Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34595611

RESUMO

PURPOSE: Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mechanism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and elucidated the anti-inflammatory properties of nicorandil in rat models. METHODS: Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks. Additionally, blood samples and hearts were collected to examine inflammation and histopathology. RESULTS: According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations. Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response. Interestingly, similar protective results were obtained using the KATP channel opener diazoxide. CONCLUSION: Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.

2.
Arch Biochem Biophys ; 712: 109050, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610336

RESUMO

Doxorubicin (DOX) is an effective and widely used antineoplastic drug. However, its clinical application is limited due to its dose-dependent cardiotoxicity. Great efforts have been made to explore the pathological mechanism of DOX-induced cardiotoxicity (DIC), but new drugs and strategies to alleviate cardiac damage are still needed. Here, we aimed to investigate the effect of nicotinamide mononucleotide (NMN) on DIC in rats. The results of the present study showed that DOX treatment significantly induced cardiac dysfunction and cardiac injury, whereas NMN alleviated these changes. In addition, NMN inhibited Dox-induced activation of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome-mediated inflammation, as evidenced by decreased caspase 1 and IL-1ß activity. Moreover, NMN treatment increased glutathione (GSH) levels and superoxide dismutase (SOD) activity and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in DOX-treated rats. Furthermore, NMN treatment mitigated DOX-induced cardiomyocyte apoptosis and cardiac fibrosis. In conclusion, the results indicated that NMN protects against DIC in rats by inhibiting NLRP3 inflammasome activation, oxidative stress, and apoptosis.

3.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641281

RESUMO

Upgrading furfural (FAL) to cyclopentanone (CPO) is of great importance for the synthesis of high-value chemicals and biomass utilization. The hydrogenative ring-rearrangement of FAL is catalyzed by metal-acid bifunctional catalysts. The Lewis acidity is a key factor in promoting the rearrangement of furan rings and achieving a high selectivity to CPO. In this work, highly dispersed Pd nanoparticles were successfully encapsulated into the cavities of a Zr based MOF, UiO-66-NO2, by impregnation using a double-solvent method (DSM) followed by H2 reduction. The obtained Pd/UiO-66-NO2 catalyst showed a significantly better catalytic performance in the aforementioned reaction than the Pd/UiO-66 catalyst due to the higher Lewis acidity of the support. Moreover, by using a thermal treatment. The Lewis acidity can be further increased through the creating of missing-linker defects. The resulting defective Pd/UiO-66-NO2 exhibited the highest CPO selectivity and FAL conversion of 96.6% and 98.9%, respectively. In addition, the catalyst was able to maintain a high activity and stability after four consecutive runs. The current study not only provides an efficient catalytic reaction system for the hydrogenative ring-rearrangement of furfural to cyclopentanone but also emphasizes the importance of defect sites.

4.
J Pharm Biomed Anal ; 206: 114385, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34597841

RESUMO

Kai-Xin-San (KXS) is a traditional Chinese medicine (TCM) formula containing four herbal medicines: Ginseng Radix Rhizoma, Polygalae Radix, Poria and Acori Tatarinowii Rhizoma. A large number of pharmacological studies in vitro and in vivo have shown that KXS is characterized by anti-depression, anti-Alzheimer's disease, anti-oxidation and other activities. However, the pharmacodynamic substance basis studies of KXS are hitherto quite limited. Here, KXS was identified and determined by ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS) and gas chromatography-mass spectrometry (GC-MS). Firstly, the data-dependent acquisition mode (DDA) of UPLC-Q-Orbitrap MS combined with the inclusion list were used to collected the chemical composition. The chemical constituents of KXS were identified by local database on compound discoverer™ 3.1 software and Xcalibur 4.1 software. With the use of this approach, a total of 211 compounds were identified from KXS. Wherein 60 compounds were from Ginseng Radix Rhizoma, 40 compounds were from Poria, and 111 compounds were from Polygala Radix, respectively. Secondly, 105 volatile constituents were identified by GC-MS analysis, which were mainly derived from Acori Tatarinowii Rhizoma. Besides, an adjusted parallel reaction monitoring method was established and validated to quantify the seventeen major compounds in different herbal medicines of KXS, which were chosen as the benchmarked substances to evaluate the quality of KXS. In conclusion, this study provided a generally applicable strategy for global metabolite identification of the complicated components and determination of multi-component content in traditional Chinese medicines.

5.
Anal Chim Acta ; 1178: 338791, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482866

RESUMO

Biomarkers play an important role in disease diagnosis and prognosis, which demand reliable, sensitive, rapid, and economic detection platform to conduct simultaneous multiple-biomarkers analysis in serum or body liquid. Here, we developed a universal biosensing platform through integrating the advantages of unique nanostructure and biochemistry properties of graphene oxide quantum dots and high throughput and low cost of microfluidic chip for reliable and simultaneous detection of multiple cancer antigen and antibody biomarkers. The performance of the proposed biosensing platform is validated through the representative cancer biomarkers including carcino-embryonic antigen (CEA), carbohydrate antigen 125 (CA125), α-fetoprotein (AFP), carbohydrate antigen 199 (CA199) and carbohydrate antigen 153 (CA153). It has a large linear quantification detection regime of 5-6 orders of magnitude and an ultralow detection limit of 1 pg/mL or 0.01 U/mL. Moreover, the proposed biosensing chip is capable of conducting 5-20 kinds of biomarkers from at least 60 persons simultaneously in 40 min with only 2 µL serum of each patient, which essentially reduces the detection cost and time to at least 1/60 of current popular methods. Clinical breast cancer and healthy samples detection results indicated its promising perspective in practical applications including cancer early diagnosis, prognosis, and disease pathogenesis study.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Grafite , Pontos Quânticos , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Limite de Detecção , Microfluídica
6.
Adv Healthc Mater ; : e2100698, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549544

RESUMO

Brain cells are constantly subjected to mechanical signals. Astrocytes are the most abundant glial cells of the central nervous system (CNS), which display immunoreactivity and have been suggested as an emerging disease focus in the recent years. However, how mechanical signals regulate astrocyte immunoreactivity, and the cytokine release in particular, remains to be fully characterized. Here, human neural stem cells are used to induce astrocytes, from which the release of 15 types of cytokines are screened, and nine of them are detected using a protein microfluidic chip. When a gentle compressive force is applied, altered cell morphology and reinforced cytoskeleton are observed. The force induces a transient suppression of cytokine secretions including IL-6, MCP-1, and IL-8 in the early astrocytes. Further, using a multiplexed single-cell culture and protein detection microfluidic chip, the mechanical effects at a single-cell level are analyzed, which validates a concerted downregulation by force on IL-6 and MCP-1 secretions in the cells releasing both factors. This work demonstrates an original attempt of employing the protein detection microfluidic chips in the assessment of mechanical regulation on the brain cells at a single-cell resolution, offering novel approach and unique insights for the understanding of the CNS immune regulation.

7.
Curr Top Med Chem ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348621

RESUMO

BACKGROUND AND OBJECTIVE: Osteoporosis is a worldwide healthcare challenge. Conventional medications for osteoporosis prevention are not clinically effective or associated with gastrointestinal tract adverse effects. The present study aimed to comparatively investigate the effects of technetium-99 conjugated with methylene diphosphonate (99Tc-MDP) and calcium carbonate and alendronate in prevention and treatment of osteoporosis in glucocorticoid-induced osteoporosis rabbit model through evaluating bone alkaline phosphatase (B-ALP), TRAP-5b levels and histopathological parameters.

Method: Forty healthy female New Zealand rabbits were randomly divided into five groups (each n=8), including control group (Control Group), osteoporosis model group (GIO Group), osteoporosis model + 99Tc-MDP group (99Tc-MDP Group), osteoporosis model + alendronate group (Alendronate Group), and osteoporosis model + calcium carbonate group (calcium carbonate Group). Animals in each group were treated with corresponding interventions for 14 weeks. The blood samples were collected at the first and 14th week, and B-ALP and TRAP-5b levels were detected by enzyme-linked immunosorbent assay (ELISA). The rabbits were anesthetized at the 14th week, and pathological cytological observation was performed on both femurs.

Results: Age and weights of rabbits in different groups had no statistically significant differences (P>0.05). B-ALP levels in serum of all groups except for Control Group decreased after treatment, but the differences were not statistically significant (P>0.05). TRAP-5b levels in serum of all groups increased after treatment. Specifically, differences in the GIO Group and Calcium carbonate Group were statistically significant (P<0.05), while differences in 99Tc-MDP Group and Alendronate Group were not statistically significant (P<0.05). Pathological sections revealed that Control Group presented normal bone tissue morphology. The bone tissue morphology of the 99Tc-MDP Group and Alendronate Group was similar to Control Group and GIO Group. Moreover, Calcium carbonate Group and GIO Group exhibited similar bone tissue morphology.

Conclusions: 99Tc-MDP has preventive effect on the glucocorticoid-induced osteoporotic rabbit model. This osteoporosis preventive effect might be attributed to the capacities of 99Tc-MDP in promoting the osteoblasts generation and inhibiting the generation and reducing the activity of osteoclasts.

8.
Chem Biodivers ; : e2100358, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34387021

RESUMO

Cissampelos is a significant genus comprising of approximately 21 species of the medicinal plants (Menispermaceae). The plants of this genus are used in traditional medicine for the treatment of various ailments such as asthma, arthritis, dysentery, hyperglycemia, cardiopathy, hypertension and other related problems. These plants are rich in bioactive dibenzylisoquinoline and aborphine as well as small amounts of other ingredients. In recent years, the chemical constituents and pharmacological activities of Cissampelos genus have been paid more and more attention due to their diversity. Herein, we compile the chemical constituents and biological activities on this genus, and summarize the 13 C-NMR data of the main bioactive ingredients. All information comes from scientific databases such as Google Scholar, PubMed, Sci-Finder, ScienceDirect, Web of Science and CNKI. It provides valuable data for the future research and development of Cissampelos genus.

9.
Cell Biol Int ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314079

RESUMO

Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.

10.
Nanotechnology ; 32(43)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34284357

RESUMO

Design and develop of cost-effective non-enzymatic electrode materials is of great importance for next generation of glucose sensors. In this work, we report a high-performance self-supporting electrode fabricated via direct epitaxial growth of nickel phosphide on Ni foam (Ni2P/NF) for nonenzymatic glucose sensors in alkaline solution. Under the optimal conditions, the uniform Ni2P nanosheets could be obtained with an average thickness of 80 nm, which provides sufficient active sites for glucose molecules. As a consequence, the Ni2P/NF electrode displays superior electrochemistry performances with a high sensitivity of 6375.1µA mM-1cm-2, a quick response about 1 s, a low detection limit of 0.14µM (S/N = 3), and good selectivity and specificity. Benefit from the strong interaction between Ni2P and NF, the Ni2P/NF electrode is also highly stable for long-term applications. Furthermore, the Ni2P/NF electrode is capable of analyzing glucose in human blood serum with satisfactory results, indicating that the Ni2P/NF is a potential candidate for glucose sensing in real life.

11.
Mikrochim Acta ; 188(8): 262, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34282508

RESUMO

COVID-19 is now a severe threat to global health. Facing this pandemic, we developed a space-encoding microfluidic biochip for high-throughput, rapid, sensitive, simultaneous quantitative detection of SARS-CoV-2 antigen proteins and IgG/IgM antibodies in serum. The proposed immunoassay biochip integrates the advantages of graphene oxide quantum dots (GOQDs) and microfluidic chip and is capable of conducting multiple SARS-CoV-2 antigens or IgG/IgM antibodies of 60 serum samples simultaneously with only 2 µL sample volume of each patient. Fluorescence intensity of antigens and IgG antibody detection at emission wavelength of ~680 nm was used to quantify the target concentration at excitation wavelength of 632 nm, and emission wavelength of ~519 nm was used during the detection of IgM antibodies at excitation wavelength of 488 nm. The method developed has a large linear quantification detection regime of 5 orders of magnitude, an ultralow detection limit of ~0.3 pg/mL under optimized conditions, and less than 10-min qualitative detection time. The proposed biosensing platform will not only greatly facilitate the rapid diagnosis of COVID-19 patients, but also provide a valuable screening approach for infected patients, medical therapy, and vaccine recipients.


Assuntos
Antígenos Virais/sangue , Imunoensaio , Imunoglobulina G/sangue , Imunoglobulina M/sangue , SARS-CoV-2/isolamento & purificação , Reações Antígeno-Anticorpo , Antígenos Virais/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Nanopartículas/química , Tamanho da Partícula , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
12.
J Sep Sci ; 44(17): 3287-3294, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34240798

RESUMO

Prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside are three major chromone derivatives of Saposhnikovia divaricata that have many pharmacological activities, such as anti-inflammatory and antitumor activities. In the present work, an effective method for the simultaneous separation of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside with high purities was established using HPD-300 resin coupled with preparative high-performance liquid chromatography. The adsorption kinetics curves of the three compounds on the HPD-300 resin were studied and found to fit well according to the pseudo-second-order equation. The adsorption isotherm results indicated that the adsorption process of the three compounds was exothermic. After a one-run treatment with the resin, the contents of prim-O-glucosylcimifugin, cimifugin, and 5-O-methylvisamminoside increased from 0.29, 0.06, and 0.37% to 13.07, 2.83, and 16.91% with recovery yields of 76.38, 78.25, and 76.73%, respectively. Finally, the purities of the three compounds were found to reach more than 95% after further separation using preparative high-performance liquid chromatography. The method developed in this study was effective and could simultaneously separate three chromones from Saposhnikovia divaricate. The experimental results also showed that the HPD-300 resin is suitable for the separation of chromone derivatives.

13.
J Food Biochem ; : e13866, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34278593

RESUMO

Taurochenodeoxycholic acid (TCDCA) is the principal ingredient of Compound Shougong Powder. Despite traditional Chinese medicine (TCM) research demonstrates that Compound Shougong Powder can restrict tumor growth, whether TCDCA exerts a role in suppressing cancer as the major ingredient of Compound Shougong Powder remains unknown. This study aims to clarify the regulatory mechanism of TCDCA on gastric cancer. Gastric cancer cells SGC-7901 were cultured to investigate the effects of TCDCA on proliferation and apoptosis. Furthermore, a subcutaneously implanted tumor model was established using SGC-7901 cells in BALB/C nude mice and tumor volume was measured under low and high dose treatment of TCDCA. Cell proliferation, apoptosis, and invasion were subjected to 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and transwell assay. Differentially expressed genes were screened by transcriptome sequencing. Nude mouse tumorigenicity assay was initiated to identify the effect of TCDCA on both tumor volume and weight, and the expression of candidate genes screened by transcriptome sequencing was determined by real-time fluorescence quantification (qPCR) and Western blot. The experiments revealed that TCDCA could significantly inhibit the proliferation and invasion of gastric cancer cells and induce apoptosis of these cells. Meanwhile, test findings via in vivo indicated that TCDCA severely diminished the volume and weight of tumors. This study first demonstrated that TCDCA inhibited the proliferation and invasion of gastric cancer and induced apoptosis, which is expected to serve as an experimental basis for the application of TCM in tumor therapeutic options. PRACTICAL APPLICATIONS: Through this study, the inhibitory effect of Taurochenodeoxycholic acid on gastric cancer can be clarified, which provides a new research basis for the application of traditional Chinese medicine (TCM) and TCM monomer in cancer. In addition, this study can further promote the research and application of Chinese traditional medicine, which has important application value and economic benefits.

14.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34301056

RESUMO

Decades of research into cryogels have resulted in the development of many types of cryogels for various applications. Collagen and gelatin possess nontoxicity, intrinsic gel-forming ability and physicochemical properties, and excellent biocompatibility and biodegradability, making them very desirable candidates for the fabrication of cryogels. Collagen-based cryogels (CBCs) and gelatin-based cryogels (GBCs) have been successfully applied as three-dimensional substrates for cell culture and have shown promise for biomedical use. A key point in the development of CBCs and GBCs is the quantitative and precise characterization of their properties and their correlation with preparation process and parameters, enabling these cryogels to be tuned to match engineering requirements. Great efforts have been devoted to fabricating these types of cryogels and exploring their potential biomedical application. However, to the best of our knowledge, no comprehensive overviews focused on CBCs and GBCs have been reported currently. In this review, we attempt to provide insight into the recent advances on such kinds of cryogels, including their fabrication methods and structural properties, as well as potential biomedical applications.

15.
J Enzyme Inhib Med Chem ; 36(1): 1622-1631, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34284695

RESUMO

Some methoxy-, hydroxyl-, pyridyl-, or fluoro-substituted 3,5-bis(arylidene)-4-piperidones (BAPs) could reduce inflammation and promote hepatoma cell apoptosis by inhibiting activation of NF-κB, especially after introduction of trifluoromethyl. Herein, a series of trifluoromethyl-substituted BAPs (4-30) were synthesised and the biological activities were evaluated. We successfully found the most potential 16, which contains three trifluoromethyl substituents and exhibits the best anti-tumour and anti-inflammatory activities. Preliminary mechanism research revealed that 16 could promote HepG2 cell apoptosis in a dose-dependent manner by down-regulating the expression of Bcl-2 and up-regulating the expression of Bax, C-caspase-3. Meanwhile, 16 inhibited activation of NF-κB by directly inhibiting the phosphorylation of p65 and IκBα induced by LPS, together with indirectly inhibiting MAPK pathway, thereby exhibiting both anti-hepatoma and anti-inflammatory activities. Molecular docking confirmed that 16 could bind to the active sites of Bcl-2, p65, and p38 reasonably. The above results suggested that 16 has enormous potential to be developed as a multifunctional agent for the clinical treatment of liver cancers and inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Piperidonas/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Piperidonas/síntese química , Piperidonas/química , Relação Estrutura-Atividade
16.
Respirology ; 26(9): 842-850, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34109713

RESUMO

BACKGROUND AND OBJECTIVE: Circulating fibrocytes act as precursors of myofibroblasts, contribute to airway remodelling in chronic asthma and migrate to injured tissues by expressing CXCR4 and CCR7. Anti-IgE therapy improves severe allergic asthma (SAA) control and airway remodelling in T2-high SAA. The effects of anti-IgE therapy on fibrocyte activities were investigated in this study. METHODS: The expression of CCR7, CXCR4, ST2 and α-SMA (α-smooth muscle actin) in both circulating and cultured fibrocytes from all patients with asthma was measured, and was repeated after omalizumab treatment in SAA. Fibrocytes recruitment, proliferation and transformation were also measured in response to anti-IgE therapy. RESULTS: Omalizumab effectively improved asthma control and pulmonary function in T2-high SAA, associated with a decline in serum levels of IL-33 and IL-13. Omalizumab down-regulates CXCR4 and CCR7 expression of fibrocytes, which could suppress fibrocyte recruitment into the lungs. Omalizumab also suppressed the increased number of fibrocytes and α-SMA+ fibrocytes within the cultured non-adherent non-T (NANT) cells after 3-7 days of culture. The decrease in serum levels of IL-33 by omalizumab contributed to the effectiveness in inhibiting fibrocyte recruitment, proliferation and myofibroblast transformation through IL-33/ST2 axis. The elevated IL-13 expression in SAA patients potentiated the effects of IL-33 by increasing ST2 expression. CONCLUSION: Omalizumab reduced the number of circulating fibrocytes, cell and number of fibrocytes as well as α-SMA+ fibrocytes after 3-7 days of culture in SAA patients. IL-33 and IL-13 may be implicated in the effectiveness of omalizumab in inhibiting fibrocyte activation contributing partly to the clinical benefits in reducing lamina propria and basement membrane thickening.

17.
Int Immunopharmacol ; 98: 107879, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147915

RESUMO

Emerging evidence indicates that NOD-like receptor protein 3 (NLRP3) inflammasome-induced inflammation plays a critical role in the pathogenesis of rheumatoid arthritis (RA). Celastrol (Cel) is a quinone-methylated triterpenoid extracted from Tripterygium wilfordii that is used to treat RA. However, researchers have not determined whether Cel exerts anti-RA effects by regulating the activation of the NLRP3 inflammasome. In the present study, complete Freund's adjuvant (CFA)- induced rats and human mononuclear macrophages (THP-1 cells) were used to explore the anti-RA effects of Cel and its underlying mechanism. Joint swelling, the arthritis index score, inflammatory cell infiltration, and synovial hyperplasia in CFA-induced rats were correspondingly reduced after Cel treatment. The secretion of interleukin (IL)-1ß and IL-18 in the serum of CFA-induced rats and supernatants of THP-1 cells exposed to Cel was significantly decreased. These inhibitory effects occurred because Cel blocked the nuclear factor-kappa B (NF-κB) signaling pathway and inhibited the activation of the NLRP3 inflammasome. Furthermore, Cel inhibited reactive oxygen species (ROS) production induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). We speculated that Cel relieves RA symptoms and inhibits inflammation by inhibiting the ROS-NF-κB-NLRP3 axis.

18.
Sci Rep ; 11(1): 10282, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986369

RESUMO

Petroleum refinery wastewater (PRWW) that contains recalcitrant components as the major portion of constituents is difficult to treat by conventional biological processes. An effective and economical biological treatment process was established to treat industrial PRWW with an influent COD of over 2500 mg L-1 in this research. This process is mainly composed of internal circulation biological aerated filter (ICBAF), hydrolysis acidfication (HA), two anaerobic-aerobic (A/O) units, a membrane biological reactor (MBR), and ozone-activated carbon (O3-AC) units. The results showed that, overall, this system removed over 94% of the COD, BOD5, ammonia nitrogen (NH4+-N) and phosphorus in the influent, with the ICBAF unit accounting for 54.6% of COD removal and 83.6% of BOD5 removal, and the two A/O units accounting for 33.3% of COD removal and 9.4% of BOD5 removal. The degradation processes of eight organic pollutants and their removal via treatment were also analyzed. Furthermore, 26 bacteria were identified in this system, with Proteobacteria and Acidobacteria being the most dominant. Ultimately, the treatment process exhibited good performance in degrading complex organic pollutants in the PRWW.

19.
Org Biomol Chem ; 19(24): 5377-5382, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047749

RESUMO

Described here is a general and highly efficient method for the synthesis of 1H- and 3H-indoles. In the presence of CBr4 and a suitable base, the cyclization of N-aryl enamines proceeds with high efficiency. Unlike previous intramolecular cross dehydrogenative coupling (CDC) of the same substrates, this process does not require the use of either a transition metal or a stoichiometric amount of oxidant. This method also features operational simplicity, easy scalability and good substrate tolerability. Control experiments indicate the reactions may proceed in a tandem sequence of bromination and intramolecular Friedel-Crafts alkylation in a simple one-pot procedure.

20.
PLoS One ; 16(3): e0247074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647031

RESUMO

OBJECTIVE: To study the feasibility of use of radiomic features extracted from axillary lymph nodes for diagnosis of their metastatic status in patients with breast cancer. MATERIALS AND METHODS: A total of 176 axillary lymph nodes of patients with breast cancer, consisting of 87 metastatic axillary lymph nodes (ALNM) and 89 negative axillary lymph nodes proven by surgery, were retrospectively reviewed from the database of our cancer center. For each selected axillary lymph node, 106 radiomic features based on preoperative pharmacokinetic modeling dynamic contrast enhanced magnetic resonance imaging (PK-DCE-MRI) and 5 conventional image features were obtained. The least absolute shrinkage and selection operator (LASSO) regression was used to select useful radiomic features. Logistic regression was used to develop diagnostic models for ALNM. Delong test was used to compare the diagnostic performance of different models. RESULTS: The 106 radiomic features were reduced to 4 ALNM diagnosis-related features by LASSO. Four diagnostic models including conventional model, pharmacokinetic model, radiomic model, and a combined model (integrating the Rad-score in the radiomic model with the conventional image features) were developed and validated. Delong test showed that the combined model had the best diagnostic performance: area under the curve (AUC), 0.972 (95% CI [0.947-0.997]) in the training cohort and 0.979 (95% CI [0.952-1]) in the validation cohort. The diagnostic performance of the combined model and the radiomic model were better than that of pharmacokinetic model and conventional model (P<0.05). CONCLUSION: Radiomic features extracted from PK-DCE-MRI images of axillary lymph nodes showed promising application for diagnosis of ALNM in patients with breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Meios de Contraste/farmacocinética , Processamento de Imagem Assistida por Computador , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Modelos Biológicos , Adulto , Axila , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia , Estudos de Coortes , Feminino , Humanos , Linfonodos/patologia , Metástase Linfática , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...