Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Parasit Vectors ; 13(1): 285, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503601

RESUMO

BACKGROUND: Sugar-feeding provides energy for mosquitoes. Facilitated glucose transporters (GLUTs) are responsible for the uptake of glucose in animals. However, knowledge of GLUTs function in Anopheles spp. is limited. METHODS: Phylogenetic analysis of GLUTs in Anopheles stephensi was performed by the maximum likelihood and Bayesian inference methods. The spatial and temporal expression patterns of four Asteglut genes were analyzed by qPCR. The function of Asteglut1 was examined using a dsRNA-mediated RNA interference method. Transcriptome analysis was used to investigate the global influence of Asteglut1 on mosquito physiology. RESULTS: We identified 4 glut genes, Asteglut1, Asteglutx, Asteglut3 and Asteglut4 in An. stephensi. Asteglut1, Asteglut3 and Asteglut4 were mainly expressed in the midgut. Plasmodium berghei infection differentially regulated the expression of Asteglut genes with significant downregulation of Asteglut1 and Asteglut4, while upregulation of Asteglutx. Only knocking-down Asteglut1 facilitated Plasmodium berghei infection in An. stephensi. This might be due to the accumulation of glucose prior to blood-feeding in dsAsteglut1-treated mosquitoes. Our transcriptome analysis revealed that knockdown of Asteglut1 differentially regulated expression of genes associated with multiple functional clusters, especially those related to detoxification and immunity. The dysregulation of multiple pathways might contribute to the increased P. berghei infection. CONCLUSIONS: Our study shows that Asteglut1 participates in defense against P. berghei in An. stephensi. The regulation of Asteglut1 on vector competence might through modulating multiple biological processes, such as detoxification and immunity.

2.
Biochem Pharmacol ; : 114079, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511988

RESUMO

Renal interstitial fibrosis (RIF) is a major pathological feature of chronic kidney disease at middle and end stages. Chrysophanol (CP), 1,8-dihydroxy-3-methyl-9,10-anthraquinone, is an anthraquinone isolated from Rheum palmatum L.with a variety of pharmacological activities including the suppression of RIF. However, the effect of CP on renal fibrosis and its potential mechanism have not been elucidated. We conducted a comprehensive study by determining the expression levels of fibrotic markers and proteins including TGF-ß1, α-SMA, and Smad3 related to transforming growth factor-beta/Smad (TGF-ß/Smad) pathway in unilateral ureteral obstruction (UUO) mice and TGF-ß1-stimulated HK-2 cells with the treatment of CP using western blotting and RT-qPCR analyses. Using small interfering RNA and co-immunoprecipitation, we evaluated the influences of CP on the interactions between Smad3 and Smad7 proteins and also on TGF-ß RI and TGF-ßR II. We found that CP administration significantly ameliorated UUO-induced kidney damage by reversing abnormal serum and urine biochemical parameters and decreasing the production of fibrotic markers including collagen I, collagen III, fibronectin, and α-SMA. Our results showed that TGF-ß1 and phospho-Smad3 (p-Smad3) expression was significantly down-regulated and Smad7 expression was up-regulated by CP in UUO mice compared to the model group; however, the expression of Smad2, Smad4, and TGF-ß receptors was not affected. Furthermore, CP modulated these fibrotic markers as well as p-Smad3 and Smad7 in TGF-ß1-induced HK-2 cells. The inhibitory effect of CP was markedly reduced in TGF-ß1-treated HK-2 cells transfected with Smad3 siRNA. Additionally, co-immunoprecipitation analysis indicated that CP blocked the interaction between Smad3 and TGF-ß receptor I to suppress p-Smad3 expression. These findings demonstrated that CP alleviated RIF by inhibiting Smad3 phosphorylation, which provides a molecular basis for a new drug candidate for the treatment of RIF.

3.
Plant Physiol Biochem ; 153: 106-118, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32485615

RESUMO

COMBINING HYDRAULIC: and carbon-related measurements can help elucidate drought-induced plant mortality. To study drought mortality mechanisms, seedlings of two woody species, including the anisohydric Robinia pseudoacacia and isohydric Quercus acutissima, were cultivated in a greenhouse and subjected to intense drought by withholding water and mild drought by adding half of the amount of daily water lost. Patterns of leaf and root gas exchange, leaf surface areas, growth, leaf and stem hydraulics, and carbohydrate dynamics were determined in drought-stressed and control seedlings. We detected a complete loss of hydraulic conductivity and partial depletion of total nonstructural carbohydrates contents (TNC) in the dead seedlings. We also found that intense drought triggered a more rapid decrease in plant water potential and a faster drop in net photosynthesis below zero, and a greater TNC loss in dead seedlings than mild drought. Additionally, anisohydric R. pseudoacacia suffered a rapider death than the isohydric Q. acutissima. Based on these findings, we propose that hydraulic conductivity loss and carbon limitation jointly contributed to drought-induced death, while the relative contributions could be altered by drought intensity. We thus believe that it is important to illustrate the mechanistic relationships between stress intensity and carbon-hydraulics coupling in the context of isohydric vs. anisohydric hydraulic strategies.

4.
Aging (Albany NY) ; 12(9): 7945-7962, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365053

RESUMO

There are many reports about natural products relieving neuralgia. Osthole is the main component of Angelica biserrata Yuan et Shan, a natural product that treats rheumatism through the elimination of inflammation and the alleviation of pain that has a long history in the clinic. The analgesic mechanism of osthole is complicated and confusing. Astrocytes have attracted increasing attention from pain researchers. Inhibitors targeting astrocytes are thought to be promising treatments for neuropathic pain. Whether osthole can alleviate neuropathic pain through astrocytes has not been elucidated in detail. In this study, CCI surgery was used to establish the neuropathic pain model in mice. The CCI mice were treated with osthole (5, 10, or 20 mg/kg/day) for 14 days in vivo. Mechanical allodynia and heat hyperalgesia were measured to evaluate the therapeutic effect of osthole. In mechanism research, the activation of astrocytes; the protein expression of P2Y1R and p-JNK in astrocytes; the release of inflammatory factors; the variations in mEPSPs and eEPSPs; and the levels of GluA1, GluN2B, p-ERK, p-CREB and c-Fos in neurons were observed. The P2Y1R inhibitor MRS2179 and the p-JNK inhibitor SP600125 were used to demonstrate how osthole works in neuropathic pain. In addition, astrocytes and neurons were used to estimate the direct effect of osthole on astrocyte-neuron interactions and signal transmission in vitro. Our findings suggest that osthole treatment obviously relieved mechanical allodynia and heat hyperalgesia in CCI mice. P2Y1R is involved in CCI-induced pain hypersensitivity, and P2Y1R is required for osthole-induced p-JNK downregulation in the spinal cord. Osthole inhibited astrocyte activation and reduced inflammatory factor expression. After osthole treatment, mEPSP frequency and eEPSP amplitude were decreased in spinal lamina I-II neurons. Downstream signaling molecules such as pGluA1, pGluN2B, p-ERK, p-CREB and c-Fos were also reduced very quickly in osthole-treated neuralgic mice. Our conclusion is that osthole alleviates neuropathic pain in mice via the P2Y1-receptor-dependent JNK signaling pathway in spinal astrocytes, and osthole could be considered a potential pharmacotherapy to alleviate neuropathic pain.

5.
Medicine (Baltimore) ; 99(20): e20326, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32443384

RESUMO

The hypomethylation of the Cyclin D1 (CCND1) promoter induced by excess oxidative stress likely promotes the development of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC). We aimed to evaluate methylation status of the CCND1 promoter as a new plasma marker for the detection of HBV-HCC.We consecutively recruited 191 participants, including 105 patients with HBV-HCC, 54 patients with chronic hepatitis B (CHB), and 32 healthy controls (HCs). Using methylation-specific polymerase chain reaction, we identified the methylation status of the CCND1 promoter in plasma samples. We analyzed the expression levels of the CCND1 mRNA in peripheral blood mononuclear cells by using quantitative real-time PCR. We assessed the plasma levels of superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde by using enzyme-linked immunosorbent assays.Patients with HBV-HCC (23.81%) presented a reduced methylation frequency compared with patients with CHB (64.81%) or HCs (78.13%) (P < .001). When receiver operating characteristic curves were plotted for patients with HBV-HCC versus CHB, the methylation status of the CCND1 promoter yielded diagnostic parameter values for the area under the curve of 0.705, sensitivity of 76.19%, and specificity of 64.81%, thus outperforming serum alpha-fetoprotein (AFP), which had an area under the curve of 0.531, sensitivity of 36.19%, and specificity of 90.74%. Methylation of the CCND1 promoter represents a prospective diagnostic marker for patients with AFP-negative HBV-HCC and AFP-positive CHB. The expression levels of CCND1 mRNA was increased in patients with HBV-HCC compared with patients with CHB (Z = -4.946, P < .001) and HCs (Z = -6.819, P < .001). Both the extent of oxidative injury and antioxidant capacity indicated by the superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde levels were increased in patients with HBV-HCC. Clinical follow up of patients with HBV-HCC revealed a worse overall survival (P = .012, log-rank test) and a decreased progression-free survival (HR = 0.109, 95%CI: 0.031-0.384) for the unmethylated CCND1 group than methylated CCND1 group.Our study confirms that oxidative stress appears to correlate with plasma levels of CCND1 promoter methylation, and the methylation status of the CCND1 promoter represents a prospective biomarker with better diagnostic performance than serum AFP levels.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/fisiopatologia , Ciclina D1/metabolismo , Hepatite B Crônica/complicações , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/fisiopatologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Idoso , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Metilação de DNA/fisiologia , Detecção Precoce de Câncer , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Malondialdeído/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Regiões Promotoras Genéticas/fisiologia , Estudos Prospectivos , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Superóxido Dismutase/metabolismo , alfa-Fetoproteínas/análise
6.
Aging (Albany NY) ; 12(11): 10457-10472, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433038

RESUMO

Sleep disorder has become a prevalent issue in current society and is connected with the deterioration of neurobehaviors such as mood, cognition and memory. Ellagic acid (EA) is a phenolic phytoconstituent extracted from grains and fruits that has potent neuroprotective properties. This research aimed to study the alleviative effect and mechanism of EA on memory impairment and anxiety caused by sleep deprivation (SD). EA ameliorated behavioral abnormalities in SD mice, associated with increased dendritic spine density, and reduced shrinkage and loss of hippocampal neurons. EA reduced the inflammatory response and oxidative stress injury caused by SD, which may be related to activation of the Nrf2/HO-1 pathway and mitigation of the TLR4-induced inflammatory response. In addition, EA significantly reduced the mortality and ROS levels in glutamate (Glu)-induced hippocampal neuron injury, and these effects of EA were enhanced in TLR4 siRNA-transfected neurons. However, knockdown of Nrf2 dramatically restrained the protective impact of EA on Glu-induced toxicity. Taken together, EA alleviated memory impairment and anxiety in sleep-deprived mice potentially by inhibiting TLR4 and activating Nrf2. Our findings suggested that EA may be a promising nutraceutical ingredient to prevent cognitive impairment and anxiety caused by sleep loss.

7.
J Hazard Mater ; 396: 122709, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32353731

RESUMO

Oxynitrides with narrow band gap are promising materials as visible-light sensitive photocatalysts, because introduction of nitrogen ions can negatively shift the position of valence band maximum of the corresponding oxides to negative side. (Zn1+xGe)(N2Ox) with wurtzite structure is one of the oxynitride materials. (Zn1+xGe)(N2Ox) with nanotube morphology was synthesized by nitridation of Zn2GeO4 nanorods at 800 °C for 6 h. During the nitridation process, the nanorod with smooth surface was transformed into nanotube with rough surface in spite of no template for formation of tube structure. The nanotube formation can be caused by ordered morphological transformation from Zn2GeO4 nanorod during the nitridation. (Zn1+xGe)(N2Ox) nanotube exhibited a large specific surface area due to its nanotube morphology and the ability to be responsive to visible light because of the narrow band gap of 2.76 eV. Compared to (Zn1+xGe)(N2Ox) synthesized by conventional solid state reaction, the optimized (Zn1+xGe)(N2Ox) nanotube possessed enhanced photocatalytic NOx decomposition activity under both ultraviolet and visible light irradiation.

8.
Rep Prog Phys ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375132

RESUMO

Light absorption generates strongly bound excitons in organic solar cells (OSCs). To obtain efficient charge generation, a large driving force is required, which causes a large energy loss (Eloss) and severely hinders the improvement in the power conversion efficiencies (PCEs) of OSCs. Recently, the development of non-fullerene OSCs has seen great success, and the resulting OSCs can yield highly efficient charge generation with a negligible driving force, which raises a fundamental question about how the excitons split into free charges. From a chemical structure perspective, the molecular electrostatic potential differences between donors and acceptors may play a critical role in facilitating charge separation. Although the Eloss caused by charge generation has been suppressed, charge recombination, particularly via non-radiative pathways, severely limits further improvements in the PCEs. In OSCs with negligible driving forces, the lowest excited state, a hybrid local exciton-charge transfer state, is believed to have a strong association with the non-radiative Eloss. This review discusses the efficient charge generation at low Eloss values in highly efficient OSCs and highlights the issues that should be tackled to further improve the PCEs to new levels (~ 20%).

9.
Brain Res Bull ; 160: 141-149, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32389388

RESUMO

Sleep deprivation (SD) can induce cognitive and memory impairments. This impairment is in part due to oxidative stress damage in the hippocampus region of the brain. Corilagin (CL), a polyphenol belonging to the tannin family and extracted from Terminalia chebula and Phyllanthus emblica, shows strong antioxidant and neuroprotective effects. NF-E2-related factor (Nrf2)/heme oxygenase-1 (HO-1) and NADPH oxidase (NOX) are critical targets involved in cellular defense mechanisms against oxidative injury. Thus, we hypothesized that CL could be a preventive treatment for SD-induced memory impairments by inhibiting NOX2 and activating Nrf2. The results from behavioral tests showed that administration of CL resulted in significantly better performance compared to the SD mice. CL significantly normalized the elevated MDA level and the reduced activity of GPx and SOD (P <0.05, p<0.01) caused by SD. In hippocampal tissues, CL effectively activated Nrf2/HO-1 signaling and downregulated NOX2 protein expression compared with SD (P <0.05, P <0.01). Meanwhile, in vitro findings showed that knockdown of Nrf2 blocked the protective effect of CL versus Glu-induced toxicity, while the effect of CL was enhanced in NOX2 siRNA-transfected neurons. Overall, these findings provided evidence that CL ameliorates SD-induced memory impairments in mice by inhibiting NOX2 and activating Nrf2.

11.
Nat Commun ; 11(1): 2589, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444691

RESUMO

RNA polymerase II (RNAPII) transcription converts the DNA sequence of a single gene into multiple transcript isoforms that may carry alternative functions. Gene isoforms result from variable transcription start sites (TSSs) at the beginning and polyadenylation sites (PASs) at the end of transcripts. How alternative TSSs relate to variable PASs is poorly understood. Here, we identify both ends of RNA molecules in Arabidopsis thaliana by transcription isoform sequencing (TIF-seq) and report four transcript isoforms per expressed gene. While intragenic initiation represents a large source of regulated isoform diversity, we observe that ~14% of expressed genes generate relatively unstable short promoter-proximal RNAs (sppRNAs) from nascent transcript cleavage and polyadenylation shortly after initiation. The location of sppRNAs correlates with the position of promoter-proximal RNAPII stalling, indicating that large pools of promoter-stalled RNAPII may engage in transcriptional termination. We propose that promoter-proximal RNAPII stalling-linked to premature transcriptional termination may represent a checkpoint that governs plant gene expression.

12.
Fish Shellfish Immunol ; 101: 216-224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224280

RESUMO

Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio), and its main pathological processes include the inflammatory response. However, the detailed mechanism is still unclear. Reactive oxygen species (ROS) have been shown to play critical roles in the immune response, including inflammation, in different models. Our previous studies have demonstrated that SVCV infection results in the accumulation of ROS, including H2O2, in epithelioma papulosum cyprini (EPC) cells. In this study, we aimed to explore the relationship between H2O2 accumulation and inflammation during SVCV infection. After EPC cells were infected with SVCV, the expression levels of the inflammatory factors tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and interleukin (IL)-8 were up-regulated, while the expression of the anti-inflammatory factor interleukin (IL)-10 was down-regulated, compared with that in mock-infected EPC cells. The antioxidant N-acetyl-l-cysteine (NAC) could dampen the increased TNF-ɑ and COX-2 expression induced by SVCV and H2O2, suggesting a relationship between ROS accumulation and inflammation during SVCV infection. Dual luciferase reporter assays demonstrated that SVCV could not activate the NF-κB pathway. In addition, inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) treatment had no effect on the expression of inflammatory factors. Furthermore, inhibition of the ERK, JNK, and p38MAPK signaling pathways by U0126, SP600125, and SB203580, respectively, reduced the expression of TNF-ɑ, COX-2, and IL-8, indicating that these three signaling pathways were all involved in the inflammatory response after SVCV infection. In addition, the PI3K signaling pathway was involved in the expression of the chemokine IL-8 in the SVCV-induced inflammatory response. We also showed that inhibition of the MAPK or PI3K signaling pathway facilitated the expression of SVCV-G as well as increased the SVCV viral titer. Altogether these results reveal the mechanism of the SVCV-mediated inflammatory response. Thus, targeting these signaling pathways may provide novel treatment strategies for SVCV-mediated diseases.

13.
Mediators Inflamm ; 2020: 6947482, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256194

RESUMO

Regulatory dendritic cells (DCreg) have been reported to be a negative regulator in the immune response. These cells are widely distributed in the liver, spleen, and lung. However, the status and function of DCreg in the eyes and disease are still not very clear. Herein, we found that the number of I-alowCD11bhigh DC increased in the eye and spleen at the recovery stage of experimental autoimmune uveitis (EAU), which is a mouse model for autoimmune uveitis. These cells expressed lower levels of CD80, CD86, and CD54 than the mature DCs and expressed interleukin 10 (IL-10), indoleamine 2,3-dioxygenase (IDO), and transforming growth factor beta (TGF-ß) as well. Moreover, these DCreg can regulate the development of EAU by promoting CD4+CD25+Foxp3+ regulatory T cells. The increased interferon-gamma (IFN-γ) in the aqueous humor of EAU participates in inducing DCreg to alleviate the symptom of EAU. Furthermore, DCreg was found to exist in the eyes of normal mice. Aqueous humor, containing a certain concentration of IL-10, TGF-ß, prostaglandin E2 (PGE2), IDO, and nitric oxide (NO), induced the tolerance of DCreg in normal eyes. It can be concluded that DCreg exists in the eyes and plays a protective role in inflamed eyes. These DCreg induced by IFN-γ might be used as a strategy to develop therapy for EAU management.

14.
Endocrine ; 68(3): 564-572, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32246318

RESUMO

PURPOSE: Oral microbiota maintains a dynamic ecological balance with the host. However, a disruption in this balance can lead to oral diseases such as dental caries and periodontitis. Several studies suggest differences in microbial composition in the oral cavity between patients with T2DM and nondiabetic patients. However, there is inadequate oral microbiome-related data from Chinese patients with T2DM, and the difference in microbiome profile between Chinese patients with T2DM and other ethnicities needs to be investigated further. METHOD: Oral swab samples were collected from 280 adult patients with T2DM and 162 healthy controls. Illumina sequencing was performed on oral samples targeting V1-V2 region of 16S rRNA gene and sequence analysis was carried in the QIIME. RESULTS: Patients with T2DM and healthy cohorts exhibited distinct oral microbial clusters based on principal coordinate analysis (PCoA). The Firmicutes/Bacteroidetes ratio increased in T2DM and T2DM patients presented significantly higher numbers of Neisseria, Streptococcus, Haemophilus, and Pseudomonas genera, and lower numbers of Acinetobacteria compared with healthy controls. When compared with the available published data of oral and gut microbiome associated with T2DM patients, we found the ratio of Firmicutes/Bacteroidetes and the abundance of Haemophilus could be a specific microbial biomarker in Chinese patients with T2DM. CONCLUSIONS: Our study revealed a significant difference in the oral microbiota between T2DM patients and healthy individuals. We identified 25 taxa, including 6 genera, with significant difference in abundance between T2DM and healthy controls.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32224457

RESUMO

Existing enhancement methods are empirically expected to help the high-level end computer vision task: however, that is observed to not always be the case in practice. We focus on object or face detection in poor visibility enhancements caused by bad weathers (haze, rain) and low light conditions. To provide a more thorough examination and fair comparison, we introduce three benchmark sets collected in real-world hazy, rainy, and low-light conditions, respectively, with annotated objects/faces. We launched the UG2+ challenge Track 2 competition in IEEE CVPR 2019, aiming to evoke a comprehensive discussion and exploration about whether and how low-level vision techniques can benefit the high-level automatic visual recognition in various scenarios. To our best knowledge, this is the first and currently largest effort of its kind. Baseline results by cascading existing enhancement and detection models are reported, indicating the highly challenging nature of our new data as well as the large room for further technical innovations. Thanks to a large participation from the research community, we are able to analyze representative team solutions, striving to better identify the strengths and limitations of existing mindsets as well as the future directions.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32233417

RESUMO

The high-efficiency organic solar cells (OSCs) with thicker active layers are potential candidates for the fabrication of large-area solar panels. The low charge carrier mobility of the photoactive materials has been identified as the major problem hindering the photovoltaic performance of the thick-film OSCs. In this study, high performance of ultra-thick-film OSCs employing a nonfullerene acceptor BTP-4Cl and a polymer donor PBDB-TF is demonstrated. Two blends (PBDB-TF:BTP-4Cl and PBDB-TF:IT-4F) show comparable mobilities and excellent photovoltaic characteristics in thin-film devices, while in the 1000 nm thick devices, although they both exhibit desirable and balanced mobilities, the PBDB-TF:BTP-4Cl-based blend possesses lower trap-state density than the IT-4F-based counterpart, leading to lower trap-assist recombination, longer carrier lifetime, and thus a much higher short-circuit current density in the device. As a result, the BTP-4Cl-based 1000 nm thick OSC achieves a remarkable power conversion efficiency of 12.1%, which greatly outperforms the IT-4F-based devices (4.72%). Furthermore, for a 1000 nm thick device with an active area of 4 cm2, a promising efficiency of 10.1% was obtained, showing its great potential in future large-scale production.

17.
Pediatr Res ; 2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32305038

RESUMO

BACKGROUND: Increasing evidence suggests that postnatal overfeeding induces childhood obesity, which is strongly associated with metabolic syndrome. Insulin resistance is a risk factor for metabolic syndrome. MicroRNA-221 (miR-221) is involved in the development of obesity and has been reported to negatively regulate insulin sensitivity. However, the underlying mechanism remains unclear. METHODS: Rats raised in small litters (SLs, three pups/dam, n = 10) and normal litters (NLs, 10 pups/dam, n = 10) were used to model early postnatal overfeeding and act as controls, respectively. miR-221 and proteins related to the phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) pathway were assessed in the liver. RESULTS: Early postnatal overfeeding significantly increased body weight, visceral fat index, blood glucose, serum triglycerides, and the homeostasis model assessment of insulin resistance at 9 weeks. Real-time polymerase chain reaction (PCR) and western blot analysis revealed that postnatal overfeeding induced insulin receptor and insulin receptor substrate 2 expression, but decreased PI3K and AKT phosphorylation in the liver. Quantitative real-time PCR showed that hepatic miR-221 was significantly overexpressed in the SL group. CONCLUSIONS: These results indicate that postnatal overfeeding induces hepatic miR-221 overexpression and impairs the PI3K/AKT signal pathway, which may cause insulin resistance. IMPACT: We first report postnatal overfeeding induces hepatic miR-221 expression.Postnatal overfeeding impairs PI3K/AKT pathway in the liver of adult rats.Postnatal overfeeding induces obesity and high blood glucose.Avoidance of overfeeding during early postnatal life may prevent obesity and T2DM.

18.
Clin Colorectal Cancer ; 19(2): e58-e69, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32265117

RESUMO

BACKGROUND: This study explored the impact of chemotherapy completion on irinotecan efficacy in preoperative chemoradiotherapy in patients with locally advanced rectal cancer. PATIENTS AND METHODS: Patients with locally advanced rectal cancer (T3/4 and/or LN+) receiving neoadjuvant chemoradiotherapy were enrolled. All received preoperative pelvic radiotherapy concurrently with capecitabine and irinotecan, followed by a course of XELIRI and surgery. Patients were divided into low- and high-completion groups based on their cycles of concurrent irinotecan (1-3 or 4-5). Tumor response was compared. Significant risk factors for low completion were investigated by logistic regression modeling then a predictive nomogram was built. RESULTS: Overall, 371 patients were enrolled, with 102 patients from CinClare phase III trial (NCT02605265). Proportions of patients with low and high completion were 38.8% and 61.2%, respectively. In the general population, the complete tumor response rates (combining sustained clinical complete response and pathologic complete response) were 21.5% and 33.6% in the low- and high-completion groups, respectively (P = .02), which were 24.2% versus 43.5% in the CinClare group (P = .08). The pathologic complete response rates were 19.4% and 26.1%, respectively (P = .19). A predictive nomogram was established and 3 different risk groups (low, intermediate, and high risk) were identified, with high completion rates of 29.2%, 50.0%, and 68.9%, respectively (P < .0001). CONCLUSION: Our analysis suggested higher completion of concurrent irinotecan was associated with better tumor response for patients with locally advanced rectal cancer with UGT1A1∗1∗1 or UGT1A1∗1∗28 phenotypes in the neoadjuvant setting, and at least 4 cycles was recommended.

19.
J Pharm Pharmacol ; 72(5): 699-708, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196681

RESUMO

OBJECTIVES: The purpose of this study is to investigate the antifibrosis and anti-oxidation of rhein in vivo and in vitro, and to evaluate potential mechanisms involved in the treatment of chronic kidney disease (CKD). METHODS: In experimental animal studies, CKD was established by 5/6 nephrectomy (5/6Nx). Serum creatinine (Scr) and blood urea nitrogen (BUN) were determined. Histopathologic tests were performed by HE and Masson trichrome stained. The level of ROS was investigated by fluorescence microplate with the probe 2', 7'-dichlorofluorescein diacetate (DCFH-DA). The protein expressions of p47phox and gp91phox were measured in 5/6Nx rats. In HK-2 cells, the expression of SIRT3 and Foxo3α was measured in SIRT3 knockdown conditions. The indicators of oxidation and fibrosisi were measured in SIRT3 knockdown conditions. KEY FINDINGS: The results showed that, in addition to reducing renal interstitial pathologic injury and collagen fibrils, rhein administration improved renal function. The protective mechanisms were attributed to active SIRT3/FOXO3α signalling pathway and then play the anti-oxidative capacity of rhein, as well as to subsequent antifibrotic effect. CONCLUSION: Taken together, rhein protected kidney through SIRT3/FOXO3a involvement. The anti-oxidative capacity of rhein contributed to the protective effects including the subsequent antifibrotic responses.

20.
Pathol Res Pract ; 216(5): 152914, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32147273

RESUMO

DNA methylation is one of the epigenetic mechanisms to regulate gene expression and frequently occurs in human cancer cells. T-cadherin (CDH13) is a new member of the cadherin superfamily and possesses multiple functions. Our study included 26 normal controls (NCs), 65 chronic hepatitis B patients (CHB), 14 liver cirrhosis patients (LC) and 157 hepatocellular carcinoma patients (HCC). We mainly focused on the mRNA expression and methylation status of CDH13 in peripheral blood mononuclear cells (PBMCs), which were detected by semi-quantitative real-time polymerase chain reaction (RT-qPCR) and methylation-specific polymerase chain reaction (MSP) respectively. The CDH13 mRNA level was lower in HCC, especially in early-stage of HCC than in NCs and CHB groups (p < 0.05). Methylation frequency of the CDH13 promoter was significantly higher in HCC patients than in the NCs and CHB groups (67.52 % vs 0.00 %, p < 0.001, 67.52 % vs 52.31 %, p < 0.05, respectively). CDH13 mRNA level was significantly and relatively lower in methylated groups than in unmethylated groups among the whole participants. The methylation level of CDH13 promoter in HCC might be influenced or partly influenced by some critical factors such as TBil, ALB and AFP (p < 0.05). As an important factor in signaling pathway regulating by CDH13 to promote carcinogenesis, JNK level was significantly higher in HCC which had a higher methylation frequency than in NCs, CHB and LC (p < 0.05). Furthermore, the combination of the methylated CDH13 level and AFP level showed a better score: AUC = 0.796 (SE = 0.031, 95 %CI 0.735-0.857; p < 0.001) in male and AUC = 0.832 (SE = 0.057, 95 %CI 0.721-0.944; p < 0.001) in female compared to AFP alone for diagnosing HCC from NCs, CHB and LC. The methylation of CDH13 promoter was an independent predictor for assessing the prognosis of HCC patients (r=-1.378 p < 0.05). In conclusion, hypermethylation of CDH13 in PBMCs was associated with the underexpression of mRNA and the high risk of HCC. The methylation status of the CDH13 promoter in PBMCs was a potential noninvasive biomarker to predict the prognosis of HCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA