Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Microb Ecol ; 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743015

RESUMO

Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity, and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF], and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass, and enzyme activities were strongly affected by vegetation restoration, and soil bacterial and fungal communities were significantly different from each other at the sites. Correlation analysis showed that LB and FRB were significantly positively correlated with the Chao index of soil bacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota, and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH, and nutrients have important effects on the bacterial and fungal diversities, as well as Acidobacteria, Proteobacteria, Actinobacteria, Nitrospirae, Zygomycota, and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities, and the composition and diversity of soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.

2.
Nat Prod Res ; : 1-7, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567911

RESUMO

Phytochemical investigation of Melodinus fusiformis led to a new aspidosperma-aspidosperma bisindole alkaloid (BIA), bis-19ß-hydroxyvenalstonidine (1), together with three known BIAs (2-4). The structures were established by extensive analysis of their HRESIMS, NMR data, and comparing with the reported data. BIA 1 is an almost symmetrical structure, linked by C3-C14' bond, while BIAs 2-4 are reported for the first time from the plant. The cytotoxic, immunosuppressive and anti-inflammatory activities of BIAs 1-4 were evaluated in vitro. BIAs 1, 3 and 4 showed good toxicity against MOLT-4 cell lines with IC50 values in the range of 1.5-17.5 -M. BIA 2 exhibited the strongest inhibitory effect against MCF-7 cell lines with an IC50 value of 7.1 µM. BIA 1 significantly inhibited Con A-stimulated mice splenocytes proliferation equal to that of the positive control (DXM) in a concentration-dependent manner. BIAs 1 and 2 were able to decrease the NO production in LPS-induced RAW 264.7 cells at 30 µM concentration. BIA 2 showed similar inhibition of nitric oxide release, compared to that of DXM. Furthermore, BIA 2 remarkably inhibited the levels of IL-6 and TNF-α compared to the LPS induced group. Interestingly, BIA 2 displayed an inhibitory effect on TNF-α production similar to that of dexamethasone at a concentration of 20 µM.

3.
Int J Biol Sci ; 16(16): 3184-3199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162824

RESUMO

Background: Histone deacetylase (HDAC) inhibitors have emerged as a new class of anti-tumor agents for various types of tumors, including glioblastoma. Methods and results: We found that a novel HDAC inhibitor, MPT0B291, significantly reduced the cell viability and increased cell death of human and rat glioma cell lines, but not in normal astrocytes. We also demonstrated that MPT0B291 suppressed proliferation by inducing G1 phase cell cycle arrest and increased apoptosis in human and rat glioma cell lines by flow cytometry and immunocytochemistry. We further investigated the anti-tumor effects of MPT0B291 in xenograft (mouse) and allograft (rat) models. The IVIS200 images and histological analysis indicated MPT0B291 (25 mg/kg, p. o.) reduced tumor volume. Mechanistically, MPT0B291 increased phosphorylation and acetylation/activation of p53 and increased mRNA levels of the apoptosis related genes PUMA, Bax, and Apaf1 as well as increased protein level of PUMA, Apaf1 in C6 cell line. The expression of cell cycle related gene p21 was also increased and Cdk2, Cdk4 were decreased by MPT0B291. Conclusion: Our study highlights the anti-tumor efficacy of a novel compound MPT0B291 on glioma growth.

4.
Elife ; 92020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32589144

RESUMO

Traumatic brain injury (TBI) causes mortality and disability worldwide. It can initiate acute cell death followed by secondary injury induced by microglial activation, oxidative stress, inflammation and autophagy in brain tissue, resulting in cognitive and behavioral deficits. We evaluated a new pomalidomide (Pom) analog, 3,6'-dithioPom (DP), and Pom as immunomodulatory agents to mitigate TBI-induced cell death, neuroinflammation, astrogliosis and behavioral impairments in rats challenged with controlled cortical impact TBI. Both agents significantly reduced the injury contusion volume and degenerating neuron number evaluated histochemically and by MRI at 24 hr and 7 days, with a therapeutic window of 5 hr post-injury. TBI-induced upregulated markers of microglial activation, astrogliosis and the expression of pro-inflammatory cytokines, iNOS, COX-2, and autophagy-associated proteins were suppressed, leading to an amelioration of behavioral deficits with DP providing greater efficacy. Complementary animal and cellular studies demonstrated DP and Pom mediated reductions in markers of neuroinflammation and α-synuclein-induced toxicity.

5.
Neuro Oncol ; 22(10): 1439-1451, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32328646

RESUMO

BACKGROUND: Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. METHODS: Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation-related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. RESULTS: We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. CONCLUSION: Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.

7.
BMC Genomics ; 21(1): 288, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264854

RESUMO

BACKGROUND: The family of NAC proteins (NAM, ATAF1/2, and CUC2) represent a class of large plant-specific transcription factors. However, identification and functional surveys of NAC genes of tomato (Solanum lycopersicum) remain unstudied, despite the tomato genome being decoded for several years. This study aims to identify the NAC gene family and investigate their potential roles in responding to Al stress. RESULTS: Ninety-three NAC genes were identified and named in accordance with their chromosome location. Phylogenetic analysis found SlNACs are broadly distributed in 5 groups. Gene expression analysis showed that SlNACs had different expression levels in various tissues and at different fruit development stages. Cycloheximide treatment and qRT-PCR analysis indicated that SlNACs may aid regulation of tomato in response to Al stress, 19 of which were significantly up- or down-regulated in roots of tomato following Al stress. CONCLUSION: This work establishes a knowledge base for further studies on biological functions of SlNACs in tomato and will aid in improving agricultural traits of tomato in the future.

8.
Exp Neurol ; 324: 113135, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778663

RESUMO

Traumatic brain injury (TBI) is one of the most common causes of death and disability worldwide. We investigated whether inhibition of p53 using pifithrin (PFT)-α or PFT-µ provides neuroprotective effects via p53 transcriptional dependent or -independent mechanisms, respectively. Sprague Dawley rats were subjected to controlled cortical impact TBI followed by the administration of PFTα or PFT-µ (2 mg/kg, i.v.) at 5 h after TBI. Brain contusion volume, as well as sensory and motor functions were evaluated at 24 h after TBI. TBI-induced impairments were mitigated by both PFT-α and PFT-µ. Fluoro-Jade C staining was used to label degenerating neurons within the TBI-induced cortical contusion region that, together with Annexin V positive neurons, were reduced by PFT-µ. Double immunofluorescence staining similarly demonstrated that PFT-µ significantly increased HO-1 positive neurons and mRNA expression in the cortical contusion region as well as decreased numbers of 4-hydroxynonenal (4HNE)-positive cells. Levels of mRNA encoding for p53, autophagy, mitophagy, anti-oxidant, anti-inflammatory related genes and proteins were measured by RT-qPCR and immunohistochemical staining, respectively. PFT-α, but not PFT-µ, significantly lowered p53 mRNA expression. Both PFT-α and PFT-µ lowered TBI-induced pro-inflammatory cytokines (IL-1ß and IL-6) mRNA levels as well as TBI-induced autophagic marker localization (LC3 and p62). Finally, treatment with PFT-µ mitigated TBI-induced declines in mRNA levels of PINK-1 and SOD2. Our data suggest that both PFT-µ and PFT-α provide neuroprotective actions through regulation of oxidative stress, neuroinflammation, autophagy, and mitophagy mechanisms, and that PFT-µ, in particular, holds promise as a TBI treatment strategy.


Assuntos
Autofagia/efeitos dos fármacos , Benzotiazóis/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Encefalite/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antioxidantes/metabolismo , Comportamento Animal , Contusão Encefálica/tratamento farmacológico , Contusão Encefálica/patologia , Contusão Encefálica/psicologia , Lesões Encefálicas Traumáticas/psicologia , Citocinas/metabolismo , Encefalite/patologia , Heme Oxigenase (Desciclizante)/biossíntese , Masculino , Ratos , Ratos Sprague-Dawley , Tolueno/uso terapêutico
9.
J Org Chem ; 85(4): 2716-2724, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886664

RESUMO

Copper-catalyzed multicomponent borylacylation of imines with acid chlorides and bis(pinacolato)diboron was developed for the preparation of synthetically useful and pharmacologically relevant α-amino boronic acid derivatives. Starting from a range of acid chlorides and imines with aryl, heteroaryl, and alkyl substituents, most of these ligand-free reactions proceeded smoothly at room temperature in moderate to good yields. Furthermore, a facile and convenient one-pot, multistep access to the direct synthesis of α-amino boronic acid derivatives from available aldehydes and amines was also developed.

10.
Virus Res ; 276: 197808, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712122

RESUMO

Epstein-Barr virus (EBV) infection is associated with the development of gastric cancer (GC). Forkhead box class O (FOXO) transcription factors play important roles in tumor suppression. This study aims to investigate the interplay between EBV and FOXOs in EBV-associated GC (EBVaGC). The results showed that EBV infection of GC cells led to the downregulation of FOXO1 by the inhibition of its mRNA and protein expression. FOXO3 protein is repressed by EBV infection. FOXO4 mRNA is upregulated in EBV-positive cell lines, while its protein expression is downregulated. FOXO1, FOXO3 and FOXO4 proteins are upregulated following PI3K inhibition in GT39 cells, confirming that they are partially suppressed by the PI3K/AKT pathway. However, the upregulation of FOXO1 and FOXO3 by single transfection with LMP1 or LMP2A implies that the dysregulation of FOXOs in EBVaGC is affected by various EBV latent genes and that PI3K/AKT signaling is not the only mechanism of FOXO regulation.

11.
New Phytol ; 225(4): 1732-1745, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31608986

RESUMO

The mechanisms involved in the regulation of gene expression in response to phosphate (Pi) deficiency have been extensively studied, but their chromatin-level regulation remains poorly understood. We examined the role of histone acetylation in response to Pi deficiency by using the histone deacetylase complex1 (hdc1) mutant. Genes involved in root system architecture (RSA) remodeling were analyzed by quantitative real-time polymerase chain reaction (qPCR) and chromatin immunoprecipitation qPCR. We demonstrate that histone H3 acetylation increased under Pi deficiency, and the hdc1 mutant was hypersensitive to Pi deficiency, with primary root growth inhibition and increases in root hair number. Concomitantly, Pi deficiency repressed HDC1 protein abundances. Under Pi deficiency, hdc1 accumulated higher concentrations of Fe3+ in the root tips and had higher expression of genes involved in RSA remodeling, such as ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1), LOW PHOSPHATE ROOT1 (LPR1), and LPR2 compared with wild-type plants. Furthermore, Pi deficiency enriched the histone H3 acetylation of ALMT1 and LPR1. Finally, genetic evidence showed that LPR1/2 was epistatic to HDC1 in regulating RSA remodeling. Our results suggest a chromatin-level control of Pi starvation responses in which HDC1-mediated histone H3 deacetylation represses the transcriptional activation of genes involved in RSA remodeling in Arabidopsis.

12.
J Clin Med ; 8(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547418

RESUMO

Radiotherapy is commonly used to treat patients with oral squamous cell carcinoma (OSCC), but a subpopulation of OSCC patients shows a poor response to irradiation treatment. Therefore, identifying a biomarker to predict the effectiveness of radiotherapy in OSCC patients is urgently needed. In silico analysis of public databases revealed that upregulation of CHRNA5, the gene encoding nicotinic acetylcholine receptor subunit alpha-5, is extensively detected in primary tumors compared to normal tissues and predicts poor prognosis in OSCC patients. Moreover, CHRNA5 transcript level was causally associated with the effective dose of irradiation in a panel of OSCC cell lines. Artificial silencing of CHRNA5 expression enhanced, but nicotine reduced, the radiosensitivity of OSCC cells. Gene set enrichment analysis demonstrated that the E2F signaling pathway is highly activated in OSCC tissues with high levels of CHRNA5 and in those derived from patients with cancer recurrence after radiotherapy. CHRNA5 knockdown predominantly suppressed E2F activity and decreased the phosphorylation of the Rb protein; however, nicotine treatment dramatically promoted E2F activity and increased Rb phosphorylation, which was mitigated after CHRNA5 knockdown in OSCC cells. Notably, the signature combining increased mRNA levels of CHRNA5 and the E2F signaling gene set was associated with worse recurrence-free survival probability in OSCC patients recorded to be receiving radiotherapy. Our findings suggest that CHRNA5 is not only a useful biomarker for predicting the effectiveness of radiotherapy but also a druggable target to enhance the cancericidal effect of irradiation on OSCC.

13.
Sensors (Basel) ; 19(14)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330904

RESUMO

Electric cell-substrate impedance sensing (ECIS) is an emerging technique for sensitively monitoring morphological changes of adherent cells in tissue culture. In this study, human mesenchymal stem cells (hMSCs) were exposed to different concentrations of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) for 20 h and their subsequent concentration-dependent responses in micromotion and wound healing migration were measured by ECIS. FCCP disrupts ATP synthesis and results in a decrease in cell migration rates. To detect the change of cell micromotion in response to FCCP challenge, time-series resistances of cell-covered electrodes were monitored and the values of variance were calculated to verify the difference. While Seahorse XF-24 extracellular flux analyzer can detect the effect of FCCP at 3 µM concentration, the variance calculation of the time-series resistances measured at 4 kHz can detect the effect of FCCP at concentrations as low as 1 µM. For wound healing migration, the recovery resistance curves were fitted by sigmoid curve and the hill slope showed a concentration-dependent decline from 0.3 µM to 3 µM, indicating a decrease in cell migration rate. Moreover, dose dependent incline of the inflection points from 0.3 µM to 3 µM FCCP implied the increase of the half time for wound recovery migration. Together, our results demonstrate that partial uncoupling of mitochondrial oxidative phosphorylation reduces micromotion and wound healing migration of hMSCs. The ECIS method used in this study offers a simple and sensitive approach to investigate stem cell migration and its regulation by mitochondrial dynamics.


Assuntos
Técnicas de Cultura de Células , Impedância Elétrica , Células-Tronco Mesenquimais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos
14.
Cell Transplant ; 28(9-10): 1183-1196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31177840

RESUMO

Traumatic brain injury (TBI), a major cause of mortality and morbidity, affects 10 million people worldwide, with limited treatment options. We have previously shown that (-)-phenserine (Phen), an acetylcholinesterase inhibitor originally designed and tested in clinical phase III trials for Alzheimer's disease, can reduce neurodegeneration after TBI and reduce cognitive impairments induced by mild TBI. In this study, we used a mouse model of moderate to severe TBI by controlled cortical impact to assess the effects of Phen on post-trauma histochemical and behavioral changes. Animals were treated with Phen (2.5 mg/kg, IP, BID) for 5 days started on the day of injury and the effects were evaluated by behavioral and histological examinations at 1 and 2 weeks after injury. Phen significantly attenuated TBI-induced contusion volume, enlargement of the lateral ventricle, and behavioral impairments in motor asymmetry, sensorimotor functions, motor coordination, and balance functions. The morphology of microglia was shifted to an active from a resting form after TBI, and Phen dramatically reduced the ratio of activated to resting microglia, suggesting that Phen also mitigates neuroinflammation after TBI. While Phen has potent anti-acetylcholinesterase activity, its (+) isomer Posiphen shares many neuroprotective properties but is almost completely devoid of anti-acetylcholinesterase activity. We evaluated Posiphen at a similar dose to Phen and found similar mitigation in lateral ventricular size increase, motor asymmetry, motor coordination, and balance function, suggesting the improvement of these histological and behavioral tests by Phen treatment occur via pathways other than anti-acetylcholinesterase inhibition. However, the reduction of lesion size and improvement of sensorimotor function by Posiphen were much smaller than with equivalent doses of Phen. Taken together, these results show that post-injury treatment with Phen over 5 days significantly ameliorates severity of TBI. These data suggest a potential development of this compound for clinical use in TBI therapy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Contusão Encefálica , Fármacos Neuroprotetores/farmacologia , Fisostigmina/análogos & derivados , Animais , Contusão Encefálica/tratamento farmacológico , Contusão Encefálica/metabolismo , Contusão Encefálica/patologia , Contusão Encefálica/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Fisostigmina/farmacologia , Fatores de Tempo
15.
Sensors (Basel) ; 19(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100944

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. In recent studies, the efficacy of suberoylanilide hydroxamic acid (SAHA) has been investigated for GBM. We explored the effects of two exploratory compounds, the histone deacetylase SAHA and the natural product andrographolide, on Uppsala 87 Malignant Glioma (U-87 MG) cell migration and viability in comparison with the clinically used therapeutic agent temozolomide (TMZ). We used the electric cell-substrate impedance sensing (ECIS) system to monitor the migration of U-87 MG cells after treatment with various concentrations of these compounds. Moreover, we used the Alamar blue assay and western blotting to observe the concentration-dependent changes in the viability and apoptosis of U-87 MG cells. Our results demonstrated that both SAHA and andrographolide (10-300 µM) significantly inhibited GBM cell migration in a concentration-dependent manner, and 10 µM SAHA and 56 µM andrographolide demonstrated remarkable inhibitory effects on U-87 MG migration. Western blotting indicated that compared with TMZ, both SAHA and andrographolide induced higher expression levels of apoptosis-related proteins, such as caspase-3, BAX, and PARP in U-87 MG cells. Furthermore, all three drugs downregulated the expression of the antiapoptotic protein Bcl-2. In conclusion, SAHA and andrographolide showed exceptional results in inhibiting cell migration and motility. The ECIS wound healing assay is a powerful technique to identify and screen potential therapeutic agents that can inhibit cancer cell migration.


Assuntos
Técnicas Biossensoriais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Impedância Elétrica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Temozolomida/farmacologia , Vorinostat/farmacologia
16.
Behav Neurol ; 2019: 4364592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110595

RESUMO

Introduction. Over 1 million mild traumatic brain injury (mTBI) cases are reported annually worldwide and may result in cognitive, physical, and emotional deterioration; depression; anxiety; and sleep problems. However, studies on long-term mTBI effects are limited. This study included 440 patients, and regular follow-ups of psychological assessments were performed for 2 years. Four questionnaires, including the Pittsburgh sleep quality index (PSQI), Epworth sleepiness scale (ESS), Beck's anxiety inventory (BAI), and Beck's depression inventory (BDI), were used to evaluate sleep problems, daytime sleepiness, anxiety, and depression, respectively. Results show that BAI and BDI scores considerably improved at the 6th-week, 1st-year, and 2nd-year follow-ups compared to baseline, yet these remained significantly different. In addition, anxiety and depression were prominent symptoms in a select subgroup of patients with poor initial evaluations, which improved over the 2 years. However, the ESS and PSQI scores fluctuated only mildly over the same time span. In conclusion, the mTBI patients showed a gradual improvement of anxiety and depression over the 2 years following injury. While anxiety and depression levels for mTBI patients in general did not return to premorbid status, improvements were observed. Sleep disorders persisted and were consistent with initial levels of distress.


Assuntos
Concussão Encefálica/complicações , Concussão Encefálica/psicologia , Adulto , Ansiedade/psicologia , Depressão/psicologia , Transtorno Depressivo , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Psicometria/métodos , Sono , Transtornos do Sono-Vigília/psicologia , Inquéritos e Questionários
17.
Waste Manag ; 85: 295-303, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803583

RESUMO

Solid alcohols based on waste cooking oil (WCO) and other edible oils (butter or soybean oil) were synthesized by a simple one-step method. The effects of sodium hydroxide (NaOH) dosage and type of oil on the combustion performances were explored. IR spectroscopy and micro-morphologies of the oil based solid alcohols were also studied. Results showed that, for oil based solid alcohol, use of an appropriate excess of NaOH and an oil with lower iodine value produced the solid alcohol with better combustion performance. Centrifugation produced the bottom waste cooking oil (B-WCO) with lower iodine value and the supernatant waste cooking oil (S-WCO) with higher iodine value. The B-WCO afforded solid alcohol with longer combustion time, higher melting temperature and relatively low combustion residue rate, whereas the S-WCO could be used for synthesizing biodiesel.


Assuntos
Biocombustíveis , Óleos Vegetais , Culinária , Etanol , Alimentos
18.
Sci Rep ; 9(1): 2694, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804406

RESUMO

It remains unclear how different uses of angiotensin-converting inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) influence the progression of chronic kidney disease (CKD). This study explored CKD progression in a multicentre, longitudinal cohort study that included 2639 patients with CKD stage 1-5 and hypertension. Patients treated with ACEI or ARB for ≥90 days during a 6-mo period comprised the study group, or no treatment, comprised the control group. The study group was subdivided on the basis of treatment: ACEI monotherapy or ARB monotherapy. Progression of renal deterioration was defined by an average eGFR decline of more than 5 mL/min/1.73 m2/yr or the commencement of dialysis. With at least 1-year follow up, a progression of renal deterioration was demonstrated in 29.70% of the control group and 25.09% of the study group. Patients in the study group had significantly reduced progression of CKD with adjusted odds ratio 0.79 (95% confidence interval: 0.63-0.99). However, when ACEI monotherapy and ARB monotherapy were analyzed separately, none of their associations with CKD progression was statistically significant. In conclusion, ACEI or ARB monotherapy may retard the deterioration of renal function among patients with CKD and hypertension.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Insuficiência Renal Crônica/tratamento farmacológico , Idoso , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Hipertensão/sangue , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fosfatos/sangue , Estudos Prospectivos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/fisiopatologia , Taiwan , Triglicerídeos/sangue
19.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682785

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide. Long-term deficits after TBI arise not only from the direct effects of the injury but also from ongoing processes such as neuronal excitotoxicity, inflammation, oxidative stress and apoptosis. Tumor necrosis factor-α (TNF-α) is known to contribute to these processes. We have previously shown that 3,6'-dithiothalidomide (3,6'-DT), a thalidomide analog that is more potent than thalidomide with similar brain penetration, selectively inhibits the synthesis of TNF-α in cultured cells and reverses behavioral impairments induced by mild TBI in mice. In the present study, we further explored the therapeutic potential of 3,6'-DT in an animal model of moderate TBI using Sprague-Dawley rats subjected to controlled cortical impact. A single dose of 3,6'-DT (28 mg/kg, i.p.) at 5 h after TBI significantly reduced contusion volume, neuronal degeneration, neuronal apoptosis and neurological deficits at 24 h post-injury. Expression of pro-inflammatory cytokines in the contusion regions were also suppressed at the transcription and translation level by 3,6'-DT. Notably, neuronal oxidative stress was also suppressed by 3,6'-DT. We conclude that 3,6'-DT may represent a potential therapy to ameliorate TBI-induced functional deficits.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Talidomida/farmacologia , Talidomida/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
20.
Neural Plast ; 2019: 4252943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949429

RESUMO

Transcranial direct current stimulation (tDCS) is a noninvasive technique for modulating neural plasticity and is considered to have therapeutic potential in neurological disorders. For the purpose of translational neuroscience research, a suitable animal model can be ideal for providing a stable condition for identifying mechanisms that can help to explore therapeutic strategies. Here, we developed a tDCS protocol for modulating motor excitability in anesthetized rats. To examine the responses of tDCS-elicited plasticity, the motor evoked potential (MEP) and MEP input-output (IO) curve elicited by epidural motor cortical electrical stimulus were evaluated at baseline and after 30 min of anodal tDCS or cathodal tDCS. Furthermore, a paired-pulse cortical electrical stimulus was applied to assess changes in the inhibitory network by measuring long-interval intracortical inhibition (LICI) before and after tDCS. In the results, analogous to those observed in humans, the present study demonstrates long-term potentiation- (LTP-) and long-term depression- (LTD-) like plasticity can be induced by tDCS protocol in anesthetized rats. We found that the MEPs were significantly enhanced immediately after anodal tDCS at 0.1 mA and 0.8 mA and remained enhanced for 30 min. Similarly, MEPs were suppressed immediately after cathodal tDCS at 0.8 mA and lasted for 30 min. No effect was noted on the MEP magnitude under sham tDCS stimulation. Furthermore, the IO curve slope was elevated following anodal tDCS and presented a trend toward diminished slope after cathodal tDCS. No significant differences in the LICI ratio of pre- to post-tDCS were observed. These results indicated that developed tDCS schemes can produce consistent, rapid, and controllable electrophysiological changes in corticomotor excitability in rats. This newly developed tDCS animal model could be useful to further explore mechanical insights and may serve as a translational platform bridging human and animal studies, establishing new therapeutic strategies for neurological disorders.


Assuntos
Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Eletrodos Implantados , Masculino , Ratos , Ratos Sprague-Dawley , Estimulação Transcraniana por Corrente Contínua/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...