Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.876
Filtrar
1.
J Environ Manage ; 331: 117266, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36682275

RESUMO

Green credit is an important financial policy tool to solve environmental pollution problems. Improving industrial green total factor productivity (IGTFP) is the key to promote industrial green development. Our study adopts provincial data from 2005 to 2020 to investigate the influence of green credit (GC) on IGTFP. We find that GC significantly improves IGTFP on the whole, industrial structure upgrading and green innovation are the two key impact paths. Threshold model tests show that with the increase of GC, human capital and R&D intensity, the promoting effects of GC on IGTFP are significantly enhanced. Heterogeneity tests indicate that the promoting effect of GC on IGTFP was further enhanced after 2016, GC significantly promotes IGTFP in eastern China, but it is not obvious in central and western China. Besides, the promoting effect of GC on IGTFP is significantly enhanced with the increase of IGTFP. Our research shows that the government should further optimize the green credit system and play the role of green credit in promoting green innovation and industrial structure upgrading.

2.
Nat Microbiol ; 8(1): 162-173, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36604510

RESUMO

The increasing prevalence and expanding distribution of tick-borne viruses globally have raised health concerns, but the full repertoire of the tick virome has not been assessed. We sequenced the meta-transcriptomes of 31 different tick species in the Ixodidae and Argasidae families from across mainland China, and identified 724 RNA viruses with distinctive virome compositions among genera. A total of 1,801 assembled and complete or nearly complete viral genomes revealed an extensive diversity of genome architectures of tick-associated viruses, highlighting ticks as a reservoir of RNA viruses. We examined the phylogenies of different virus families to investigate virome evolution and found that the most diverse tick-associated viruses are positive-strand RNA virus families that demonstrate more ancient divergence than other arboviruses. Tick-specific viruses are often associated with only a few tick species, whereas virus clades that can infect vertebrates are found in a wider range of tick species. We hypothesize that tick viruses can exhibit both 'specialist' and 'generalist' evolutionary trends. We hope that our virome dataset will enable much-needed research on vertebrate-pathogenic tick-associated viruses.


Assuntos
Vírus de RNA , Carrapatos , Vírus , Animais , Vírus de RNA/genética , Genoma Viral/genética , RNA
3.
J Chem Phys ; 158(1): 014301, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610966

RESUMO

Structural characterization of neutral water clusters is crucial to understanding the structures and properties of water, but it has been proven to be a challenging experimental target due to the difficulty in size selection. Here, we report the size-specific infrared spectra of confinement-free neutral water nonamer (H2O)9 based on threshold photoionization, using a tunable vacuum ultraviolet free-electron laser. Distinct OH stretch vibrational fundamentals in the 3200-3350 cm-1 region are observed, providing unique spectral signatures for the formation of an unprecedented (H2O)9 structure evolved by adding a ninth water molecule onto a hydrogen bond-unbroken edge of the (H2O)8 octamer with D2d symmetry. This nonamer structure coexists with the five previously identified structures that can be viewed as derived by inserting a ninth water molecule into a hydrogen bond-broken edge of the D2d/S4 octamer. These findings provide key microscopic information for systematic understanding of the formation and growth mechanism of dynamical hydrogen-bonding networks that are responsible for the structure and properties of condensed-phase water.

4.
Nanoscale ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651867

RESUMO

Transition metal oxalates (TMOxs, represented by iron oxalate) have attracted considerable interest in anode materials due to their excellent lithium storage properties and consistent cyclic performance. Although investigations into their electrochemical capabilities and lithium storage mechanisms are gradually deepening, the complex and varied electrochemical reactions in the initial cycle, poor inherent conductivity, and high irreversible capacity constrain their further development. Herein, to solve the above-mentioned problems, we controlled the hydrothermal synthesis conditions of iron oxalate with the assistance of organic solvents, which induced the growth of iron oxalate crystals with nano Ge metal as the core. The metal Ge space sites compounded to the stacked iron oxalate particles act as conductive nodes and metal frames, which enhances both the strength of iron oxalate samples and electronic conductivity and lithium-ion diffusion inside the electrode materials. This special structure enhances the electrochemical activity of iron oxalates and improves their lithium storage capability. The iron oxalate @ nano Ge metal composite (FCO@Ge-1) exhibits an excellent cycling performance and an appreciable reversible specific capacity (1090 mA h g-1 after 200 cycles at 1 A g-1). The obvious polarization and variation of the electrochemical reaction in the initial cycle of iron oxalate are reduced by compositing nano Ge metal. It is demonstrated that nano Ge metal can promote reversible capacity retention from 67.72% to 80.69% in the early cycles. The distinctive structure of iron oxalate @ nano Ge metal composite provides a fresh pathway to enhance oxalate electrochemical reversible lithium storage activity and develop high-energy electrode material by constructing composite space conductive sites.

5.
Bioact Mater ; 24: 331-345, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632504

RESUMO

Spinal cord injury (SCI) is an overwhelming and incurable disabling condition, for which increasing forms of multifunctional biomaterials are being tested, but with limited progression. The promising material should be able to fill SCI-induced cavities and direct the growth of new neurons, with effective drug loading to improve the local micro-organism environment and promote neural tissue regeneration. In this study, a double crosslinked biomimetic composite hydrogel comprised of acellularized spinal cord matrix (ASCM) and gelatin-acrylated-ß-cyclodextrin-polyethene glycol diacrylate (designated G-CD-PEGDA) hydrogel, loaded with WAY-316606 to activate canonical Wnt/ß-catenin signaling, and reinforced by a bundle of three-dimensionally printed aligned polycaprolactone (PCL) microfibers, was constructed. The G-CD-PEGDA component endowed the composite hydrogel with a dynamic structure with a self-healing capability which enabled cell migration, while the ASCM component promoted neural cell affinity and proliferation. The diffusion of WAY-316606 could recruit endogenous neural stem cells and improve neuronal differentiation. The aligned PCL microfibers guided neurite elongation in the longitudinal direction. Animal behavior studies further showed that the composite hydrogel could significantly recover the motor function of rats after SCI. This study provides a proficient approach to produce a multifunctional system with desirable physiological, chemical, and topographical cues for treating patients with SCI.

6.
ACS Nano ; 17(1): 801-810, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580686

RESUMO

SnSe single crystals have gained great interest due to their excellent thermoelectric performance. However, polycrystalline SnSe is greatly desired due to facile processing, machinability, and scale-up application. Here, we report an outstanding high average ZT of 0.88 as well as a high peak ZT of 1.92 in solution-processed SnSe nanoplates. Nanosized boundaries formed by nanoplates and lattice strain created by lattice dislocations and stacking faults effectively scatter heat-carrying phonons, resulting in an ultralow lattice thermal conductivity of 0.19 W m-1 K-1 at 873 K. Ultraviolet photoelectron spectroscopy reveals that Ge and In incorporation produces an enhanced density of states in the electronic structure of SnSe, resulting in a large Seebeck coefficient. Ge and In codoping not only optimizes the Seebeck coefficient but also substantially increases the carrier concentration and electrical conductivity, helping to maintain a high power factor over a wide temperature range. Benefiting from an enhanced power factor and markedly reduced lattice thermal conductivity, high average ZT and peak ZT are achieved in Ge- and In-codoped SnSe nanoplates. This work achieves an ultrahigh average ZT of 0.88 in polycrystalline SnSe by adopting nontoxic element doping, potentially expanding its usefulness for various thermoelectric generator applications.

7.
Int Immunopharmacol ; 114: 109562, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508914

RESUMO

CXC chemokine receptor6 (CXCR6)-based immunotherapy plays a significant role in autoimmune diseases, however, little is known about possible small compounds that inhibit pathogenic CXCR6+ T cells for treating multiple sclerosis (MS). Baicalein, a flavonoid isolated from Scutellarin baicalensis (Huang Qin), was shown to exert therapeutic effects on MS, but the underlying mechanisms are largely unknown. In the current study, we found that baicalein inhibited Th1 and Th17 differentiation in vitro. Oral administration of baicalein (25 mg/kg) significantly reduced the disease severity and the infiltration process, decreased the extent of demyelination in EAE, and selectively blocked IL-17A production and specific antibodies (IgG and IgG3) in MOG35-55-induced specific immune responses. In addition, the expression of CD4 cell effectors (CD44hiCD62Llow) and pathogenic Th17 cells was decreased by baicalein treatment. Furthermore, baicalein treatment largely decreased CXCR6+ CD4 and CD8 cells and prominently inhibited CXCR6+ Th17 cells in EAE. Taken together, the findings of this study suggest for the first time that baicalein may ameliorate EAE by suppressing pathogenetic CXCR6+ CD4 cells.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Quimiocinas CXC/metabolismo , Células Th1 , Diferenciação Celular , Imunoglobulina G/uso terapêutico , Células Th17 , Camundongos Endogâmicos C57BL , Receptores CXCR6/metabolismo
8.
Sci Total Environ ; 862: 160760, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513232

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are typical residential pollutants mainly from biofuel combustion that impose inevitable risk to children. The PAHs in residential dust is universal in most Chinese households with an obvious public health concern. METHODS: In this observational study, a total of 235 residential dust samples from 8 Chinese cities (Panjin, Shijiazhuang, Lanzhou, Luoyang, Xi'an, Wuxi, Mianyang, and Shenzhen) were collected from April 2018 to March 2019, which were extracted and analyzed for 16 priority PAHs by HPLC/FD-UV. Diagnostic ratios, hierarchical clustering analysis and principal component analysis were applied simultaneously for source apportionments. Incremental lifetime cancer risk was employed to estimate children's health risks based on the assumed exposure scenarios. Spearman correlation, Mann-Whitney U test, Kruskal-Wallis H test and Partial Least Squares were used to screen the factors affecting the concentration of PAHs in residential dust. RESULTS: The median concentration of ∑16PAHs in residential dust from 8 cities was 44.11 µg/g (0.04 - 355.79 µg/g). ∑16PAHs were found both higher in dust samples in heating season and from downwind households only in Mianyang (p < 0.05). The leading two sources of PAHs were combustion processes and automobile exhaust emissions based on four principal components that accounted for 74.29 % of the total variance. Indoor air environmental factors, household characteristics, and residents' behavioral lifestyles may be the influencing factors of residential dust PAHs. The carcinogenic risk of children aged 0 - 5 years, under the moderate exposure level of PAHs in residential dust, exceeded the acceptable level (10-5 - 10-4 for dermal contact and 10-6 - 10-5 for ingestion). CONCLUSIONS: There was serious PAHs pollution in residential dust under actual living conditions in eight cities across China. More evidence-based measures were needed to control PAHs pollution to safeguard children's health according to appointed sources and influencing factors in residential dust.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Criança , Humanos , Poeira/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Cidades , Saúde da Criança , Medição de Risco , China/epidemiologia , Poluentes Atmosféricos/análise
9.
J Hazard Mater ; 445: 130552, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502718

RESUMO

For broad-spectrum adsorption and capture toward cationic metal ions, a facile strategy was adopted to fabricate defective SO3H-MIL-101(Cr) (SS-SO3H-MIL-101(Cr)-X, X = 2, 3, 4) with enhanced vacancies using seignette salt (SS) as the modulating agent. The boosted adsorption performances of SS-SO3H-MIL-101(Cr)-X toward eight different ions, including Ag+, Cs+, Pb2+, Cd2+, Ba2+, Sr2+, Eu3+ and La3+ in both individual component and mixed component systems, could be ascribed to the effective mass transfer resulting from the exposure of defective sites. Especially, the optimal SS-SO3H-MIL-101(Cr)-3 could remove all the selected metal cations to below the permissible limits required by the World Health Organization (WHO) in the continuous-flow water treatment system. Furthermore, SS-SO3H-MIL-101(Cr)-3 exhibited good adsorption capacity (189.6 mg·g-1) toward Pb2+ under neutral condition and excellent desorption recirculation performance (removal efficiency > 95% after 5 cycles). Moreover, the adsorption mechanism involved the electrostatic adsorption and coordinative interactions resulting from complexation between the adsorption active sites and targeted cations (like Cr-O-M and S-O-M), which were explored systematically via both X-ray photoelectron spectroscopy (XPS) determination and density functional theory (DFT) calculations. Overall, this work provided guidance for modulating SS-SO3H-MIL-101(Cr)-X to promote its potential application in widespread metal cations removal from wastewater.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Chumbo , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Íons , Cátions , Adsorção
10.
J Control Release ; 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473606

RESUMO

Small molecular prodrug-based nanomedicines with high drug-loading efficiency and tumor selectivity have attracted great attention for cancer therapy against solid tumors, including triple negative breast cancers (TNBC). However, abnormal tumor mechanical microenvironment (TMME) severely restricts antitumor efficacy of prodrug nanomedicines by limiting drug delivery and fostering cancer stem cells (CSCs). Herein, we employed carbamate disulfide bridged doxorubicin dimeric prodrug as pharmaceutical ingredient, marketed IR780 iodide as photothermal agent, and biocompatible hydroxyethyl starch-folic acid conjugate as amphiphilic surfactant to prepare a theranostic nanomedicine (FDINs), which could actively target at TNBC 4 T1 tumor tissues and achieve reduction-responsive drug release with high glutathione concentration in cancer cells and CSCs. Importantly, in addition to directly causing damage to cancer cells and sensitizing chemotherapy, FDINs-mediated photothermal effect regulates aberrant TMME via reducing cancer associated fibroblasts and depleting extracellular matrix proteins, thereby normalizing intratumor vessel structure and function to facilitate drug and oxygen delivery. Furthermore, FDINs potently eliminate CSCs by disrupting unique CSCs niche and consuming intracellular GSH in CSCs. As a result, FDINs significantly suppress tumor growth in both subcutaneous and orthotopic 4 T1 tumors. This study provides novel insights on rational design of prodrug nanomedicines for superior therapeutic effect against stroma- and CSCs-rich solid malignancies.

11.
Biomater Sci ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468355

RESUMO

The application of photodynamic therapy (PDT) is limited by tumor hypoxia. To overcome hypoxia, catalase-like nanozymes are often used to catalyze endogenous H2O2 enriched in tumor tissues to O2. Nonetheless, the catalase activity may not be optimal at body temperature and the O2 supply may not meet the rapid O2 consumption of PDT. Herein, we provide a two-pronged strategy to alleviate tumor hypoxia based on hollow mesoporous Prussian blue nanoparticles (HMPB NPs). HMPB NPs can efficiently load the photosensitizer chlorin e6 (Ce6) and exhibit photothermal capability and temperature-dependent catalase activity. Under 808 nm laser irradiation, the photothermal effect of HMPB NPs elevated the catalase activity of HMPB NPs for O2 production. Furthermore, mild hyperthermia reduced cancer associated fibroblasts (CAFs) and induced extracellular matrix (ECM) degradation. The reduction of CAFs and the ECM decreased the solid stress of tumor tissues and normalized the tumor vasculature, which was beneficial for the external supplementation of O2 to tumors. Thereafter, under 606 nm laser irradiation, Ce6-mediated PDT generated excessive reactive oxygen species (ROS) that induced tumor cell apoptosis and achieved a high tumor inhibition rate of 92.2% in 4T1 breast tumors. Our work indicated that the alleviation of tumor hypoxia from both internal and external pathways significantly enhanced Ce6-mediated PDT against breast cancers.

12.
ACS Nano ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469037

RESUMO

The use of nanomaterials and nanotechnology to construct a smart pesticide delivery system with target-oriented and controlled-release functions is important to increase the effective utilization rate and minimize environmental residue pollution. A temperature-dependent delivery system can modulate the release of pesticide with temperature to improve the efficacy and precision targeting. A series of poly(N-isopropylacrylamide) (PNIPAM)-based nanogels with high deformability and tunable structure were successfully constructed for smart pesticide delivery and effective pest control. A lambda-cyhalothrin (LC)-loaded Pickering emulsion (LC@TNPE) with a stable gel-like network structure was further formed by the temperature-dependent nanogel to encapsule the pesticide. The foliar wettability, photostability, and controlled-release property of LC@TNPE were effectively enhanced compared to the commercial formulation because of the encapsulation and stabilization of nanogel. The release rate of LC positively correlated with temperature changes and thereby adapted to the trend of pest population increase at higher temperature. The LC@TNPE displayed improved control efficacy on multiple target pests including Plutella xylostella, Aphis gossypii, and Pieris rapae compared with the commercial suspension concentrate and microcapsule suspension, and it showed marked efficacy to control Pieris rapae for an extended duration even at a 40% reduced dosage. Furthermore, the safety was evaluated systematically on cells in vitro and with a nontarget organism. Studies confirmed that the system was relatively safe for HepG2 cells and aquatic organism zebrafish. This research provides an insight into creating an efficient and environmentally friendly pesticide nanoformulation for sustainable agriculture production.

13.
J Med Virol ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453088

RESUMO

We probed the lifecycle of EBV on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCL). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350 - LMP1 hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350 + LMP1 hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350 + LMP1 hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV associated heterogeneity among LCLs that may have functional consequence on host and viral biology. This article is protected by copyright. All rights reserved.

14.
Chem Commun (Camb) ; 58(98): 13660, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36453148

RESUMO

Correction for 'DLP printing of a flexible micropattern Si/PEDOT:PSS/PEG electrode for lithium-ion batteries' by Xinliang Ye et al., Chem. Commun., 2022, 58, 7642-7645, https://doi.org/10.1039/D2CC01626E.

15.
mBio ; : e0237022, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36507835

RESUMO

Herpes simplex virus 1 (HSV-1) is a DNA virus belonging to the family Herpesviridae. HSV-1 infection causes severe neurological disease in the central nervous system (CNS), including encephalitis. Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. Here, we demonstrate that HSV-1 induces ferroptosis, as hallmarks of ferroptosis, including Fe2+ overload, reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, lipid peroxidation, and mitochondrion shrinkage, are observed in HSV-1-infected cultured human astrocytes, microglia cells, and murine brains. Moreover, HSV-1 infection enhances the E3 ubiquitin ligase Keap1 (Kelch-like ECH-related protein 1)-mediated ubiquitination and degradation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates the expression of antioxidative genes, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of prostaglandin-endoperoxide synthase 2 (PTGS2) and prostaglandin E2 (PGE2) plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by a ferroptosis inhibitor or a proteasome inhibitor to suppress Nrf2 degradation effectively alleviated HSV-1 encephalitis. Together, our findings demonstrate the interaction between HSV-1 infection and ferroptosis and provide novel insights into the pathogenesis of HSV-1 encephalitis. IMPORTANCE Ferroptosis is a nonapoptotic form of programmed cell death that contributes to different neurological inflammatory diseases. However, whether HSV-1 induces ferroptosis in the CNS and the role of ferroptosis in viral pathogenesis remain unclear. In the current study, we demonstrate that HSV-1 infection induces ferroptosis, as Fe2+ overload, ROS accumulation, GSH depletion, lipid peroxidation, and mitochondrion shrinkage, all of which are hallmarks of ferroptosis, are observed in human cultured astrocytes, microglia cells, and murine brains infected with HSV-1. Moreover, HSV-1 infection enhances Keap1-dependent Nrf2 ubiquitination and degradation, which results in substantial reductions in the expression levels of antiferroptotic genes downstream of Nrf2, thereby disturbing cellular redox homeostasis and promoting ferroptosis. Furthermore, HSV-1-induced ferroptosis is tightly associated with the process of viral encephalitis in a mouse model, and the ferroptosis-activated upregulation of PTGS2 and PGE2 plays an important role in HSV-1-caused inflammation and encephalitis. Importantly, the inhibition of ferroptosis by either a ferroptosis inhibitor or a proteasome inhibitor to suppress HSV-1-induced Nrf2 degradation effectively alleviates HSV-1-caused neuro-damage and inflammation in infected mice. Overall, our findings uncover the interaction between HSV-1 infection and ferroptosis, shed novel light on the physiological impacts of ferroptosis on the pathogenesis of HSV-1 infection and encephalitis, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.

16.
Foods ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36496730

RESUMO

Aflatoxin M1 (AFM1), a group 1 carcinogen, is a risk factor to be monitored in milk. This study aimed to investigate the occurrence of AFM1 in milk in Xinjiang, China, and to assess the risk of exposure for milk consumers in different age-sex groups. A total of 259 milk samples including pasteurized milk (93 samples), extended-shelf-life (ESL) milk (96), and raw donkey milk (70) were collected in Xinjiang from January to March in 2022. The AFM1 content of the milk samples was detected using a validated ELISA method. Of the 259 total samples analyzed for AFM1, 84 (32.4%) samples were contaminated at levels greater than the detection limit of 5 ng/L, with the maximum level of 16.5 ng/L. The positive rates of AFM1 in pasteurized milk and ESL milk were 43.0% (n = 40) and 45.8% (n = 44), respectively, and AFM1 was undetectable in donkey milk. The estimated daily intakes of AFM1 in each age group were lower than the hazard limits and were similar between male and female milk consumers. Therefore, the AFM1 contamination of milk in Xinjiang is low but still needs to be continuously monitored considering that children are susceptible to AFM1.

17.
Front Pharmacol ; 13: 978885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479203

RESUMO

Tyrosine kinase inhibitors (TKIs) have greatly improved the prognosis of unresectable and metastatic gastrointestinal stromal tumors (GISTs) in the last two decades. Imatinib and sunitinib are recommended as first-line and second-line therapies, respectively. However, there is a lack of precision therapy for refractory GISTs regarding therapy after imatinib and sunitinib. We comprehensively searched electronic databases, including PubMed, EMBASE, Web of Science, Cochrane Library, and ClinicalTrials, from inception to October 2022. Randomized controlled trials featuring comparisons with third-line or over third-line therapies against GISTs were eligible. The primary outcome was progression-free survival (PFS). All network calculations were performed using random effect models, and the ranking of regimens were numerically based on the surface under the cumulative ranking (SUCRA) statistics. A total of seven studies were eligible for inclusion in this network meta-analysis. After analysis, ripretinib was ranked at the top in progression-free survival (PFS), overall survival (OS), and disease control rate (DCR) (SUCRA statistics: 83.1%, 82.5%, and 86.5%, respectively), whereas nilotinib and pimitespib presented better tolerability (SUCRA statistics: 64.9% and 63.8%, respectively). We found that regorafenib seemed more reliable for clinical administration, and ripretinib showed good effectiveness for the over third-line therapy. Precise targeted therapy is a critical direction for the future treatment of GIST, and more high-quality studies of new agents are expected.

18.
Front Plant Sci ; 13: 1041733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483956

RESUMO

To explore the molecular mechanisms of the antifungal compound phenazine-1-carboxamide (PCN) inhibits Rhizoctonia solani and discover potential targets of action, we performed an integrated analysis of transcriptome and metabolome in R. solani mycelium by whether PCN treating or not. A total of 511 differentially expressed genes (DEGs) were identified between the PCN treatment and control groups. The fluorescence-based quantitative PCR (qPCR) got the accordant results of the gene expression trends for ten randomly selected DEGs. The Gene Ontology (GO) enrichment analysis revealed that fatty acid metabolic process, fatty acid oxidation, and lipid oxidation were among the most enriched in the biological process category, while integral component of membrane, plasma membrane, and extracellular region were among the most enriched in the cellular component category and oxidoreductase activity, cofactor binding, and coenzyme binding were among the most enriched in the molecular function category. KEGG enrichment analysis revealed the most prominently enriched metabolic pathways included ATP-binding cassette (ABC) transporters, nitrogen metabolism, aminobenzoate degradation. The DEGs related functions of cellular structures, cell membrane functions, cellular nutrition, vacuole-mitochondrion membrane contact site and ATPase activity, pH, anti-oxidation, were downregulated. A total of 466 differential metabolites were found between the PCN treatment and control groups after PCN treatment. KEGG enrichment found purine, arachidonic acid, and phenylpropanoid biosynthesis pathways were mainly affected. Further results proved PCN decreased the mycelial biomass and protein content of R. solani, and superoxide dismutase (SOD) activity reduced while peroxidase (POD) and cytochrome P450 activities increased. The molecule docking indicted that NADPH nitrite reductase, ATP-binding cassette transporter, alpha/beta hydrolase family domain-containing protein, and NADPH-cytochrome P450 reductase maybe the particular target of PCN. In conclusion, the mechanisms via which PCN inhibits R. solani AG1IA may be related to cell wall damage, cell membrane impairment, intracellular nutrient imbalance, disturbed antioxidant system, and altered intracellular pH, which laid foundation for the further new compound designing to improve antifungal efficacy.

19.
Nano Lett ; 22(24): 10134-10139, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475690

RESUMO

MnBi2Te4 is a van der Waals topological insulator with intrinsic intralayer ferromagnetic exchange and A-type antiferromagnetic interlayer coupling. Theoretically, it belongs to a class of structurally centrosymmetric crystals whose layered antiferromagnetic order breaks inversion symmetry for even layer numbers, making optical second harmonic generation (SHG) an ideal probe of the coupling between the crystal and magnetic structures. Here, we perform magnetic field and temperature-dependent SHG measurements on MnBi2Te4 flakes ranging from bulk to monolayer thickness. We find that the dominant SHG signal from MnBi2Te4 is unexpectedly unrelated to both magnetic state and layer number. We suggest that surface SHG is the likely source of the observed strong SHG, whose symmetry matches that of the MnBi2Te4-vacuum interface. Our results highlight the importance of considering the surface contribution to inversion symmetry-breaking in van der Waals centrosymmetric magnets.

20.
Nat Commun ; 13(1): 7804, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528635

RESUMO

Understanding the relationship between biodiversity and ecosystem stability is a central goal of ecologists. Recent studies have concluded that biodiversity increases community temporal stability by increasing the asynchrony between the dynamics of different species. Theoretically, this enhancement can occur through either increased between-species compensatory dynamics, a fundamentally biological mechanism; or through an averaging effect, primarily a statistical mechanism. Yet it remains unclear which mechanism is dominant in explaining the diversity-stability relationship. We address this issue by mathematically decomposing asynchrony into components separately quantifying the compensatory and statistical-averaging effects. We applied the new decomposition approach to plant survey and experimental data from North American grasslands. We show that statistical averaging, rather than compensatory dynamics, was the principal mediator of biodiversity effects on community stability. Our simple decomposition approach helps integrate concepts of stability, asynchrony, statistical averaging, and compensatory dynamics, and suggests that statistical averaging, rather than compensatory dynamics, is the primary means by which biodiversity confers ecological stability.


Assuntos
Biodiversidade , Ecossistema , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...