. These data indicate that protective autophagy was activated to alleviate ER stress-mediated apoptosis. Knockdown of the protein kinase RNA-like ER kinase (PERK) gene inhibited Mn-induced autophagy and weakened the interaction between ATF4 and the LC3 promoter. Our results reveal a novel molecular mechanism in which ER stress may regulate autophagy via the PERK/eIF2α/ATF4 signalling pathway. Additionally, Mn may activate protective autophagy to alleviate ER stress-mediated apoptosis via the PERK/eIF2α/ATF4 signalling pathway in SH-SY5Y cells.

15.
Appl Biochem Biotechnol ; 190(2): 423-436, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31376051

RESUMO

Lignocellulosic hydrolysate contains complex nonsugar compounds and undegraded sugars in the process of preparing platform compound levulinic acid (LA) and furfural by one-step dilute-acid hydrolysis. For efficiently and comprehensively utilizing the hydrolysate, a series of polar modified resins were synthesized for adsorption and separation of the sugarcane bagasse hydrolysate to obtain platform compounds and fermentable hydrolysate simultaneously. The adsorption capacities of LA and furfural were optimized to 85.32 mg/g and 33.55 mg/g on polar modified resin prepared with 80 wt% glycidyl methacrylate (GMA -80), which was much higher than nonpolar resin (4.16 mg/g and 16.14 mg/g). GMA-80 obtained the best comprehensive adsorption property, whose desorption rates were 99.90% and 89.86% for LA and furfural, respectively, and its regeneration performance was also excellent, indicating that the resin is a potential adsorbent and expected to be used in the separation and purification of the lignocellulosic hydrolysate.

16.
Pediatr Nephrol ; 35(3): 441-446, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31811538

RESUMO

BACKGROUND: The prevalence of hyperuricemia is increasing in adults, while the prevalence among adolescents is seldom reported. METHODS: A cross-sectional survey by multistage, stratified sampling method was carried out in Shandong Province during 2017-2018. A total of 9371 adolescents aged from 13 to 19 years were randomly sampled and analyzed in this survey. RESULTS: The overall mean serum uric acid (sUA) concentration was 6.08 ± 1.57 mg/dL and overall hyperuricemia prevalence was 25.4% and 60.5% (when hyperuricemia was defined as sUA ≥ 7 mg/dL or ≥ 5.5 mg/dL). Prevalence were 42.3% (male) and 8.0% (female) when limit was 7 mg/dL and prevalence were 82.1% (male) and 38.4% (female) when limit was 5.5 mg/dL. Male gender, increased body mass index, increased waist circumstance, increased triglycerides, increased fasting blood glucose, increased systolic blood pressure, decreased estimated glomerular filtration rate, and positive family gout history were associated with the enhanced risk of hyperuricemia according to univariate and/or multivariate logistic regression analysis. Food intake frequency of carbonate beverage, mutton, and other kinds varied between hyperuricemia adolescents and normal sUA ones. CONCLUSIONS: The studied adolescent population showed sUA level and hyperuricemia prevalence which are even higher than those of adults in China. The epidemic of youth hyperuricemia may pose a future threat of gout attacks and other hyperuricemia-related diseases, which alarms the public, health professionals and health policy makers to prepare the future health challenges.

17.
Bioresour Technol ; 299: 122625, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31881437

RESUMO

The production of high-purity xylobiose from lignocellulose is an expensive and tedious process. In this work, the production of xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse was investigated. Furthermore, a simple process for the separation of xylobiose from enzymatic hydrolysate by activated carbon absorption, water washing, and ethanol-water desorption was developed. Under the optimized separation conditions, 96.77% xylobiose was adsorbed at 16% activated carbon loadings. Moreover, xylose and acetate could not be detected after washing by 3-fold volume of water. Xylobiose with 80.16% yield was eluted by 5-fold volume of 5% (v/v) ethanol-water. The reusability of activated carbon was evaluated by 5 cycles of adsorption-desorption process, suggesting that the activated carbon exhibited good reusability. The separated xylobiose sample with high-purity (97.29%) was confirmed by HPLC, ESI-MS, and NMR. Overall, this study provided a low-cost and robust technology for the production and separation of high-purity xylobiose from lignocellulose.


Assuntos
Saccharum , Celulose , Dissacarídeos , Hidrólise
18.
ACS Appl Mater Interfaces ; 12(3): 3354-3362, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31872756

RESUMO

The overprescription and improper use of antibiotics have contributed to the evolution of bacterial resistance, making it urgent to develop alternative therapies and agents with better efficacy as well as less toxicity to combat bacterial infections and keep new resistance from developing. In this work, a novel light-activable nano-antibiotic platform (TC-PCM@GNC-PND) was constructed by the incorporation of gold nanocages (GNC) and two thermosensitive gatekeepers, phase-change materials (PCM) and thermosensitive polymer poly(N-isopropylacrylamide-co-diethylaminoethyl methacrylate) (PND), to realize precisely the synergy of photothermal and antimicrobial drugs. GNC exhibits an excellent photothermal effect owing to its strong absorbance in the near-infrared (NIR) region, and hollow interiors make it a favorable vehicle for loading various antibiotics such as tetracycline (TC). The release of the encapsulated drugs could be precisely controlled by NIR light through the dual thermosensitive interaction of liquid-solid transition of PCM and coil-granule transition of PND, improving efficacy and alleviating side effects with on-demand drug release. The thermosensitive hydrogel was formed in situ upon application with body temperature, enhancing retention of the antimicrobial agent in local infectious sites. Highly effective ablation of bacteria is achieved both in vitro and in periodontitis models with little toxicity owing to the synergy of photothermal effects and chemotherapeutic drug release induced by NIR. This study could provide guidance for the design of antibacterial materials and shed substantial light on synergistic treatment.

19.
Gene ; 729: 144317, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884107

RESUMO

BACKGROUND: Long non-coding RNA H19 polymorphisms were reported to be related to cancer susceptibility. However, the results from individual studies have been controversial or inconsistent. To clarify the associations between H19 single nucleotide polymorphisms (rs2107425, rs217727, rs2735971, rs2839698, rs3024270, and rs3741219) and the cancer susceptibility more accurately. METHODS: Relevant publications were searched from PubMed and EMBASE up to May 31, 2019, for studies in English only. The reference lists of the retrieved studies were also investigated. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated to find out the relationship between the H19 polymorphisms and cancer susceptibility. All of the data were analyzed using Stata 12.0. RESULTS: The results showed that rs2107425 polymorphisms was associated with an increasing cancer susceptibility in Asian (T vs C: OR 1.13, 95% CI 1.01-1.28; TT + CT vs CC: OR 1.21, 95% CI 1.03-1.44; CT vs CC: OR 1.21, 95% CI 1.01-1.44) and decreasing risk in Caucasian (T vs C: OR 0.90, 95% CI 0.84-0.97; TT + CT vs CC: OR 0.84, 95% CI 0.75-0.94; CT vs CC: OR 0.82, 95% CI 0.72-0.94). And rs217727 polymorphism was associated with an increasing cancer susceptibility in the Asian (A vs G: OR 1.09, 95% CI 1.02-1.17; AA + GA vs GG: OR 1.12, 95% CI 1.01-1.21; AA vs GG: OR 1.18, 95% CI 1.02-1.36). Additionally, rs2839698 polymorphism was associated with an increasing risk overall (A vs G: OR 1.18, 95% CI 1.06-1.31), in breast cancer (A vs G: OR 1.67, 95% CI 1.14-2.45; AA + AG vs GG: OR 1.98, 95% CI 1.20-3.25; AG vs GG: OR 1.89, 95% CI 1.16-3.07), in Asian (A vs G: OR 1.09, 95% CI 1.03-1.14; AA + AG vs GG: OR 1.11, 95% CI 1.04-1.21; AA vs AG + GG: OR 1.12, 95% CI 1.01-1.25; AA vs GG: OR 1.15, 95% CI 1.01-1.49; AG vs GG: OR 1.09, 95% CI 1.02-1.17), and in Caucasian (AA vs AG + GG: OR 1.81, 95% CI 1.25-2.61). CONCLUSION: H19 rs2107425, rs217727 and rs2839698 were associated with an increasing cancer susceptibility in Asian. Rs2107425 was associated with a decreasing risk and rs2839698 was associated with an increasing risk in Caucasian. No significant association was found in H19 rs2735971, rs3024270 and rs3741219 polymorphisms and cancer susceptibility.

20.
Environ Toxicol ; 35(1): 55-65, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31497924

RESUMO

Overexposure to manganese (Mn) is widely known to induce alpha-synuclein (α-Syn) oligomerization, which has been attributed to the oxidative damage of α-Syn protein. Trehalose has been shown to induce autophagy and serve as a chemical chaperone, but little information has been reported about its effect on Mn-induced α-Syn oligomerization. In this study, we investigate whether trehalose can effectively interfere with Mn-induced α-Syn oligomerization, using different concentrations of trehalose (2% and 4% (g/vol [mL])) in a mouse model of manganism. After 6 weeks of exposure to Mn, both oxidative stress and autophagy were activated and resulted in α-Syn oligomerization and neuronal cell damage in the mouse brain tissue. Our results also revealed that pretreatment with trehalose significantly reduced the oxidative damage to α-Syn protein and increased autophagy activation. These findings clearly demonstrated that trehalose can relieve Mn-induced α-Syn oligomerization and neuronal cell damage through its anti-oxidative and autophagy-inducing effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA