Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Front Med (Lausanne) ; 8: 741204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805207

RESUMO

Cancer patients are at a high risk of being infected with COVID-19 and have a poor prognosis after infection. Breast cancer is one of the most common cancers. Since vaccination is an effective measure to prevent the spread of COVID-19, we studied the vaccination rate among breast cancer survivors and analyzed their characteristics to provide evidence for boosting the vaccination rate. The researchers conducted a multicenter, cross-sectional study on 747 breast cancer survivors from six hospitals in Wuhan city between June 5, 2021, and June 12, 2021. The self-administrated questionnaires based on relevant studies were distributed. The researchers then compared differences in characteristics among vaccinated patients, hesitant patients, and non-vaccinated patients. Moreover, they performed univariable and multivariable logistic regression analyses to identify potential factors associated with vaccination hesitancy. The researchers assessed a total of 744 breast cancer survivors -94 cases in the vaccinated group, 103 in the planning group, 295 in the hesitancy group, and 252 in the refusal group. The vaccination rate was 12.63% (95% CI 10.25-15.02%) and 37.23% (95% CI 27.48-47.82%) patients reported adverse reactions. The vaccination hesitancy/refusal rate was 73.52% (95% CI 70.19-76.66%), which was independently associated with current endocrine or targeted therapy (odds ratio [OR] = 1.52, 95% CI 1.03-2.24), no notification from communities or units (OR = 2.46, 95% CI 1.69-3.59) and self-perceived feel (general vs. good, OR = 1.46, 95% CI 1.01-2.13; bad vs. good, OR = 4.75, 95% CI 1.85-12.16). In the hesitancy/refusal group, the primary reason was "I did not know who to ask whether I can get vaccinated" (46.07%), the person who would most influence decisions of patients was the doctor in charge of treatment (35.83%). Effective interaction between doctors and patients, simple and consistent practical guidelines on vaccination, and timely and positive information from authoritative media could combat misinformation and greatly reduce vaccine hesitancy among breast cancer survivors.

2.
Chin Med ; 16(1): 113, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742322

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease dominated by synovial hyperplasia and bone destruction. The male flower of Eucommia ulmoides Oliv. (EF) has been shown to exert effects on the inflammation caused by RA. However, how EF affects synoviocyte apoptosis and bone destruction on RA have not been investigated thoroughly. The effects of EF on apoptosis of human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cells, osteoclast differentiation of RAW264.7 cells, and bone destruction in a collagen-induced arthritis (CIA) model in rats were explored. METHODS: First, the main components of EF were identified by high-performance liquid chromatography. In vitro, we investigated the anti-proliferative and pro-apoptotic effects of EF on HFLS-RA cells by immunofluorescence assays, flow cytometry, real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting; we also investigated how EF influenced the differentiation of RAW264.7 cells into osteoclasts. In vivo, we used a rat model of CIA to investigate the effects of EF on anti-arthritis activity, toe swelling, Arthritis Score, serum levels of metabolic bone factors, and pathologic conditions. Micro-computed tomography was used to scan ankle joints. mRNA and protein expression of factors related to the nuclear factor-kappa B (NF-κB) pathway were determined by RT-qPCR and western blotting, respectively. RESULTS: EF inhibited synoviocyte proliferation and promoted apoptosis in a dose-dependent manner. EF inhibited osteoclast differentiation by inhibiting activation of the NF-κB pathway. EF reduced articular inflammation in CIA rats, inhibited the expression of pro-angiogenic factors, and delayed the destruction of articular cartilage and bone. Our data indicated that EF acted via a mechanism related to bone metabolism induced by the NF-κB pathway. CONCLUSIONS: EF exerts a potential therapeutic effect upon RA. Our research will help to elucidate the potential pharmacologic mechanisms associated with the beneficial effects of EF, and provide an experimental basis for EF application in clinical treatments.

3.
JCI Insight ; 6(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34747371

RESUMO

Patients with diabetes with coronary microvascular disease (CMD) exhibit higher cardiac mortality than patients without CMD. However, the molecular mechanism by which diabetes promotes CMD is poorly understood. RNA-binding protein human antigen R (HuR) is a key regulator of mRNA stability and translation; therefore, we investigated the role of HuR in the development of CMD in mice with type 2 diabetes. Diabetic mice exhibited decreases in coronary flow velocity reserve (CFVR; a determinant of coronary microvascular function) and capillary density in the left ventricle. HuR levels in cardiac endothelial cells (CECs) were significantly lower in diabetic mice and patients with diabetes than the controls. Endothelial-specific HuR-KO mice also displayed significant reductions in CFVR and capillary density. By examining mRNA levels of 92 genes associated with endothelial function, we found that HuR, Cx40, and Nox4 levels were decreased in CECs from diabetic and HuR-KO mice compared with control mice. Cx40 expression and HuR binding to Cx40 mRNA were downregulated in CECs from diabetic mice. Cx40-KO mice exhibited decreased CFVR and capillary density, whereas endothelium-specific Cx40 overexpression increased capillary density and improved CFVR in diabetic mice. These data suggest that decreased HuR contributes to the development of CMD in diabetes through downregulation of gap junction protein Cx40 in CECs.

4.
Cells ; 10(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440876

RESUMO

Paneth cells are specialized intestinal epithelial cells that are located at the base of small intestinal crypts and play a vital role in preserving the gut epithelium homeostasis. Paneth cells act as a safeguard from bacterial translocation across the epithelium and constitute the niche for intestinal stem cells in the small intestine by providing multiple niche signals. Recently, Paneth cells have become the focal point of investigations defining the mechanisms underlying the epithelium-microbiome interactions and pathogenesis of chronic gut mucosal inflammation and bacterial infection. Function of Paneth cells is tightly regulated by numerous factors at different levels, while Paneth cell defects have been widely documented in various gut mucosal diseases in humans. The post-transcription events, specific change in mRNA stability and translation by RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) are implicated in many aspects of gut mucosal physiology by modulating Paneth cell function. Deregulation of RBPs and ncRNAs and subsequent Paneth cell defects are identified as crucial elements of gut mucosal pathologies. Here, we overview the posttranscriptional regulation of Paneth cells by RBPs and ncRNAs, with a particular focus on the increasing evidence of RBP HuR and long ncRNA H19 in this process. We also discuss the involvement of Paneth cell dysfunction in altered susceptibility of the intestinal epithelium to chronic inflammation and bacterial infection following disrupted expression of HuR and H19.


Assuntos
Celulas de Paneth/fisiologia , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Celulas de Paneth/metabolismo , Celulas de Paneth/patologia , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética
5.
Zool Res ; 42(4): 469-477, 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213093

RESUMO

Mutations of PTEN-induced kinase I (PINK1) cause early-onset Parkinson's disease (PD) with selective neurodegeneration in humans. However, current PINK1 knockout mouse and pig models are unable to recapitulate the typical neurodegenerative phenotypes observed in PD patients. This suggests that generating PINK1 disease models in non-human primates (NHPs) that are close to humans is essential to investigate the unique function of PINK1 in primate brains. Paired single guide RNA (sgRNA)/Cas9-D10A nickases and truncated sgRNA/Cas9, both of which can reduce off-target effects without compromising on-target editing, are two optimized strategies in the CRISPR/Cas9 system for establishing disease animal models. Here, we combined the two strategies and injected Cas9-D10A mRNA and two truncated sgRNAs into one-cell-stage cynomolgus zygotes to target the PINK1 gene. We achieved precise and efficient gene editing of the target site in three newborn cynomolgus monkeys. The frame shift mutations of PINK1 in mutant fibroblasts led to a reduction in mRNA. However, western blotting and immunofluorescence staining confirmed the PINK1 protein levels were comparable to that in wild-type fibroblasts. We further reprogramed mutant fibroblasts into induced pluripotent stem cells (iPSCs), which showed similar ability to differentiate into dopamine (DA) neurons. Taken together, our results showed that co-injection of Cas9-D10A nickase mRNA and sgRNA into one-cell-stage cynomolgus embryos enabled the generation of human disease models in NHPs and target editing by pair truncated sgRNA/Cas9-D10A in PINK1 gene exon 2 did not impact protein expression.


Assuntos
Modelos Animais de Doenças , Macaca fascicularis/genética , Doença de Parkinson/veterinária , Proteínas Quinases/metabolismo , Animais , Animais Recém-Nascidos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Técnicas de Cultura Embrionária , Transferência Embrionária , Fibroblastos/fisiologia , Mutação da Fase de Leitura , Regulação da Expressão Gênica , Macaca fascicularis/embriologia , Doenças dos Macacos/genética , Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , RNA Guia
6.
Gastroenterology ; 161(4): 1303-1317.e3, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34116030

RESUMO

BACKGROUND & AIMS: Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed circles. Although circRNAs influence many biological processes, little is known about their role in intestinal epithelium homeostasis. We surveyed circRNAs required to maintain intestinal epithelial integrity and identified circular homeodomain-interacting protein kinase 3 (circHIPK3) as a major regulator of intestinal epithelial repair after acute injury. METHODS: Intestinal mucosal tissues were collected from mice exposed to cecal ligation and puncture for 48 hours and patients with inflammatory bowel diseases and sepsis. We isolated primary enterocytes from the small intestine of mice and derived intestinal organoids. The levels of circHIPK3 were silenced in intestinal epithelial cells (IECs) by transfection with small interfering RNAs targeting the circularization junction of circHIPK3 or elevated using a plasmid vector that overexpressed circHIPK3. Intestinal epithelial repair was examined in an in vitro injury model by removing part of the monolayer. The association of circHIPK3 with microRNA 29b (miR-29b) was determined by biotinylated RNA pull-down assays. RESULTS: Genome-wide profile analyses identified ∼300 circRNAs, including circHIPK3, differentially expressed in the intestinal mucosa of mice after cecal ligation and puncture relative to sham mice. Intestinal mucosa from patients with inflammatory bowel diseases and sepsis had reduced levels of circHIPK3. Increasing the levels of circHIPK3 enhanced intestinal epithelium repair after wounding, whereas circHIPK3 silencing repressed epithelial recovery. CircHIPK3 silencing also inhibited growth of IECs and intestinal organoids, and circHIPK3 overexpression promoted intestinal epithelium renewal in mice. Mechanistic studies revealed that circHIPK3 directly bound to miR-29b and inhibited miR-29 activity, thus increasing expression of Rac1, Cdc42, and cyclin B1 in IECs after wounding. CONCLUSIONS: In studies of mice, IECs, and human tissues, our results indicate that circHIPK3 improves repair of the intestinal epithelium at least in part by reducing miR-29b availability.

7.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982436

RESUMO

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.

8.
Physiol Rep ; 9(9): e14864, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991460

RESUMO

Gut epithelial restitution after superficial wounding is an important repair modality regulated by numerous factors including Ca2+ signaling and cellular polyamines. Transient receptor potential canonical-1 (TRPC1) functions as a store-operated Ca2+ channel in intestinal epithelial cells (IECs) and its activation increases epithelial restitution by inducing Ca2+ influx after acute injury. α4 is a multiple functional protein and implicated in many aspects of cell functions by modulating protein phosphatase 2A (PP2A) stability and activity. Here we show that the clonal populations of IECs stably expressing TRPC1 (IEC-TRPC1) exhibited increased levels of α4 and PP2A catalytic subunit (PP2Ac) and that TRPC1 promoted intestinal epithelial restitution by increasing α4/PP2Ac association. The levels of α4 and PP2Ac proteins increased significantly in stable IEC-TRPC1 cells and this induction in α4/PP2Ac complexes was accompanied by an increase in IEC migration after wounding. α4 silencing by transfection with siRNA targeting α4 (siα4) or PP2Ac silencing destabilized α4/PP2Ac complexes in stable IEC-TRPC1 cells and repressed cell migration over the wounded area. Increasing the levels of cellular polyamines by stable transfection with the Odc gene stimulated α4 and PP2Ac expression and enhanced their association, thus also promoting epithelial restitution after wounding. In contrast, depletion of cellular polyamines by treatment with α-difluoromethylornithine reduced α4/PP2Ac complexes and repressed cell migration. Ectopic overexpression of α4 partially rescued rapid epithelial repair in polyamine-deficient cells. These results indicate that activation of TRPC1-mediated Ca2+ signaling enhances cell migration primarily by increasing α4/PP2Ac associations after wounding and this pathway is tightly regulated by cellular polyamines.

9.
Am J Physiol Cell Physiol ; 320(6): C1042-C1054, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788631

RESUMO

Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.


Assuntos
Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Enterócitos/metabolismo , Feminino , Células Caliciformes/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides/metabolismo
10.
Tissue Barriers ; 9(2): 1895648, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709880

RESUMO

The intestinal autophagy and barrier function are crucial for maintaining the epithelium homeostasis and tightly regulated through well-controlled mechanisms. RNA-binding proteins (RBPs) and long noncoding RNAs (lncRNAs) modulate gene expression at the posttranscription level and are intimately involved in different physiological processes and diverse human diseases. In this review, we first highlight the roles of several RBPs and lncRNAs in the regulation of intestinal epithelial autophagy and barrier function, particularly focusing on the emerging evidence of RBPs and lncRNAs in the control of mRNA stability and translation. We additionally discuss recent findings that the interactions between RBPs and lncRNAs alter the fate of their target transcripts and thus influence gut epithelium host defense in response to stressful environments. These exciting advances in understanding the posttranscriptional control of the epithelial autophagy and barrier function by RBPs and lncRNAs provide a strong rationale for developing new effective therapeutics based on targeting RBPs and/or lncRNAs to preserve the intestinal epithelial integrity in patients with critical illnesses.

11.
Sci Rep ; 10(1): 15811, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978505

RESUMO

Hemorrhagic shock results in systemic injury to the endothelium contributing to post-shock morbidity and mortality. The mechanism involves syndecan-1, the backbone of the endothelial glycocalyx. We have shown in a rodent model that lung syndecan-1 mRNA is reduced following hemorrhage, whereas the molecular mechanism underlying the mRNA reduction is not clear. In this study, we present evidence that miR-19b targets syndecan-1 mRNA to downregulate its expression. Our results demonstrate that miR-19b was increased in hemorrhagic shock patients and in-vitro specifically bound to syndecan-1 mRNA and caused its degradation. Further, hypoxia/reoxygenation (H/R), our in vitro hemorrhage model, increased miR-19b expression in human lung microvascular endothelial cells, leading to a decrease in syndecan-1 mRNA and protein. H/R insult and miR-19b mimic overexpression comparably exaggerated permeability and enhanced endothelial barrier breakdown. The detrimental role of miR-19b in inducing endothelial dysfunction was confirmed in vivo. Lungs from mice undergoing hemorrhagic shock exhibited a significant increase in miR-19b and a concomitant decrease in syndecan-1 mRNA. Pretreatment with miR-19b oligo inhibitor significantly decreased lung injury, inflammation, and permeability and improved hemodynamics. These findings suggest that inhibition of miR-19b may be a putative therapeutic avenue for mitigating post shock pulmonary endothelial dysfunction in hemorrhage shock.


Assuntos
Modelos Animais de Doenças , Endotélio Vascular/patologia , Pneumopatias/patologia , MicroRNAs/genética , Choque Hemorrágico/complicações , Sindecana-1/metabolismo , Animais , Estudos de Casos e Controles , Endotélio Vascular/metabolismo , Humanos , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sindecana-1/genética
12.
Physiology (Bethesda) ; 35(5): 328-337, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783609

RESUMO

Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.


Assuntos
Proliferação de Células , Autorrenovação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , Animais , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Permeabilidade , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-32855647

RESUMO

Eucommia ulmoides Oliv., a native Chinese plant species, has been used as a traditional Chinese medicine formulation to treat rheumatoid arthritis (RA), strengthen bones and muscles, and lower blood pressure. Various parts of this plant such as the bark, leaves, and flowers have been found to have anti-inflammatory properties. E. ulmoides has potential applications as a therapeutic agent against bone disorders, which were investigated in this study. In vitro, RA joint fibroblast-like synoviocytes (RA-FLS) were treated with different concentrations (0, 25, 50, 100, 200, 400, 800, and 1000 µg/mL) of E. ulmoides bark, leaf, and male flower alcoholic extracts (EB, EL, and EF, respectively) to determine their potential cytotoxicity. Tumor necrosis factor- (TNF-) α and nitric oxide (NO) levels in RA-FLS were quantified using enzyme-linked immunosorbent assay (ELISA). Furthermore, collagen-induced arthritis (CIA) rats were treated with EB, EL, EF, Tripterygium wilfordii polyglycoside (TG) or the normal control (Nor), and then ankle joint pathology, bone morphology, and serum and spleen inflammatory cytokine levels were evaluated. The results showed that, in RA-FLS, EB, EL, and EF were not cytotoxic; EB and EF reduced TNF-α supernatant levels; and EB, EL, and EF reduced NO levels. The results of in vivo experiments showed that EB, EL, and EF alleviated ankle swelling and joint inflammation, while all extracts diminished inflammatory cell infiltration, pannus and bone destruction, and bone erosion. All tested extracts inhibited interleukin- (IL-) 6, IL-17, and TNF-α mRNA in the spleen of CIA rats, while EB most effectively reduced osteoclasts and inhibited bone erosion. EF showed the most obvious inhibition of inflammatory factors and pannus. Thus, EB, EL, and EF may alleviate bone destruction by inhibiting inflammation.

14.
Int J Immunopathol Pharmacol ; 34: 2058738420945078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32718263

RESUMO

Betulinic acid (BA) inhibits the migration, invasion, and cytoskeletal reorganization of fibroblast-like synoviocytes (RA-FLS) in patients with rheumatoid arthritis. Here, to further explore the mechanism of action of BA in collagen-induced arthritis (CIA) rats, we investigated the pharmacodynamic effects of BA on synovial inflammation in a rat model of type II CIA. After inducing hind paw swelling, the rats were divided into four groups: healthy controls (normal), and rats that underwent CIA and received methotrexate treatment (MTX), BA treatment (BA), or no treatment (CIA). Body weight and hind paw swelling were determined regularly, and arthritis scores were calculated weekly. On day 35, rats were sacrificed and their hind ankle joints sectioned and stained with hematoxylin and eosin for histopathological evaluation. BA significantly reduced CIA-induced hind paw swelling, synovial tissue proliferation, cartilage destruction, and vasospasm. BA treatment also decreased serum interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels in rats with CIA. The CCK-8 assay was used to detect the proliferation of isolated vimentin+CD68- RA-FLS; RA-FLS were stimulated with TNF-α in vitro. BA significantly inhibited TNF-α-stimulated RA-FLS proliferation, as well as IL-1ß and IL-6 secretion. BA also downregulated the transcription of vascular endothelial growth factor (VEGF) and transforming growth factor ß (TGF-ß) and decreased the expression of the NF-кB pathway proteins (NF-kB-P65, IkBα, and IKKα/ß) in the TNF-α-stimulated RA-FLS. These results indicate that BA alleviated the symptoms of CIA by inhibiting synoviocyte proliferation, modifying TNF-α- and NF-кB-related inflammatory pathways, and downregulating inflammatory mediators and growth factors including IL-1ß, IL-6, VEGF, and TGF-ß.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/prevenção & controle , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Triterpenos Pentacíclicos/farmacologia , Membrana Sinovial/efeitos dos fármacos , Sinovite/prevenção & controle , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II , Masculino , NF-kappa B/metabolismo , Fosforilação , Ratos Wistar , Transdução de Sinais , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinovite/induzido quimicamente , Sinovite/metabolismo , Sinovite/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Sheng Li Xue Bao ; 72(3): 325-335, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32572430

RESUMO

The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body and directly interfaces with a wide array of luminal noxious contents and microorganisms. Homeostasis of the intestinal epithelium is preserved through well-controlled mechanisms including posttranscriptional regulation. RNA-binding protein (RBP) HuR regulates the stability and translation of target mRNAs and is intimately involved in many aspects of gut mucosal pathophysiology. Here we highlight the biological roles of HuR in maintaining the integrity of the intestinal epithelium, with particular focus on the emerging evidence of HuR in the regulation of intestinal epithelial renewal, mucosal repair, defense, and gut permeability. We also further analyze the mechanisms through which HuR and its interactions with other RBPs and noncoding RNAs (ncRNAs) such as microRNAs and long ncRNAs modulate the intestinal epithelial homeostasis. With rapidly advancing knowledge of RBPs and ncRNAs, there is growing recognition that posttranscriptional control of the intestinal epithelium homeostasis might be promising therapeutic targets in our efforts to protect the integrity of the intestinal epithelium under critical pathological conditions.


Assuntos
Mucosa Intestinal , RNA Longo não Codificante , Animais , Regulação da Expressão Gênica , Homeostase , Proteínas de Ligação a RNA
16.
Am J Physiol Cell Physiol ; 319(1): C208-C217, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432928

RESUMO

Homeostasis of the intestinal epithelium is tightly regulated by numerous extracellular and intracellular factors including vitamin D and the vitamin D receptor (VDR). VDR is highly expressed in the intestinal epithelium and is implicated in many aspects of gut mucosal pathophysiology, but the exact mechanism that controls VDR expression remains largely unknown. The RNA-binding protein human antigen R (HuR) regulates the stability and translation of target mRNAs and thus modulates various cellular processes and functions. Here we report a novel role of HuR in the posttranscriptional control of VDR expression in the intestinal epithelium. The levels of VDR in the intestinal mucosa decreased significantly in mice with ablated HuR, compared with control mice. HuR silencing in cultured intestinal epithelial cells (IECs) also reduced VDR levels, whereas HuR overexpression increased VDR abundance; neither intervention changed cellular Vdr mRNA content. Mechanistically, HuR bound to Vdr mRNA via its 3'-untranslated region (UTR) and enhanced VDR translation in IECs. Moreover, VDR silencing not only inhibited IEC migration over the wounded area in control cells but also prevented the increased migration in cells overexpressing HuR, although it did not alter IEC proliferation in vitro and growth of intestinal organoids ex vivo. The human intestinal mucosa from patients with inflammatory bowel diseases exhibited decreased levels of both HuR and VDR. These results indicate that HuR enhances VDR translation by directly interacting with its mRNA via 3'-UTR and that induced VDR by HuR is crucial for rapid intestinal epithelial restitution after wounding.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Biossíntese de Proteínas/fisiologia , Receptores de Calcitriol/metabolismo , Animais , Proteína Semelhante a ELAV 1/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides/lesões , Organoides/metabolismo , Ratos , Receptores de Calcitriol/genética
17.
Mol Cell Biol ; 40(6)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31932481

RESUMO

Intestinal epithelial autophagy is crucial for host defense against invasive pathogens, and defects in this process occur frequently in patients with inflammatory bowel disease (IBD) and other mucosal disorders, but the exact mechanism that activates autophagy is poorly defined. Here, we investigated the role of RNA-binding protein HuR (human antigen R) in the posttranscriptional control of autophagy-related genes (ATGs) in the intestinal epithelium. We found that targeted deletion of HuR in intestinal epithelial cells (IECs) specifically decreased the levels of ATG16L1 in the intestinal mucosa. Intestinal mucosa from patients with IBD exhibited reduced levels of both HuR and ATG16L1. HuR directly interacted with Atg16l1 mRNA via its 3' untranslated region and enhanced ATG16L1 translation, without affecting Atg16l1 mRNA stability. Circular RNA circPABPN1 blocked HuR binding to Atg16l1 mRNA and lowered ATG16L1 production. HuR silencing in cultured IECs also prevented rapamycin-induced autophagy, which was abolished by overexpressing ATG16L1. These findings indicate that HuR regulates autophagy by modulating ATG16L1 translation via interaction with circPABPN1 in the intestinal epithelium.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Proteína Semelhante a ELAV 1/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Autofagia/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas/genética
18.
J Asian Nat Prod Res ; 22(6): 509-520, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963782

RESUMO

Two new xanthones smilone A (1), smilone B (2), and a new lignin smilgnin A (3) were isolated from the rhizomes of Smilax china L., together with three known xanthones (4-6), four lignins (7-10), two flavones (11, 12), two stilbenoids (13, 14), and ten organic phenoloids (15-24). Of them, compounds 4-6 were isolated from the genus Smilax for the first time. The structures of 1-24 were elucidated by the extensive analysis of spectral data and compared with the literature. All compounds were evaluated for their inhibitory effects against LPS-induced NO production in RAW264.7 macrophages. Among them, compound 24 exhibited significant inhibitory activity against NO production (IC50 = 1.26 µM), while compounds 3, 6, and 7 showed weak activities at the concentration of 50 µM.[Formula: see text].


Assuntos
Smilax , Xantonas , China , Lignina , Estrutura Molecular
19.
Cell Mol Gastroenterol Hepatol ; 9(4): 611-625, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31862317

RESUMO

BACKGROUND & AIMS: The protective intestinal mucosal barrier consists of multiple elements including mucus and epithelial layers and immune defense; nonetheless, barrier dysfunction is common in various disorders. The imprinted and developmentally regulated long noncoding RNA H19 is involved in many cell processes and diseases. Here, we investigated the role of H19 in regulating Paneth and goblet cells and autophagy, and its impact on intestinal barrier dysfunction induced by septic stress. METHODS: Studies were conducted in H19-deficient (H19-/-) mice, mucosal tissues from patients with sepsis, primary enterocytes, and Caco-2 cells. Septic stress was induced by cecal ligation and puncture (CLP), and gut permeability was detected by tracer fluorescein isothiocyanate-dextran assays. The function of Paneth and goblet cells was examined by immunostaining for lysozyme and mucin 2, respectively, and autophagy was examined by microtubule-associated proteins 1A/1B light chain 3 II immunostaining and Western blot analysis. Intestinal organoids were isolated from H19-/- and control littermate mice and treated with lipopolysaccharide (LPS). RESULTS: Intestinal mucosal tissues in mice 24 hours after exposure to CLP and in patients with sepsis showed high H19 levels, associated with intestinal barrier dysfunction. Targeted deletion of the H19 gene in mice enhanced the function of Paneth and goblet cells and promoted autophagy in the small intestinal mucosa. Knockout of H19 protected Paneth and goblet cells against septic stress, preserved autophagy activation, and promoted gut barrier function after exposure to CLP. Compared with organoids from control littermate mice, intestinal organoids isolated from H19-/- mice had increased numbers of lysozyme- and mucin 2-positive cells and showed increased tolerance to LPS. Conversely, ectopic overexpression of H19 in cultured intestinal epithelial cells prevented rapamycin-induced autophagy and abolished the rapamycin-induced protection of the epithelial barrier against LPS. CONCLUSIONS: In investigations of mice, human tissues, primary organoids, and intestinal epithelial cells, we found that increased H19 inhibited the function of Paneth and goblet cells and suppressed autophagy, thus potentially contributing to barrier dysfunction in intestinal pathologies.


Assuntos
Autofagia/genética , Células Caliciformes/patologia , Celulas de Paneth/patologia , RNA Longo não Codificante/metabolismo , Sepse/patologia , Animais , Autofagia/imunologia , Células CACO-2 , Modelos Animais de Doenças , Feminino , Células Caliciformes/imunologia , Humanos , Intestino Delgado/citologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Knockout , Organoides , Celulas de Paneth/imunologia , Permeabilidade , RNA Longo não Codificante/genética , Sepse/imunologia
20.
Cell Mol Gastroenterol Hepatol ; 8(3): 475-486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31195150

RESUMO

BACKGROUND & AIMS: The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is tightly regulated via well-controlled mechanisms. The RNA-binding protein HuR is essential for maintaining gut epithelial integrity, and targeted deletion of HuR in intestinal epithelial cells (IECs) disrupts mucosal regeneration and delays repair after injury. Here, we defined the role of HuR in regulating subcellular distribution of small guanosine triphosphatase Rac1 and investigated the implication of nucleophosmin (NPM) as a molecular chaperone in this process. METHODS: Studies were conducted in intestinal epithelial tissue-specific HuR knockout (IE-HuR-/-) mice and cultured IEC-6 cells, derived from rat small intestinal crypts. Functions of HuR and NPM in vitro were investigated via their gene silencing and overexpression. RESULTS: The abundance of cytoplasmic Rac1 in the small intestinal mucosa increased significantly in IE-HuR-/- mice, although HuR deletion did not alter total Rac1 levels. HuR silencing in cultured IECs also increased the cytoplasmic Rac1 levels, without an effect on whole-cell Rac1 content. In addition, HuR deficiency in the intestinal epithelium decreased the levels of NPM in IE-HuR-/- mice and cultured IECs. NPM physically interacted with Rac1 and formed the NPM/Rac1 complex. NPM silencing decreased the NPM/Rac1 association and inhibited nuclear accumulation of Rac1, along with an increase in cytoplasmic abundances of Rac1. In contrast, ectopically expressed NPM enhanced Rac1 nuclear translocation and restored Rac1 subcellular localization to near normal in HuR-deficient cells. CONCLUSIONS: These results indicate that HuR regulates Rac1 nucleocytoplasmic shuttling in the intestinal epithelium by altering NPM expression.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Mucosa Intestinal/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células CACO-2 , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Camundongos , Transporte Proteico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...