Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(12)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835582

RESUMO

In this paper, the reaction characteristic of a novel reactive material, which introduced bismuth trioxide (Bi2O3) into traditional polytetrafluoroethylene/aluminum (PTFE/Al), is studied. The effect of Bi2O3 with different content and particle size on the reaction behaviors of PTFE/Al/Bi2O3 are investigated by drop-weight test and X-ray diffractometer (XRD), including impact sensitivity, energy release performance under a certain impact, and reaction mechanism. The experimental results show that the content of Bi2O3 increased from 0% to 35.616%, the characteristic drop height of impact sensitivity (H50) of PTFE/Al/Bi2O3 reactive materials decreased first and then increased, and the minimum H50 of all types of materials in the experiment is 0.74 times that of PTFE/Al, and the particle size of Bi2O3 affects the rate of H50 change with Bi2O3 content. Besides, with the increase of Bi2O3 content, both the reaction intensity and duration first increase and then decrease, and there is optimum content of Bi2O3 maximizing the reaction degree of the PTFE/Al/Bi2O3. Furthermore, a prediction model for the impact sensitivity of PTFE-based reactive material is developed. The main reaction products include AlF3, xBi2O3·Al2O3, and Bi.

2.
Materials (Basel) ; 12(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653065

RESUMO

The traditional polytetrafluoroethylene (PTFE)/Al reactive material liner shaped charge generally produces insufficient penetration depth, although it enlarges the penetration hole diameter by chemical energy release inside the penetration crater. As such, a novel high-density reactive material liner based on the PTFE matrix was fabricated, and the corresponding penetration performance was investigated. Firstly, the PTFE/W/Cu/Pb high-density reactive material liner was fabricated via a cold pressing/sintering process. Then, jet formation and penetration behaviors at different standoffs were studied by pulse X-ray and static experiments, respectively. The X-ray results showed that the PTFE/W/Cu/Pb high-density reactive material liner forms an excellent reactive jet penetrator, and the static experimental results demonstrated that the penetration depth of this high-density reactive jet increased firstly and then decreased by increasing the standoff. When the standoff was 1.5 CD (charge diameter), the penetration depth of this reactive jet reached 2.82 CD, which was significantly higher than that of the traditional PTFE/Al reactive jet. Moreover, compared with the conventional metal copper jet penetrating steel plates, the entrance hole diameter caused by this high-density reactive jet improved 29.2% at the same standoff. Lastly, the chemical reaction characteristics of PTFE/W/Cu/Pb reactive materials were analyzed, and a semi-empirical penetration model of the high-density reactive jet was established based on the quasi-steady ideal incompressible fluid dynamics theory.

3.
Materials (Basel) ; 12(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466348

RESUMO

The penetration enhancement behaviors of a reactive material double-layered liner (RM-DLL) shaped charge against thick steel targets are investigated. The RM-DLL comprises an inner copper liner, coupled with an outer PTFE (polytetrafluoroethylene)/Al reactive material liner, fabricated via a cold pressing/sintering process. This RM-DLL shaped charge presents a novel defeat mechanism that incorporates the penetration capability of a precursor copper jet and the chemical energy release of a follow-thru reactive material penetrator. Experimental results showed that, compared with the single reactive liner shaped charge jet, a deeper penetration depth was produced by the reactive material-copper jet, whereas the penetration performance and reactive material mass entering the penetrated target strongly depended on the reactive liner thickness and standoff. To further illustrate the penetration enhancement mechanism, numerical simulations based on AUTODYN-2D code were conducted. Numerical results indicated that, with increasing reactive liner thickness, the initiation delay time of the reactive materials increased significantly, which caused the penetration depth and the follow-thru reactive material mass to increase for a given standoff. This new RM-DLL shaped charge configuration provides an extremely efficient method to enhance the penetration damage to various potential targets, such as armored fighting vehicles, naval vessels, and concrete targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA