RESUMO
In situ imaging of genes of pathogenic bacteria can profile cellular heterogeneity, such as the emergence of drug resistance. Fluorescence in situ hybridization (FISH) serves as a classic approach to image mRNAs inside cells, but it remains challenging to elucidate genomic DNAs and relies on multiple fluorescently labeled probes. Herein, we present a dead Cas12a (dCas12a)-labeled polymerase chain reaction (CasPCR) assay for high-contrast imaging of cellular drug-resistant genes. We employed a syncretic dCas12a-green fluorescent protein (dCas12a-GFP) to tag the amplicons, thereby enabling high-contrast imaging and avoiding multiple fluorescently labeled probes. The CasPCR assay can quantify quinolone-resistant Salmonella enterica in mixed populations and identify them isolated from poultry farms.
RESUMO
We present the application of N-difluoroacetylglucosamine (GlcNDFA) in a chemical evolution strategy to synthesize oligosaccharides. In comparison to conventional N-trifluoroacetylglucosamine, GlcNDFA exhibits superior substrate compatibility with glycosyltransferases as well as stability in aqueous environments. Using our 16-step assembly line, GlcNDFA can be used to produce homogeneous dekaparin, a heparin-like medication, with a yield of 62.2%. This underscores the significant potential of GlcNDFA as a chemical evolution precursor in the precise synthesis of structurally defined polysaccharides.
RESUMO
Patients carrying mutations in polymerase epsilon/polymerase delta have shown positive responses to immune checkpoint inhibitors. Yet, prospective trials exploring the efficacy in those with polymerase epsilon/polymerase delta mutations are still lacking. A phase II clinical trial was initiated to evaluate the efficacy of toripalimab, a humanized IgG4K monoclonal antibody to human PD-1, in patients with advanced solid tumors with unselected polymerase epsilon/polymerase delta mutations but without microsatellite instability-high. A total of 15 patients were enrolled, 14 of whom were assessed for treatment efficacy. There was a 21.4% overall response rate, with a disease control rate of 57.1%. The median overall survival and median progression-free survival were 17.9 (95% CI 13.5-not reach) months and 2.5 (95% CI 1.4-not reach) months, respectively. For patients with exonuclease domain mutations, the objective response rate was 66.7% (2/3), with a disease control rate of 66.7% (2/3). For those with non-exonuclease domain mutations, the rates were 9.1% (1/11) and 54.5% (6/11), respectively. Notably, patients with PBRM1 gene mutations exhibited a high response rate to toripalimab at 75.0% (3/4). This study showed that neither the exonuclease domain mutations nor non-exonuclease domain mutations could fully predict the efficacy of immunotherapy, urging the need for more investigations to clarify potential immune sensitization differences within polymerase epsilon/polymerase delta mutation variants.
Assuntos
Anticorpos Monoclonais Humanizados , DNA Polimerase II , Mutação , Neoplasias , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias/genética , Neoplasias/tratamento farmacológico , DNA Polimerase II/genética , DNA Polimerase III/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Adulto , Idoso de 80 Anos ou maisRESUMO
Based on a subanalysis of the NEOSUMMIT-01 study, it was revealed that perioperative immune checkpoint blockade (ICB) combined with chemotherapy has therapeutic effects in elderly patients with locally advanced gastric cancer, providing a new strategy for the treatment of elderly gastric cancer patients.
RESUMO
The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction.
RESUMO
Rationale: Understanding the immune mechanisms associated with liver transplantation (LT), particularly the involvement of tissue-resident memory T cells (TRMs), represents a significant challenge. Methods: This study employs a multi-omics approach to analyse liver transplant samples from both human (n = 17) and mouse (n = 16), utilizing single-cell RNA sequencing, bulk RNA sequencing, and immunological techniques. Results: Our findings reveal a comprehensive T cell-centric landscape in LT across human and mouse species, involving 235,116 cells. Notably, we found a substantial increase in CD8+ TRMs within rejected grafts compared to stable ones. The elevated presence of CD8+ TRMs is characterised by a distinct expression profile, featuring upregulation of tissue-residency markers (CD69, CXCR6, CD49A and CD103+/-,), immune checkpoints (PD1, CTLA4, and TIGIT), cytotoxic markers (GZMB and IFNG) and proliferative markers (PCNA and TOP2A) during rejection. Furthermore, there is a high expression of transcription factors such as EOMES and RUNX3. Functional assays and analyses of cellular communication underscore the active role of CD8+ TRMs in interacting with other tissue-resident cells, particularly Kupffer cells, especially during rejection episodes. Conclusions: These insights into the distinctive activation and interaction patterns of CD8+ TRMs suggest their potential utility as biomarkers for graft rejection, paving the way for novel therapeutic strategies aimed at enhancing graft tolerance and improving overall transplant outcomes.
Assuntos
Linfócitos T CD8-Positivos , Rejeição de Enxerto , Transplante de Fígado , Células T de Memória , Análise de Célula Única , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Rejeição de Enxerto/imunologia , Animais , Camundongos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Memória Imunológica , Masculino , Camundongos Endogâmicos C57BL , Antígenos CD/metabolismo , Antígenos CD/genética , Feminino , Pessoa de Meia-Idade , Proteínas com Domínio TRESUMO
BACKGROUND: The anti-PD-L1 antibody durvalumab has been approved for use in first-line advanced biliary duct cancer (ABC). So far, predictive biomarkers of efficacy are lacking. METHODS: ABC patients who underwent gemcitabine-based chemotherapy with or without durvalumab were retrospectively enrolled, and their baseline clinical pathological indices were retrieved from medical records. Overall (OS) and progression free survival (PFS) were calculated and analyzed. The levels of peripheral biomarkers from 48 patients were detected with assay kits including enzyme-linked immunosorbent assay. Genomic alterations in 27 patients whose tumor tissues were available were depicted via targeted next-generation sequencing. RESULTS: A total of 186 ABC patients met the inclusion criteria between January 2020 and December 2022 were finally enrolled in this study. Of these, 93 patients received chemotherapy with durvalumab and the rest received chemotherapy alone. Durvalumab plus chemotherapy demonstrated significant improvements in PFS (6.77 vs. 4.99 months; hazard ratio 0.65 [95% CI 0.48-0.88]; P = 0.005), but not OS (14.29 vs. 13.24 months; hazard ratio 0.91 [95% CI 0.62-1.32]; P = 0.608) vs. chemotherapy alone in previously untreated ABC patients. The objective response rate (ORR) in patients receiving chemotherapy with and without durvalumab was 19.1% and 7.8%, respectively. Pretreatment sPD-L1, CSF1R and OPG were identified as significant prognosis predictors in patients receiving durvalumab. ADGRB3 and RNF43 mutations were enriched in patients who responded to chemotherapy plus durvalumab and correlated with superior survival. CONCLUSION: This retrospective real-world study confirmed the clinical benefit of durvalumab plus chemotherapy in treatment-naïve ABC patients. Peripheral sPD-L1 and CSF1R are promising prognostic biomarkers for this therapeutic strategy. Presence of ADGRB3 or RNF43 mutations could improve the stratification of immunotherapy outcomes, but further studies are warranted to explore the underlying mechanisms.
Assuntos
Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos , Idoso , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/genética , Adulto , PrognósticoRESUMO
Particulate nitrate is an important component of particulate matter and poses a significant threat to the ecosystem and human health. The gas-phase formation pathway of nitrate is extremely important, which mainly comprises the NO2 oxidation process triggered by OH radicals and the nitrate partitioning process. The response of nitrate to source emission reduction during different pollution periods remains unclear. Here, we applied the chemical kinetic and thermodynamics model to explore the importance oxidation process and partitioning process during different pollution periods based on high-time resolution observation data. The result indicated that with the aggravation of pollution, the partitioning process gradually ceases to be a limiting step in the formation of nitrates. The results of the influencing factor analysis indicate that NO2 concentration and aerosol pH values play a more significant role in the formation of nitrates. Specifically, during the clean period, nitrate formation is sensitive to both NO2 concentration and pH values, but during the pollution period, it becomes sensitive only to NO2 concentration. By combining source apportionment, we explored the response of nitrate formation to source emission reduction, and the results showed that the control of vehicle exhaust emissions and coal combustion sources is more effective in mitigating nitrate pollution. Additionally, this study also emphasized the importance of early prevention and control of pollution sources. This research provides scientific evidence for the precise management and control of nitrates.
RESUMO
Two-dimensional materials and their van der Waals heterostructures have emerged as a research focal point for constructing various innovative electronic devices due to their distinct photonic and electronic properties. Among them, anti-ambipolar devices, characterized by their unique nonlinear electrical behavior, have garnered attention as novel multifunctional components, positioning them as potential contenders for building multi-state logic devices. Utilizing the properties of few-layer As0.4P0.6 and PdSe2, we have constructed an anti-ambipolar heterojunction device. At 300 K, the device exhibits a peak voltage (Vpeak) of -3 V and a peak-to-valley ratio (PVR) close to 8 × 103, and the PVR can be modulated by bias voltage. Furthermore, by characterizing the anti-ambipolar attributes at different temperatures ranging from 80 K to 330 K, we have elucidated the thermally tunable feature of the device. At 330 K, a certain PVR (â¼103) and a large Vpeak (â¼-16 V) are obtained, while a PVR exceeding 108 has been achieved at 80 K. This temperature-related sensitivity empowers the device with significant potential and thermal tunability in various applications.
RESUMO
The objective of this phase 1 single-dose study was to evaluate the safety, tolerability, and pharmacokinetics of mirikizumab in Chinese healthy adults. Sixty participants were randomized within 5 planned dose cohorts: intravenous (IV) 300 mg, IV 600 mg, IV 1200 mg, subcutaneous (SC) 200 mg, and SC 400 mg to receive mirikizumab (10 participants in each cohort) or placebo (2 participants in each cohort). No death or serious adverse events occurred. Twenty-eight (56.0%) participants who received mirikizumab reported 49 treatment-emergent adverse events (TEAEs) and 8 (80.0%) participants who received placebo reported 18 TEAEs. The majority of TEAEs were mild in severity. Following IV 300-1200 mg mirikizumab, the arithmetic mean of both area under the concentration versus time curve from time 0 to infinity (AUC0-∞) and maximum observed drug concentration (Cmax) increased by approximately 3.5-fold, and the arithmetic mean half-life (t1/2) ranged from 9.64 to 12.0 days. Following SC 200 and 400 mg mirikizumab, the arithmetic mean of both AUC0-∞ and Cmax increased by approximately 1.6-fold, the median time to Cmax (tmax) was 2.98 days for both, and the arithmetic mean t1/2 was 10.6 and 10.5 days, respectively. Absolute bioavailability based on pooled SC and IV dose data was 38.2%. In this study, the safety and pharmacokinetic profile of mirikizumab were consistent with what has been reported in other studies.
RESUMO
Few studies have assessed the burden of mental disorders in adolescents related to bullying victimization at the global, regional, and national levels. We analyzed adolescent mental disorder disability-adjusted life years (DALYs) attributed to bullying in 204 countries, following the Global Burden of Disease study 2019 framework. The DALYs rate of adolescent for bullying-related mental disorders global increased from 110.45 (95 % uncertainty intervals (UI): 40.76, 218.62) per 100,000 in 1990 to 138.92 (95 % UI: 54.37, 268.19) per 100,000 in 2019. The largest increase in DALYs rates were obvious in low-SDI and high-SDI regions. In 2019, the DALYs rate of adolescents with bullying-related anxiety disorders was 1.4 times higher than those depressive disorders; the DALYs rate of adolescents with bullying-related mental disorder in females was 1.3 times higher than that of male, and older adolescent (15-19 years old) was 1.4 times higher than younger adolescent (10-14 years old). High-income North America had the fastest increase in DALYs rates of mental disorders related to bullying. In general, a positive correlation was observed between bullying DALY rate of adolescent and SDIs at the regional and national levels. Our study highlights significant disparities in adolescent mental health burden from bullying. Governments must implement adaptive policies to address diverse needs effectively.
RESUMO
OBJECTIVE: To investigate the effect of Polyetheretherketone (PEEK) rod semi-rigid pedicle screw fixation system in lumbar spine non-fusion surgery. METHODS: A total of 74 patients with tow-level lumbar degenerative diseases who underwent surgery from March 2017 to December 2019 were divided into PEEK rod group and titanium rod group. In the PEEK rod group, there were 34 patients, including 13 males and 21 females, aged from 51 to 79 years old with an average of (62.4±6.8) years old;There were 1 patient of L1-L3 segments, 7 patients of L2-L4 segments, 20 patients of L3-L5 segments and 6 patients of L4-S1 segments. In the titanium rod group, there were 40 patients, including 17 males and 23 females, aged from 52 to 81 years old with an average of (65.2±7.3) years old;There were 3 patient of L1-L3 segments, 11 patients of L2-L4 segments, 19 patients of L3-L5 segments and 7 patients of L4-S1 segments. The general conditions of operation, such as operation time, intraoperative blood loss, postoperative drainage was recorded. The visual analogue scale (VAS) for low back pain and Oswestry disability index (ODI) were compared in preoperatively and postoperatively(3 months, 12 months and last follow-up) between two groups. The change of range of motion (ROM) was observed by flexion and extension x-ray of lumbar. RESULTS: All patients successfully completed the operation. The follow-up time ranged from 22 to 34 months with an average of(26.8±5.6) months. The operative time (142.2±44.7) min and intraoperative blood loss(166.5±67.4)ml in PEEK group were lower than those in titanium group [(160.7±57.3) minã(212.8±85.4) ml](P<0.05). There was no significant differences in postoperative drainage between the two groups (P>0.05). At the final follow-up visit, in PEEK group and titanium group VAS of low back pain[(0.8±0.4) points vs (1.0±0.5) points], VAS for leg pain [ (0.7±0.4) points vs (0.8±0.5) points] and ODI [(9.8±1.6)% vs (12.1±1.5)%] were compared with preoperative [ (5.8±1.1) points vs (6.0±1.1)points], [ (7.2±1.7) points vs (7.0±1.6) points], [(68.5±8.9)% vs(66.3±8.2)%] were significantly different(P<0.05). There was no significant difference in VAS scores between the two groups at each postoperative time point (P>0.05). At 3 months after surgery, there was no difference in ODI between the two groups (P>0.05). There were significant differences in ODI between PEEK group and titanium rod group at 12 months [(15.5±2.1)% vs (18.4±2.4)%] and at the last follow-up [(9.8±1.6)% vs (12.1±1.5)%] (P<0.05). The total range of motion (ROM) of lumbar decreased in both groups after surgery. At 12 months after surgery and the last follow-up, the PEEK group compared with the titanium rod group, the total range of motion of lumbar was statistically significant (P<0.05). The range of motion (ROM) of the fixed segments decreased in both groups after surgery. The ROM of the fixed segments in PEEK group decreased from (9.5±4.6)° to (4.1±1.9)° at the last follow-up (P<0.05), which in the titanium rod group was decreased from (9.8±4.3)°to (0.9±0.5)° at the last follow-up (P<0.05). The range of motion (ROM) of upper adjacent segment increased in both groups, there was statistical significance in the ROM of upper adjacent segment between the two groups at 12 months after surgery and the last follow-up, (P<0.05). There was no screw loosening and broken rods in both groups during the follow-up period. CONCLUSION: The PEEK rod semi-rigid pedicle screw internal fixation system used in lumbar non-fusion surgery can retain part of the mobility of the fixed segment, showing comparable short-term clinical efficacy to titanium rod fusion. PEEK rod semi-rigid pedicle screw internal fixation system is a feasible choice for the treatment of lumbar spine degenerative diseases, and its long-term efficacy needs further follow-up observation.
Assuntos
Benzofenonas , Cetonas , Vértebras Lombares , Parafusos Pediculares , Polietilenoglicóis , Polímeros , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Vértebras Lombares/cirurgia , Idoso de 80 Anos ou maisRESUMO
Vitamin D and its analogues play a crucial role in promoting the well-being of both humans and animals. However, the current synthesis of this vital class of nutrients heavily relies on chemical transformations, which suffer from low step- and atom-efficiency due to lengthy synthetic pathways. To enhance sustainability in the chemical industry, it is necessary to develop alternative synthetic processes. Herein, we present a photoenzymatic approach for synthesizing 25-hydroxyvitamin D3 from 7-dehydrocholesterol. In this sequential synthesis, 7-dehydrocholesterol is initially hydroxylated at the C25 C-H bond, resulting in an 85% conversion to 25-hydroxyl-7-dehydrocholesterol. Subsequently, by employing photo-irradiation using a monochromatic LED ultraviolet light source in a batch reactor and thermal isomerization, 25-hydroxyvitamin D3 is obtained in satisfactory yield. This photoenzymatic process significantly reduces the need for purification steps and allows for gram-scale synthesis of the target product. Our work offers a selective, efficient, and environmentally friendly method for synthesizing 25-OH-vitamin D3, addressing the limitations of current synthetic approaches.
RESUMO
Chromatin structure plays a critical role in the regulation of dynamic gene expression in response to different developmental and environmental cues, but as yet their involvement in fruit ripening is not well understood. Here, we profile seven histone modifications in the woodland strawberry (Fragaria vesca) genome and analyze the histone modification signatures during ripening. Collectively, segments painted by the seven marks cover ~85% of the woodland strawberry genome. We report an eight-state chromatin structure model of the woodland strawberry based on the above histone marks, which reveals a diverse chromatin environment closely associated with transcriptional apparatus. Upon this model we build a chromatin-centric annotation to the strawberry genome. Expression of many genes essential for fruit ripening, such as abscisic acid catabolism, anthocyanin accumulation and fruit softening, are associated with shifts of active genic states and polycomb-associated chromatin states. Particularly, the expression levels of ripening-related genes are well correlated with histone acetylation, indicating a regulatory role of histone acetylation in strawberry ripening. Our identification of the chromatin states underpinning genome expression during fruit ripening not only elucidates the coordination of different pathways of morphological and metabolic development but also provides a framework to understand the signals that regulate fruit ripening.
RESUMO
BACKGROUND: Diaphragmatic paralysis is typically associated with phrenic nerve injury. Neonatal diaphragmatic paralysis diagnosis is easily missed because its manifestations are variable and usually nonspecific. CASE SUMMARY: We report a 39-week-old newborn delivered via vaginal forceps who presented with tachypnea but without showing other birth-trauma-related manifestations. The infant was initially diagnosed with pneumonia. However, the newborn still exhibited tachypnea despite effective antibiotic treatment. Chest radiography revealed right diaphragmatic elevation. M-mode ultrasonography revealed decreased movement of the right diaphragm. The infant was subsequently diagnosed with diaphragmatic paralysis. After 4 weeks, tachypnea improved. Upon re-examination using M-mode ultrasonography, the difference in bilateral diaphragmatic muscle movement was smaller than before. CONCLUSION: Appropriate use of M-mode ultrasound to quantify diaphragmatic excursions could facilitate timely diagnosis and provide objective evaluation.
RESUMO
BACKGROUND/OBJECTIVES: The study examined the association between homocysteine and diabetes mellitus in patients with H-type hypertension and assessed the possible effect modifiers. SUBJECTS/METHODS: This cross-sectional study included 1,255 eligible participants in the 'H-type Hypertension Management and Stroke Prevention Strategic International Science and Technology Innovation Cooperation Project' among rural Chinese people with H-type hypertension. A multivariate logistic regression model was used to evaluate the relationship between homocysteine and diabetes mellitus. RESULTS: The mean level of total homocysteine (tHcy) in the diabetes mellitus population was 19.37 µmol/L, which was significantly higher than the non-diabetic patients (18.18 µmol/L). When tHcy was analyzed as a continuous variable, the odds ratio (OR) of diabetes was 1.17 (95% confidence interval [CI], 1.01-1.35; per interquartile range). When tHcy was stratified according to the quintile, the ORs for diabetes were 2.86 (95% CI, 1.22-6.69) in the highest quintile (tHcy ≥ 20.60 µmol/L) compared to the reference group (tHcy < 12.04 µmol/L). When tHcy was grouped by 15 µmol/L and 20 µmol/L, patients with tHcy ≥ 20 µmol/L had a significantly (P = 0.037) higher risk of diabetes (OR, 2.03; 95% CI, 1.04-3.96) than in those with tHcy < 15 µmol/L. Subgroup analysis showed that the tHcy-diabetes association was unaffected by other variables. CONCLUSION: In this study of rural Chinese people with H-type hypertension, the tHcy levels showed a positive association with diabetes mellitus. This independent association is unaffected by other potential risk factors.
RESUMO
BACKGROUND: In order to comprehend the regulatory mechanisms that result in the alleviation of sweet cherry pitting disorder through cold shock (0 °C ice-water mixture for 10 min), an investigation was conducted into the impacts of cold shock treatment (CST) on membrane lipid metabolism, antioxidant enzyme activity, as well as pitting of cold-stored sweet cherry fruit. RESULTS: CST significantly inhibited the increase in pitting incidence, pitting index, and decay incidence. The CST treatment provided greater titratable acidity, firmness as well as total content of soluble solids. The use of CST prevented the build-up of superoxide anions, hydrogen peroxide, malondialdehyde, and reduced permeability of cell membranes. When in contrast to control group, the CST also raised the expression levels along with activity of the antioxidant enzymes ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT). Furthermore, CST reduced the amount of fruit cell membrane peroxidation, suppressed the activity of phospholipase and lipoxygenase, postponed the rise in saturated fatty acids (SFAs) and decrease in unsaturated fatty acids (USFAs), ultimately keeping a high ratio of USFAs to SFAs. CONCLUSION: CST can alleviating pitting disorder in sweet cherry fruit via preventing peroxidation of membrane lipid and elevating the antioxidant enzymes activity. © 2024 Society of Chemical Industry.
RESUMO
Huanglian Jiedu decoction (HLJD) has been used to treat ischemic stroke in clinic. However, the detailed protective mechanisms of HLJD on ischemic stroke have yet to be elucidated. The aim of this study is to elucidate the underlying pharmacological mechanisms of HLJD based on the inhibition of neuroinflammation and the amelioration of nerve cell damage. A middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats and received HLJD treatment. Effects of HLJD on neurological function was assessed based on Bederson's score, postural reflex test and asymmetry score. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, Hematein and eosin (HE) and Nissl staining were used to observe the pathological changes in brain. Then, transcriptomics was used to screen the differential genes in brain tissue in MCAO/R model rats following HLJD intervention. Subsequently, the effects of HLJD on neutrophil extracellular trap (NET) formation-related neuroinflammation, gamma-aminobutyric acid (GABA)ergic synapse activation, nerve cell damage and proliferation were validated using immunofluorescence, western blot and enzyme-linked immunosorbent assay (ELISA). Our results showed that HLJD intervention reduced the Bederson's score, postural reflex test score and asymmetry score in MCAO/R model rats. Pathological staining indicated that HLJD treatment decreased the cerebral infarction area, mitigated neuronal damage and increased the numbers of Nissl bodies. Transcriptomics suggested that HLJD affected 435 genes in MCAO/R rats. Among them, several genes involving in NET formation and GABAergic synapses pathways were dysregulated. Subsequent experimental validation showed that HLJD reduced the MPO+CitH3+ positive expression area, reduced the protein expression of PAD4, p-P38/P38, p-ERK/ERK and decreased the levels of IL-1ß, IL-6 and TNF-α, reversed the increase of Iba1+TLR4+, Iba1+p65+ and Iba1+NLRP3+ positive expression area in brain. Moreover, HLJD increased GABA levels, elevated the protein expression of GABRG1 and GAT3, decreased the TUNEL positive expression area and increased the Ki67 positive expression area in brain. HLJD intervention exerts a multifaceted positive impact on ischemia-induced cerebral injury in MCAO/R rats. This intervention effectively inhibits neuroinflammation by mitigating NET formation, and concurrently improves nerve cell damage and fosters nerve cell proliferation through activating GABAergic synapses.
Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sinapses , Animais , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Masculino , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Infarto da Artéria Cerebral Média/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/complicações , Fármacos Neuroprotetores/farmacologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
Juvenile myoclonic epilepsy (JME) is associated with brain dysconnectivity in the default mode network (DMN). Most previous studies of patients with JME have assessed static functional connectivity in terms of the temporal correlation of signal intensity among different brain regions. However, more recent studies have shown that the directionality of brain information flow has a more significant regional impact on patients' brains than previously assumed in the present study. Here, we introduced an empirical approach incorporating independent component analysis (ICA) and spectral dynamic causal modeling (spDCM) analysis to study the variation in effective connectivity in DMN in JME patients. We began by collecting resting-state functional magnetic resonance imaging (rs-fMRI) data from 37 patients and 37 matched controls. Then, we selected 8 key nodes within the DMN using ICA; finally, the key nodes were analyzed for effective connectivity using spDCM to explore the information flow and detect patient abnormalities. This study found that compared with normal subjects, patients with JME showed significant changes in the effective connectivity among the precuneus, hippocampus, and lingual gyrus (p < 0.05 with false discovery rate (FDR) correction) with most of the effective connections being strengthened. In addition, previous studies have found that the self-connection of normal subjects' nodes showed strong inhibition, but the self-connection inhibition of the anterior cingulate cortex and lingual gyrus of the patient was decreased in this experiment (p < 0.05 with FDR correction); as the activity in these areas decreased, the nodes connected to them all appeared abnormal. We believe that the changes in the effective connectivity of nodes within the DMN are accompanied by changes in information transmission that lead to changes in brain function and impaired cognitive and executive function in patients with JME. Overall, our findings extended the dysconnectivity hypothesis in JME from static to dynamic causal and demonstrated that aberrant effective connectivity may underlie abnormal brain function in JME patients at early phase of illness, contributing to the understanding of the pathogenesis of JME. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09994-4.
RESUMO
Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.