Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Pathogens ; 9(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110983

RESUMO

ß-Lactamase-positive Staphylococcus aureus is one of the most prevalent multidrug-resistant pathogens worldwide and is associated with increasing threats to clinical therapeutics and public health. Here, we showed that isoalantolactone (IAL), in combination with penicillin G, exhibited significant synergism against 21 ß-lactamase-positive S. aureus strains (including methicillin resistant S. aureus). An enzyme inhibition assay, a checkerboard minimum inhibitory concentration (MIC) assay, a growth curve assay, a time-killing assay, a RT-PCR assay and Circular Dichroism (CD) spectroscopy were performed on different ß-lactamases or ß-lactamase-positive S. aureus strains, in vitro, to confirm the mechanism of inhibition of ß-lactamase and the synergistic effects of the combination of penicillin G and IAL. All the fractional inhibitory concentration (FIC) indices of penicillin G, in combination with IAL, against ß-lactamase-positive S. aureus, were less than 0.5, and ranged from 0.10 ± 0.02 to 0.38 ± 0.17. The survival rate of S. aureus-infected mice increased significantly from 35.29% to 88.24% within 144 h following multiple compound therapy approaches. Unlike sulbactam, IAL inactivated ß-lactamase during protein translation, and the therapeutic effect of combination therapy with IAL and penicillin G was equivalent to that of sulbactam with penicillin G. Collectively, our results indicated that IAL is a promising and leading drug that can be used to restore the antibacterial effect of ß-lactam antibiotics such as penicillin G and to address the inevitable infection caused by ßlactamase-positive S. aureus.

2.
Nucl Med Commun ; 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32187163

RESUMO

OBJECTIVES: We aimed to investigate predictive factors of occult lymph node metastasis and to explore the diagnostic value of various standardized uptake value (SUV) parameters using fluorine-18 fluorodeoxyglucose (F-FDG) positron emission tomography computed tomography (PET/CT) in predicting occult lymph node metastasis of clinical N0 non-small cell lung cancer patients. METHODS: We retrospectively analyzed PET/computed tomography parameters of tumor and clinical data of 124 clinical N0 non-small cell lung cancer patients who underwent both preoperative F-FDG PET/computed tomography and anatomical pulmonary resection with systematic lymph node dissections. The SUVmax, SUVmean, metabolic total volume, and total lesion glycolysis of the primary tumor was automatically measured on the PET/computed tomography workstation. Standardized uptake ratio (SUR) were derived from tumor standardized uptake value divided by blood SUVmean (B-SUR) or liver SUVmean (L-SUR), respectively. RESULTS: According to postoperative pathology, 19 (15%) were diagnosed as occult lymph node metastasis among 124 clinical N0 non-small cell lung cancer patients. On univariate analysis, carcinoembryonic antigen, cytokeratin 19 fragment, lobulation, and all PET parameters were associated with occult lymph node metastasis. The area under the receiver operating characteristic curve, sensitivity, and negative predictive value of L-SURmax were the highest among all PET parameters (0.778, 94.7%, and 98.4%, respectively). On multivariate analysis, carcinoembryonic antigen, cytokeratin 19 fragment, and L-SURmax were independent risk factors for predicting occult lymph node metastasis. Compared to L-SURmax alone and the combination of carcinoembryonic antigen and cytokeratin 19 fragment, the model consisting of three independent risk factors achieved a greater area under the receiver operating characteristic curve (0.901 vs. 0.778 vs. 0.780, P = 0.021 and 0.0141). CONCLUSIONS: L-SURmax showed the most powerful predictive performance than the other PET parameters in predicting occult lymph node metastasis. The combination of three independent risk factors (carcinoembryonic antigen, cytokeratin 19 fragment, and L-SURmax) can effectively predict occult lymph node metastasis in clinical N0 non-small cell lung cancer patients.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32213926

RESUMO

NDM-1-positive Enterobacteriaceae have caused serious clinical infections, with high mortality rates. Carbapenem was the ultimate expectation for the treatment of such infections in clinical practice. However, since the discovery of plasmid-mediated New Delhi metallo-ß-lactamase-1 (NDM-1), the efficient therapeutic effects of carbapenems have been increasingly restricted. Here, we identified isoliquiritin, a novel specific inhibitor of the NDM-1 enzyme that restored the activity of carbapenem against NDM-1-producing E. coli isolates and K. pneumoniae isolates without affecting the growth of bacteria. A checkerboard test, growth curve assays and time-kill assays confirmed the significant synergistic effect of isoliquiritin combined with meropenem in vitro. It is worth noting that isoliquiritin only inhibited the activity of NDM-1 and had no obvious inhibitory effect on other class B metallo-ß-lactamases (VIM-1) or NDM-1 mutants (NDM-5). The FIC indices of meropenem with isoliquiritin on NDM-1-positive E. coli and K. pneumoniae were all less than 0.5. Isoliquiritin had no influences on the expression of NDM-1-positive strains at concentrations below 64 µg/mL. Collectively, our results show that isoliquiritin is a potential adjuvant therapy drug that could enhance the antibacterial effect of carbapenems, such as meropenem, on NDM-1-positive Enterobacteria and lay the foundation for subsequent clinical trials.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32083457

RESUMO

Although desirable in next-generation flexible electronics, fabricating hybrid film materials with excellent integration of mechanical and thermally conductive yet electrically insulating properties is still a challenge. In mollusk nacre, a small volume of the chitin nanofiber framework hosts 95 vol % CaCO3 microplatelets, enabling the high-loading natural composites to exhibit a ductile deformation behavior. Inspired by this, we fabricate a large-area, boron nitride-based bio-inspired paper using a facile sol-gel-film conversion approach, in which BN microplatelets with a loading of 40-80 wt % are embedded into a 3D poly(p-phenylene benzobisoxazole) nanofiber framework. Because of the vital role of the 3D nanofiber framework, the BN-based paper exhibits plastic-like ductility (38-80%), ultrahigh toughness (10-100 MJ m-3), and good folding endurance. The high-loading BN platelets form an oriented, percolative network and endow the paper with outstanding in-plane thermal conductivity (77.1-214.2 W m-1 K-1) comparable to that of some metals, such as aluminum alloys (108-230 W m-1 K-1). Using the electrically insulating BN-based paper as a flexible substrate, we demonstrate its promising application for lowering the temperature of electronic devices.

5.
Toxicol In Vitro ; 65: 104793, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32061799

RESUMO

Triptolide is an active ingredient isolated from an ancient Chinese herb (Tripterygium wilfordii Hook. f) for inflammatory and immune disorders. It has been shown to inhibit the proliferation of skeletal muscle; however, mechanisms of this effect remain unclear. We used mouse C2C12 myotubes as an in vitro model to investigate the effects of triptolide on skeletal muscle. Triptolide markedly inhibited the expression of myosin heavy chain and upregulated the expression of muscle atrophy-related proteins, leading to atrophy of the myotubes. Triptolide dose-dependently decreased the phosphorylation of Forkhead box O3 (FoxO3) and activated FoxO3 transcription activity, which regulates the expression of muscle atrophy-related proteins. Furthermore, triptolide inhibited the phosphorylation of Akt on the site of S473 and T308, and decreased the phosphorylation of insulin receptor substrate-1 (IRS-1) on the site of S302. In addition, triptolide reduced the protein level, but not mRNA level of IRS-1, whereas other upstream regulators of the Akt signaling pathway were not affected. Finally, a time-course experiment showed that the triptolide-induced degradation of IRS-1 in myotubes occurred 12 h prior to both inhibition of Akt activity and the activation of FoxO3. These data indicate that triptolide triggers IRS-1 degradation to promote FoxO3 activation, which subsequently led to atrophy of myotubes, providing us a potential target to prevent triptolide-induced skeletal muscle atrophy.

6.
J Nucl Cardiol ; 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060856

RESUMO

PURPOSE: The objective of this study was to assess the incremental value of myocardial wall motion and thickening compared with perfusion alone obtained from gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in diagnosing myocardial viability in patients with ischemic heart failure. METHODS: Eighty-three consecutive patients with ischemic heart failure who underwent both 99mTc-MIBI gated SPECT MPI and 18F-FDG positron emission tomography (PET) myocardial metabolic imaging were retrospectively enrolled. SPECT/PET myocardial viability was defined as the reference standard. Segmental myocardial perfusion, wall motion, and thickening were measured by an automated algorithm from gated SPECT MPI. Univariate and stepwise multivariate analysis were conducted to establish an optimal multivariate model for predicting hibernating myocardium and scar. RESULTS: Among the 1411 segments evaluated, 774 segments had normal perfusion and 637 segments had decreased perfusion. The latter were classified by 18F-FDG PET into 338 hibernating segments and 299 scarred segments. The multivariate regression analysis showed that the model that combined myocardial perfusion uptake with wall motion and thickening scores had the optimal predictive efficiency to distinguish hibernating myocardium from scar in the segments with decreased perfusion. The model had the largest C-statistic (0.753 vs 0.666, P < 0.0001), and the global chi-square was increased from 53.281 to 111.234 when compared with perfusion alone (P < 0.001). CONCLUSIONS: Assessment of myocardial wall motion and thickening in addition to conventional perfusion uptake in the segments with decreased perfusion enables better differentiation of hibernating myocardium from scar in patients with ischemic heart failure. Considering wide availability and high cost-effectiveness, regional myocardial function integrated with perfusion on gated SPECT MPI has great promise to become a clinical tool in the assessment of myocardial viability.

7.
ACS Appl Mater Interfaces ; 12(10): 11409-11418, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32067445

RESUMO

In this work, we fabricated a dual-wavelength electrochemiluminescence ratiometric biosensor based on electrochemiluminescent resonance energy transfer (ECL-RET). In this biosensor, Au nanoparticle-loaded graphitic phase carbon nitride (Au-g-C3N4) as a donor and Au-modified dimethylthiodiaminoterephthalate (TAT) analogue (Au@TAT) as an acceptor were investigated for the first time. Besides, tetrahedron DNA probe was immobilized onto Au-g-C3N4 to improve the binding efficiency of the transcription factor and ECL ratiometric changes on the basis of the ratio of ECL intensities at 595 and 460 nm, which were obtained through the formation of a sandwich structure of DNA probe-antigen-antibody. Our biosensor achieved the assay of NF-κB p50 with a detection limit of 5.8 pM as well as high stability and specificity.

8.
Plant Biotechnol J ; 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31981296

RESUMO

The cell wall of filamentous fungi, comprised of chitin, polysaccharide and glycoproteins, maintains the integrity of hyphae and protect them from defence responses by potential host plants. Here, we report that one polysaccharide deacetylase of Puccinia striiformis f. sp. tritici (Pst), Pst_13661, suppresses Bax-induced cell death in plants and Pst_13661 is highly induced during early stages of the interaction between wheat and Pst. Importantly, the transgenic wheat expressing the RNA interference (RNAi) construct of Pst_13661 exhibits high resistance to major Pst epidemic races CYR31, CYR32 and CYR33 by inhibiting growth and development of Pst, indicating that Pst_13661 is an available pathogenicity factor and is a potential target for generating broad-spectrum resistance breeding material of wheat. It forms a homo-polymer and has high affinity for chitin and germ tubes of Pst compared with the control. Besides, Pst_13661 suppresses chitin-induced plant defence in plants. Hence, we infer that Pst_13661 may modify the fungal cell wall to prevent recognition by apoplastic surveillance systems in plants. This study opens new approaches for developing durable disease-resistant germplasm by disturbing the growth and development of fungi and develops novel strategies to control crop diseases.

9.
ACS Nano ; 14(1): 611-619, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31891484

RESUMO

The rapid development of modern electrical equipment toward miniaturization and high power puts forward stringent requirements to the mechanical reliability, dielectric property, and heat resistance of electrical insulating materials. Simultaneous integration of all these properties for mica-based materials remains unresolved. Herein, inspired by the three-dimensional (3D) chitin nanofiber framework within the layered architecture of natural nacre, we report a large-area layered mica-based nanopaper containing a 3D aramid nanofiber framework, which is prepared by a sol-gel-film transformation process. The coupling of 3D aramid nanofiber framework and oriented mica nanoplatelets imparts the nanopaper with good mechanical strength, particularly outstanding ductility (close to 80%) and toughness (up to 109 MJ m-3), which are 4-240 and 6-220 times higher than those of all other nacre-mimetics. Meanwhile, the excellent mechanical properties are integrated with high dielectric strength (164 kV mm-1), excellent heat resistance (Tg = 268 °C), good solvent resistance, and nonflammability, much better than conventional mica-based materials. Additionally, we successfully demonstrate its continuous production in the form of nanotape. The fabulous multiproperty combination and continuous production capability render the mica-based nanopaper a very promising electrical insulating material in miniaturized high-power electrical equipment.

10.
Clin Chim Acta ; 503: 54-60, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926154

RESUMO

BACKGROUND: Due to the remarkably stable form in the bloodstream, circulating microRNAs (miRNAs) are indicated as promising novel minimally invasive biomarkers in many cancers. However, available data of miRNAs in nasopharyngeal carcinoma (NPC) are relatively limited. METHODS: Based on the GEO database and previous published reports, 21 dysregulated miRNAs were selected for screening via microarray analysis (20 NPC samples vs 10 controls). Dysregulated miRNAs were then detected and verified by the method of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in the training and validation sets. The candidate miR-214-3p was then evaluated in the evaluation set, including the association between miR-214-3p and clinicopathological characteristics, dynamic changes in NPC patients and the predictive value for NPC recurrence or metastasis. RESULTS: Seven miRNAs were significantly altered in comparison with healthy controls by microarray analysis. MiR-214-3p was the most significantly expressed in training and validation sets by qRT-PCR. Plasma miR-214-3p expressions were significantly associated with UICC stages and NPC recurrence or metastasis. Plasma miR-214-3p expressions showed a gradual decrease during the follow-up after treatment in NPC patients. Patients with recurrence or metastasis were always accompanied with higher levels of plasma miR-214-3p at the same time point. High pretreatment miR-214-3p expression (≥3.12) was significantly associated with NPC recurrence or metastasis by log-rank test using Kaplan-Meier survival curve analysis (P = 0.006). CONCLUSIONS: Circulating miR-214-3p can serve as a noninvasive biomarker for the prediction of recurrence or metastasis in NPC patients.

11.
Biochem Biophys Res Commun ; 523(4): 947-953, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-31964531

RESUMO

Cancer stem-like cells are rare immortal cells within tumor, which are thought to play important roles in ionizing radiation (IR) therapy-resistance. Quercetin is a natural flavonoid with potential anti-cancer properties without significant cytotoxicity in normal tissues. In this study, we demonstrated that quercetin-IR combination treatment exhibited more dramatic anti-cancer effect than either quercetin or IR treatment alone via targeting colon cancer stem cells (CSCs) and inhibiting the Notch-1 signaling. These effects were further verified by in vivo studies which showed remarkable decrease of the CSCs markers and the expression of Notch-1 signaling proteins in human colon cancer xenografts in nude mice. Co-treatment with quercetin and low dose of radiation significantly reduced the expressions of all five proteins of γ-secretase complex in HT-29 and DLD-1 cells. In addition, ectopic expression of the Notch intracellular domain (NICD) partly reversed the inhibition effects by the combination therapy. In conclusion, our results indicated that the combination of quercetin (20 µM) and IR (5Gy) might be a promising therapeutic strategy for colon cancer treatment by targeting colon cancer stem-like cells and inhibiting the Notch-1 signaling. In future studies, we intend to further explore the potential therapeutic efficacy of the quercetin-radiation combination treatment in clinical trials.

12.
J Cell Mol Med ; 24(4): 2475-2483, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31957212

RESUMO

Polymyxin B has been re-applied to the clinic as the final choice for the treatment of multidrug-resistant gram-negative pathogenic infections, but the use of polymyxin B has been re-assessed because of the emergence and spread of the plasmid-mediated mcr-1 gene. The purpose of this study was to search for an MCR inhibitor synergistically acting with polymyxin to treat the infection caused by this pathogen. In this study, we used the broth microdilution checkerboard method to evaluate the synergistic effect of isoalantolactone (IAL) and polymyxin B on mcr-1-positive Enterobacteriaceae. Growth curve analysis, time-killing assays and a combined disc test were used to further verify the efficacy of the combined drug. Colonization of the thigh muscle in mice, survival experiments and lung tissue section observations was used to determine the effect of synergy in vivo after Klebsiella pneumoniae and Escherichia coli infection. We screened a natural compound, IAL, which can enhance the sensitivity of polymyxin B to mcr-1-positive Enterobacteriaceae. The results showed that the combined use of polymyxin B and IAL has a synergistic effect on mcr-1-positive Enterobacteriaceae, such as K pneumoniae and E coli, not only in vitro but also in vivo. Our results indicate that IAL is a natural compound with broad application prospects that can prolong the service life of polymyxin B and make outstanding contributions to the treatment of gram-negative Enterobacteriaceae infections resistant to polymyxin B.

13.
Appl Microbiol Biotechnol ; 104(4): 1673-1682, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897522

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic pathogen in public health and food safety. The type III secretion system (T3SS) encoded by Salmonella pathogenicity island (SPI) is a sophisticated molecular machine that facilitates active invasion, intracellular replication, and host inflammation. Due to increasing antibiotic resistance, new therapeutic strategies that target the Salmonella T3SS have received considerable attention. In this study, paeonol was identified as an inhibitor of the S. Typhimurium T3SS. Paeonol significantly blocked the translocation of SipA into host cells and suppressed the expression of effector proteins without affecting bacterial growth in the effective concentration range. Additionally, S. Typhimurium-mediated cell injury and invasion levels were significantly reduced after treatment with paeonol, without cytotoxicity. Most importantly, the comprehensive protective effect of paeonol was confirmed in an S. Typhimurium mouse infection model. Preliminary mechanistic studies suggest that paeonol inhibits the expression of effector proteins by reducing the transcription level of the SPI-1 regulatory pathway gene hilA. This work provides proof that paeonol could be used as a potential drug to treat infections caused by Salmonella.

14.
Nat Commun ; 11(1): 66, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898693

RESUMO

Lieb lattice has been predicted to host various exotic electronic properties due to its unusual Dirac-flat band structure. However, the realization of a Lieb lattice in a real material is still unachievable. Based on tight-binding modeling, we find that the lattice distortion can significantly determine the electronic and topological properties of a Lieb lattice. Importantly, based on first-principles calculations, we predict that the two existing covalent organic frameworks (COFs), i.e., sp2C-COF and sp2N-COF, are actually the first two material realizations of organic-ligand-based Lieb lattice. Interestingly, the sp2C-COF can experience the phase transitions from a paramagnetic state to a ferromagnetic one and then to a Néel antiferromagnetic one, as the carrier doping concentration increases. Our findings not only confirm the first material realization of Lieb lattice in COFs, but also offer a possible way to achieve tunable topology and magnetism in organic lattices.

15.
Appl Environ Microbiol ; 86(5)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31862719

RESUMO

The emergence of the plasmid-mediated colistin resistance gene mcr-1 has led to serious multidrug-resistant (MDR) Enterobacteriaceae infections, which are a great threat to the clinic. This study aims to find an inhibitor of MCR-1 to reestablish the use of polymyxins against MDR Enterobacteriaceae infections. Here, we determined that the natural compound honokiol could enhance the efficacy of polymyxins against MDR Enterobacteriaceae infections by a checkerboard MIC assay, a time-kill assay, a combined disk test, Western blotting, molecular simulation dynamics, and mouse infection models. The MIC results indicated that honokiol can recover the sensitivity of polymyxins against MCR-1-positive Klebsiella pneumoniae and Escherichia coli (with a fractional inhibitory concentration index ranging from 0.09 ± 0.00 to 0.27 ± 0.06). Based on time-kill curve analysis, all of the tested bacteria were killed within 1 h following the combined therapy with honokiol and polymyxins. Molecular simulation dynamics results suggested that honokiol directly binds to the MCR-1 active region, reducing the biological activity of MCR-1. The combination of honokiol and polymyxins could increase the 40% protection rate and reduce the bacterial load on the thigh muscles of mice. Our study indicates that honokiol is a predominant natural compound whose combination therapy with polymyxins is very promising in future treatment options for MCR-1-positive Enterobacteriaceae infections.IMPORTANCE In the present study, honokiol could effectively inhibit the activity of MCR-1 and showed almost no cytotoxicity to MH-S cells. According to our results, the combination of honokiol and polymyxin had a clear synergistic effect against MCR-1-positive Enterobacteriaceae in vitro Combination therapy also showed a powerful therapeutic effect in vivo, which can significantly improve mouse livability, reduced the load of bacteria, and reduced pathological change. This combined therapy of small molecule compounds and antibiotics may not continue to induce new bacterial resistance, due to the fact that MCR-1 targeted by honokiol is not indispensable for the bacterial viability; on the other hand, it can reduce the dosage of combined antibiotics, and it is also a promising alternative therapy for the treatment of drug-resistant infections in the future.

16.
Water Res ; 171: 115425, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31881499

RESUMO

Stimulating Methanothrix-dominant communities with ethanol is recently considered as a promising strategy of improving the efficiency and stability of anaerobic digestion (AD), while the effects on methanogenic pathway and energy metabolism linked to the establishment of direct interspecies electron transfer (DIET) were not investigated yet. The results showed that, Methanothrix species were the dominant and metabolically active methanogens in the methanogenic sludge fed with the ethanol-type fermentation products, and the abundance of genes that encoded the key enzymes involved in the reduction of carbon dioxide was significantly higher than that fed with the other products, such as propionate and butyrate. Conversely, the abundance of genes that encoded the key enzymes involved in acetate decarboxylation among all the methanogenic sludge were nearly same. In the presence of ethanol, the abundance of gene for pilA significantly increased. The gene for pliA was primarily derived from Sphaerochaeta, Sedimentibacter and Pseudomonas species that were specially abundant and metabolically active. Further analysis showed that, the abundance of genes that encoded V/A-type ATPase in the methanogenic digesters fed with the ethanol-type fermentation products was 1.3-1.5 folds higher than that fed with the other products. As a result, the concentration of total ATP in the cells was increased by 1.8-2.3 folds. These results, and the fact that DIET is the only electron donor to support the reduction of carbon dioxide in Methanothrix species for the first time revealed the mechanisms involved in the establishment of DIET-based methanogenic metabolism with ethanol.


Assuntos
Etanol , Metano , Anaerobiose , Reatores Biológicos , Metagenoma , Methanosarcinaceae
17.
Chemosphere ; 245: 125630, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31881384

RESUMO

Plastic film has allowed manufacturers to meet varied marketplace demands. Typically, its usage can be divided into two general categories-packaging (food, nonfood and other) and nonpackaging. The microplastics emission resulting from wearing of plastic film is unavoidable in the process of production and use. Currently, no reliable method exists for measure emission factor (EF) of microplastics by mechanical abrasion (MA). In the present study, a simple but effective approach to quantify EF of microplastic by MA was developed. Specifically, the relative light transmittance (RLT) of the plastic film is decreased with increase of MA degree. This quantitative relationship between the two factors can be applied to determine EFs of microplastics induced by MA. The method developed in this study is easy and feasible, but it still has limitations in the standpoint and range, the direction of worthiness of theory.


Assuntos
Monitoramento Ambiental , Estresse Mecânico , Plásticos
18.
Langmuir ; 35(52): 17009-17015, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31804087

RESUMO

Deeply exploring the interaction of biomolecules with magnesium in solution is essential to understand the formation of complex bio-magnesium interfaces accompanied with corrosion products. Using the accelerated metadynamics simulations, we have investigated the interactions of amino acid analogues on clean and hydroxylated Mg(0001) surfaces by identifying their free energy barriers and adsorption sites. We find that there are two hydration layers stacked on the clean Mg(0001) surfaces and the hydroxylated Mg(0001) surfaces, which mainly determine the free energy barriers and adsorbed configurations. Further studies reveal that the water molecules in double hydration layers present two opposite orientations, depending on the charge distribution of the substrate. Specifically, oxygen atoms of water concentrate in the center of double hydration layers for a clean Mg surface but transfer to the outside surface once the Mg substrate is degraded. The reversed hydration layers greatly reduce the binding affinities of positively charged and electroneutral analogues. Overall, our simulation findings provide new insights into the interaction mechanism of biomolecules on a bio-magnesium device in the implantation initial stage, which is noteworthy for revealing the magnesium degradation mechanism in vivo.

19.
Phys Rev Lett ; 123(20): 206402, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809077

RESUMO

The plasmon opens up the possibility to efficiently couple light and matter at subwavelength scales. In general, the plasmon frequency, intensity, and damping are dependent on the carrier density. These dependencies, however, are disadvantageous for stable functionalities of plasmons and render fundamentally a weak intensity at low frequency, especially for the Dirac plasmon (DP) widely studied in graphene. Here we demonstrate a new type of DP, emerging from a Dirac nodal-surface state, which can simultaneously exhibit a density-independent frequency, intensity, and damping. Remarkably, we predict the realization of anomalous DP (ADP) in 1D topological electrides, such as Ba_{3}CrN_{3} and Sr_{3}CrN_{3}, by first-principles calculations. The ADPs in both systems have a density-independent frequency and high intensity, and their frequency can be tuned from terahertz to midinfrared by changing the excitation direction. Furthermore, the intrinsic weak electron-phonon coupling of anionic electrons in electrides affords an added advantage of low-phonon-assisted damping and hence a long lifetime of the ADPs. Our Letter paves the way to developing novel plasmonic and optoelectronic devices by combining topological physics with electride materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA