Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 1764, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992432

RESUMO

Unlike the vast majority of transition metal dichalcogenides which are semiconductors, vanadium disulfide is metallic and conductive. This makes it particularly promising as an electrode material in lithium-ion batteries. However, vanadium disulfide exhibits poor stability due to large Peierls distortion during cycling. Here we report that vanadium disulfide flakes can be rendered stable in the electrochemical environment of a lithium-ion battery by conformally coating them with a ~2.5 nm thick titanium disulfide layer. Density functional theory calculations indicate that the titanium disulfide coating is far less susceptible to Peierls distortion during the lithiation-delithiation process, enabling it to stabilize the underlying vanadium disulfide material. The titanium disulfide coated vanadium disulfide cathode exhibits an operating voltage of ~2 V, high specific capacity (~180 mAh g-1 @200 mA g-1 current density) and rate capability (~70 mAh g-1 @1000 mA g-1), while achieving capacity retention close to 100% after 400 charge-discharge steps.

2.
J Phys Chem Lett ; 9(23): 6676-6682, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398890

RESUMO

Despite their weak nature, van der Waals (vdW) interactions have been shown to effectively control the optoelectronic and vibrational properties of layered materials. However, how vdW effects exist in Ruddlesden-Popper layered halide perovskites remains unclear. Here we reveal the role of interlayer vdW force in Ruddlesden-Popper perovskite in regulating phase-transition kinetics and carrier dynamics based on high-quality epitaxial single-crystalline (C4H9NH3)2PbI4 flakes with controlled dimensions. Both substrate-perovskite epitaxial interaction and interlayer vdW interaction play significant roles in suppressing the structural phase transition. With reducing flake thickness from ∼100 to ∼20 nm, electron-phonon coupling strength decreases by ∼30%, suggesting the ineffectiveness of phonon confinement of the natural quantum wells. Therefore, the conventional understanding that vdW perovskite is equivalent to a multiple quantum well has to be substantially amended due to significant nonlocal phononic effects in the layered crystal, where intralayer interaction is not drastically different from the interlayer force.

3.
Nanotechnology ; 29(44): 445702, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30124437

RESUMO

In this work, we show that remote heteroepitaxy can be achieved when Cu thin film is grown on single crystal, monolayer graphene buffered sapphire(0001) substrate via a thermal evaporation process. X-ray diffraction and electron backscatter diffraction data show that the epitaxy process forms a prevailing Cu crystal domain, which is remotely registered in-plane to the sapphire crystal lattice below the monolayer graphene, with the (111) out-of-plane orientation. As a poor metal with zero density of states at its Fermi level, monolayer graphene cannot totally screen out the stronger charge transfer/metallic interactions between Cu and substrate atoms. The primary Cu domain thus has good crystal quality as manifested by a narrow crystal misorientation distribution. On the other hand, we show that graphene interface imperfections, such as bilayers/multilayers, wrinkles and interface contaminations, can effectively weaken the atomic interactions between Cu and sapphire. This results in a second Cu domain, which directly grows on and follows the graphene hexagonal lattice symmetry and orientation. Because of the weak van der Waals interaction between Cu and graphene, this domain has inferior crystal quality. The results are further confirmed using graphene buffered spinel(111) substrate, which indicates that this remote epitaxial behavior is not unique to the Cu/sapphire system.

4.
ACS Nano ; 12(6): 6100-6108, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29746775

RESUMO

Antimony (Sb) nanostructures, including islands, sheets, and thin films, of high crystallinity were epitaxially grown on single-crystalline graphene through van der Waals interactions. Two types of graphene substrates grown by chemical vapor deposition were used, the as-grown graphene on Cu(111)/ c-sapphire and the transferred graphene on SiO2/Si. On the as-grown graphene, deposition of ultrathin Sb resulted in two growth modes and associated morphologies of Sb. One was Sb islands grown in Volmer-Weber (VW) mode, and the other was Sb sheets grown in Frank-van der Merve (FM) mode. In contrast, only Sb islands grown in VW mode were found in a parallel growth experiment on the transferred graphene. The existence of Sb sheets on the as-grown graphene was attributed to the remote epitaxy between Sb and Cu underneath the graphene. In addition, Sb thin films were grown on both the as-grown and transferred graphene substrates. Both films indicated high quality, and no significant difference can be found between these two films. This work unveiled two epitaxial alignments between Sb(0001) and graphene, namely, Sb [101̅0]∥graphene [10] for Sb islands and Sb [21̅1̅0]∥graphene [10] for Sb sheets. For Sb thin films on graphene, the epitaxial alignment followed that of Sb islands, implying that Sb thin films originated from the continued growth of Sb islands. Last, Raman spectroscopy was used to probe the state of graphene under ultrathin Sb. No strain, doping, or disorder was found in the graphene postgrowth of Sb. The knowledge of the interface formation between ultrathin Sb and graphene provides a valuable foundation for future research on van der Waals heterostructures between antimonene and graphene.

5.
Nano Lett ; 18(2): 1049-1056, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29342357

RESUMO

A multistep diffusion-mediated process was developed to control the nucleation density, size, and lateral growth rate of WSe2 domains on c-plane sapphire for the epitaxial growth of large area monolayer films by gas source chemical vapor deposition (CVD). The process consists of an initial nucleation step followed by an annealing period in H2Se to promote surface diffusion of tungsten-containing species to form oriented WSe2 islands with uniform size and controlled density. The growth conditions were then adjusted to suppress further nucleation and laterally grow the WSe2 islands to form a fully coalesced monolayer film in less than 1 h. Postgrowth structural characterization demonstrates that the WSe2 monolayers are single crystal and epitaxially oriented with respect to the sapphire and contain antiphase grain boundaries due to coalescence of 0° and 60° oriented WSe2 domains. The process also provides fundamental insights into the two-dimensional (2D) growth mechanism. For example, the evolution of domain size and cluster density with annealing time follows a 2D ripening process, enabling an estimate of the tungsten-species surface diffusivity. The lateral growth rate of domains was found to be relatively independent of substrate temperature over the range of 700-900 °C suggesting a mass transport limited process, however, the domain shape (triangular versus truncated triangular) varied with temperature over this same range due to local variations in the Se/W adatom ratio. The results provide an important step toward atomic level control of the epitaxial growth of WSe2 monolayers in a scalable process that is suitable for large area device fabrication.

6.
ACS Appl Mater Interfaces ; 9(27): 23081-23091, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621924

RESUMO

The symmetry of graphene is usually determined by a low-energy electron diffraction (LEED) method when the graphene is on the conductive substrates, but LEED cannot handle graphene transferred to SiO2/Si substrates due to the charging effect. While transmission electron microscopy can generate electron diffraction on post-transferred graphene, this method is too localized. Herein, we employed an azimuthal reflection high-energy electron diffraction (RHEED) method to construct the reciprocal space mapping and determine the symmetry of wafer-size graphene both pre- and post-transfer. In this work, single-crystalline Cu(111) films were prepared on sapphire(0001) and spinel(111) substrates with sputtering. Then the graphene was epitaxially grown on single-crystalline Cu(111) films with a low pressure chemical vapor deposition. The reciprocal space mapping using azimuthal RHEED confirmed that the graphene grown on Cu(111) films was single-crystalline, no matter the form of the monolayer or multilayer structure. While the Cu(111) film grown on sapphire(0001) may occasionally consist of 60° in-plane rotational twinning, the reciprocal space mapping revealed that the in-plane orientation of graphene grown atop was not affected. The proposed method for checking the crystalline integrity of the post-transferred graphene sheets is an important step in the realization of the graphene as a platform to fabricate electronic and optoelectronic devices.

7.
Nano Lett ; 16(12): 7974-7981, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960450

RESUMO

One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. The unique photon transport in the one-dimensional structure has been studied in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.

8.
Nanotechnology ; 26(7): 075704, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627961

RESUMO

The knowledge on the influence of surface roughness and the electron-phonon (el-ph) interaction on electrical transport properties of nanoscale metal films is important from both fundamental and technological points of view. Here we report a study of the temperature dependent electron transport properties of nanoscale copper films by measuring temperature dependent electrical resistivity with thickness ranging from 4 to 500 nm. We show that the residual resistivity, which is temperature independent, can be described quantitatively using both measured vertical surface root-mean-square roughness and lateral correlation length in the nanoscale, with no adjustable parameter, by a recent quasi-classical model developed by Chatterjee and Meyerovich (2010 Phys. Rev. B 81 245409-10). We also demonstrate that the temperature dependent component of the resistivity can be described using the Bloch-Grüneisen equation with a thickness dependent el-ph coupling constant and a thickness dependent Debye temperature. We show that the increase of the el-ph coupling constant with the decrease of film thickness gives rise to an enhancement of the temperature dependent component of the resistivity.

9.
Nanotechnology ; 23(2): 025401, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166731

RESUMO

We demonstrated that Pd-decorated Mg blades are air-stable for hydrogen storage with a low desorption temperature of 373 K. Pd-catalyst-decorated Mg blades were prepared by 64° oblique incident angle thermal deposition on a rotatable substrate with the rotation axis perpendicular to the substrate. The hydrogen desorption from Pd-decorated Mg blades was performed and recorded by temperature-programmed desorption (TPD) for repeated hydrogenation­dehydrogenation cycles. The near-surface structural and compositional changes were characterized in situ by reflection high energy electron diffraction (RHEED). The Mg blades were intentionally exposed to air at elevated temperatures (333 or 358 K) between certain cycles. It was found that the degradation of the storage capacity was affected weakly by the air exposure at moderate temperatures. The kinetics of the hydrogen desorption was sensitive to air exposure but recoverable through a replenishment of fresh catalyst Pd on the surface of the oxidized Mg blades.

10.
ACS Nano ; 4(10): 5627-32, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20839785

RESUMO

We report the room temperature growth of biaxially textured Al films and further demonstrate the use of these Al films in preparing single-crystalline Si layers on glass substrates. The formation of the biaxial texture in Al film relies on the existence of the CaF(2) buffer layer prepared using oblique angle physical vapor deposition, which consists of single-crystalline nanorods with caps that are in the form of inverted nanopyramids. The single-crystalline Si film was obtained upon crystallization of the amorphous Si film deposited through physical evaporation on the biaxially textured Al film. This method of preparing single-crystalline Si film on glass substrate is potentially attractive for being employed in silicon technology and in fabrication of low-cost electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA