Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.589
Filtrar
1.
Food Chem ; 398: 133798, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964570

RESUMO

Amyloid-based nanostructures from food sources have been received intensive interests recently in material science, biomedicine and especially delivery system. This is due to the ability of protein-based amyloid architecture that proved to be an attractive system to carry drug and nutrition. However, few research focused on the modification of functional properties of different fractions isolated from amyloid fibrils. Hereby, we separated the retentate (RGFs) and filtrate (FGFs) fractions from rice glutelin fibrils (GFs) using centrifugal filtration and then investigated the structural characteristics and functional properties of these fractions. We proved that protein fibrillization would highly improve both emulsifying and antioxidant abilities of protein dispersion. In addition, further processed RGFs with rich ß-sheet structures exhibited a similar functional performance to GFs dispersion. By contrast, FGFs dispersion with less ß- sheet content, lower molecular weight, interestingly re-assembled into spherical aggregates with weaker interaction, exhibiting better antioxidant and emulsifying properties.


Assuntos
Nanoestruturas , Oryza , Amiloide/química , Antioxidantes/química , Glutens/química , Nanoestruturas/química , Oryza/química
2.
Food Chem ; 398: 133925, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987004

RESUMO

Blanching pretreatment can improve product quality and efficiency during food processing. Effects of hot-air microwave rolling blanching (HMRB) on physiochemical properties and microstructure of turmeric were investigated under various treatment times (0-10 min). Results showed that HMRB significantly changed weight, electrolyte leakage, texture, viscoelastic properties, pectin fractions content, thermal properties and drying quality of turmeric. Meanwhile, HMRB promoted the redistribution of water in turmeric and changed the cell structure, thus shortening drying time by 6.35-34.92 %. The polyphenol oxidase and peroxidase were entirely inactivated after blanching for 8 and 10 min, respectively. Compared with unblanched dried turmeric, the curcumin content, total phenolic, DPPH and ABTS were significantly increased by 20.76 %, 5.63 %, 7.54 % and 19.05 % at the optimal blanching time (8 min). Overall, HMRB can be used as a promising pretreatment technology to enhance the drying rate and improve the quality of dried turmeric.


Assuntos
Curcuma , Micro-Ondas , Ar , Dessecação/métodos , Temperatura Alta
3.
Neural Regen Res ; 18(2): 344-349, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900428

RESUMO

The current animal models of stroke primarily model a single intracerebral hemorrhage (ICH) attack, and there is a lack of a reliable model of recurrent ICH. In this study, we established 16-month-old C57BL/6 male mouse models of ICH by injecting collagenase VII-S into the left striatum. Twenty-one days later, we injected collagenase VII-S into the right striatum to simulate recurrent ICH. Our results showed that mice subjected to bilateral striatal hemorrhage had poorer neurological function at the early stage of hemorrhage, delayed recovery in locomotor function, motor coordination, and movement speed, and more obvious emotional and cognitive dysfunction than mice subjected to unilateral striatal hemorrhage. These findings indicate that mouse models of bilateral striatal hemorrhage can well simulate clinically common recurrent ICH. These models should be used as a novel tool for investigating the pathogenesis and treatment targets of recurrent ICH.

4.
Bioact Mater ; 20: 126-136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35663341

RESUMO

In acute ischemic stroke therapy, potent neuroprotective agents are needed that prevent neural injuries caused by reactive oxygen species (ROS) during ischemic reperfusion. Herein, a novel 2D neuroprotective agent (AFGd-LDH) is reported, comprising Gd-containing layered double hydroxide nanosheets (Gd-LDH, as a drug nanocarrier/MRI contrast agent), atorvastatin (ATO, as a neuroprotective drug) and the ferritin heavy subunit (FTH, as a blood brain barrier transport agent). Experiments revealed AFGd-LDH to possess outstanding antioxidant activity, neuroprotective properties, blood‒brain barrier transit properties, and biocompatibility. In vitro studies demonstrated the ROS scavenging efficiency of AFGd‒LDH to be ∼90%, surpassing CeO2 (50%, a ROS scavenger) and edaravone (52%, a clinical neuroprotective drug). Ischemia‒reperfusion model studies in mice showed AFGd‒LDH could dramatically decrease apoptosis induced by reperfusion, reducing the infarct area by 67% and lowering the neurological deficit score from 3.2 to 0.9. AFGd-LDH also offered outstanding MRI performance, thus enabling simultaneous imaging and ischemia reperfusion therapy.

5.
Horm Metab Res ; 54(2): 76-83, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35130568

RESUMO

The aim of the study was to evaluate the effects of thyroperoxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) on maternal and neonatal adverse outcomes in pregnant women. A total of 296 singleton pregnant women were classified into four groups according to the thyroid auto-antibody in the first trimester. Finally, there were 97 women in TPOAb positive group (TPOAb+/TgAb-), 35 in TgAb positive group (TPOAb-/TgAb+), 85 in TPOAb and TgAb positive group (TPOAb+/TgAb+), and 79 in TPOAb and TgAb negative group (TPOAb-/TgAb-). Thyroid function, TPOAb, and TgAb were checked during pregnancy and followed up at 6 weeks, 3 months, 6 months, 9 months, and 12 months postpartum. Levothyroxine sodium tablets could be taken to maintain euthyroid antepartum. Thyroid function of women with postpartum thyroiditis (PPT) were followed up at 2 and 3 years postpartum. We observed the incidence of PPT, premature rupture of membranes (PROM), placental abruption, placenta previa, polyhydramnios, oligohydramnios, postpartum hemorrhage, preterm birth, and low birth Weight in the four groups. 19.93% of the women had PPT. The incidence of PPT in TPOAb+/TgAb-, TPOAb-/TgAb+, TPOAb+/TgAb+groups was significantly higher than that in TPOAb-/TgAb- group, respectively (16.49 vs. 6.33%, 22.86 vs. 6.33%, 35.29 vs. 6.33%, p <0.05). The incidence of PPT in TPOAb+/TgAb+group was significantly higher than that in TPOAb+/TgAb- group (35.29 vs. 16.49%, p <0.01). PPT occurred as early as 6 weeks postpartum, but mainly at 3 and 6 months postpartum in the four groups (62.50%, 75.00%, 70.00%, 80.00%). All PPT in TPOAb-/TgAb- group occurred within 6 months postpartum, while it was found at 9 months or 12 months postpartum in other three groups. There was no classical form of PPT in TPOAb-/TgAb- group, while in the other three groups, all three types (classical form, isolated thyrotoxicosis, isolated hypothyroidism) existed. At 2 years postpartum of the women with PPT, the rate of euthyroidism in TPOAb+/TgAb+group was significantly lower than that in TPOAb-/TgAb- group (p <0.05). At 3 years postpartum of the women with PPT, the rate of euthyroidism in TPOAb+/TgAb-, TPOAb-/TgAb+, and TPOAb+/TgAb+groups were significantly lower than that in TPOAb-/TgAb- group (p <0.05). The values of TPOAb and TgAb postpartum were significantly higher than those during pregnancy (p <0.05). The incidence of PROM in TPOAb+/TgAb- group was significantly higher than that in TPOAb-/TgAb- group (32.99 vs. 17.72%, p <0.05). The binary logistic regression for PPT showed that the OR value of TPOAb was 2.263 (95% CI 1.142-4.483, p=0.019). The OR value of TgAb was 3.112 (95% CI 1.700-5.697, p=0.000). In conclusion, pregnant women with positive thyroid auto-antibodies had an increased risk of PPT and a reduced rate of euthyroidism at 2 and 3 years postpartum. TPOAb is associated with the incidence of PROM. Both of TPOAb and TgAb were independent risk factors for PPT. TgAb deserves more attention when studying autoimmune thyroid disease (AITD) combined with pregnancy.


Assuntos
Hipotireoidismo , Nascimento Prematuro , Autoanticorpos , Feminino , Humanos , Hipotireoidismo/epidemiologia , Recém-Nascido , Iodeto Peroxidase , Placenta , Gravidez , Gestantes , Tireoglobulina
6.
Front Mol Biosci ; 9: 975582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090053

RESUMO

Ferroptosis is a newly identified form of regulated cell death characterized by iron accumulation and lipid peroxidation. Ferroptosis plays an essential role in the pathology of numerous diseases and has emerged as a key area of focus in studies of chronic kidney disease (CKD). CKD is a major public health problem with high incidence and mortality that is characterized by a gradual loss of kidney function over time. The severity and complexity of CKD combined with the limited knowledge of its underlying molecular mechanism(s) have led to increased interest in this disease area. Here, we summarize recent advances in our understanding of the regulatory mechanism(s) of ferroptosis and highlight recent studies describing its role in the pathogenesis and progression of CKD. We further discuss the potential therapeutic benefits of targeting ferroptosis for the treatment of CKD and the major hurdles to overcome for the translation of in vitro studies into the clinic.

7.
Front Microbiol ; 13: 969215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090058

RESUMO

Due to powerful drug resistance and fatal toxicity of methicillin-resistant Staphylococcus aureus (MRSA), therapeutic strategies against virulence factors present obvious advantages since no evolutionary pressure will induce bacterial resistance. Alpha-hemolysin (Hla) is an extracellular toxin secreted by Staphylococcus aureus and contributes to bacterial pathogenicity. Herein, we identified a natural product 2,3-dehydrokievitone (2,3-DHKV) for inhibiting Hla activity of MRSA strain USA300 but not affecting bacteria growth. 2,3-DHKV significantly decreased hemolysin expression in a dose-dependent manner, but it did not potently neutralize hemolysin activity. Subsequently, cellular thermal shift and heptamer formation assays confirmed that 2,3-DHK affects hemolytic activity through indirect binding to Hla. RT-qPCR and western blot revealed that 2,3-DHKV suppressed Hla expression at the mRNA and protein levels, and further decreased accessory gene regulator A (agrA) transcription levels. We also observed that 2,3-DHK significantly attenuated the damage of A549 cells by S. aureus and reduced the release of lactate dehydrogenase (LDH). Moreover, in the MRSA-induced pneumonia mouse model, 2,3-DHK treatment prolonged the life span of mice and reduced the bacterial load in the lungs, which significantly alleviated the damage to the lungs. In summary, this study proved that 2,3-DHK as a Hla inhibitor is a potential antivirulence agent against MRSA infection.

8.
Front Microbiol ; 13: 979737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090122

RESUMO

Apple fruits are susceptible to infection by postharvest fungal pathogens, which may cause fruit decay and severe economic losses. This study investigated the antifungal spectrum of vanillin against common decay pathogens of apple and explored the antifungal mechanisms of vanillin in vitro. In vivo experiments were carried out to evaluate the effects of vanillin on apple postharvest disease control and fruit quality. Moreover, the induced resistance mechanism of vanillin on apple fruit was preliminarily explored. The results showed that vanillin has broad-spectrum antifungal effects, especially on Alternaria alternata. Vanillin could significantly inhibit the growth rate, mycelium biomass, and spore germination of pathogenic fungi by increasing the cell membrane permeability and lipid peroxidation. Importantly, vanillin treatment reduced the incidence of apple decay caused by A. alternata and Penicillium expansum, and contributed to improve fruit quality. Further studies indicated that vanillin could induce elevation in the activities of defense-related enzymes in apple fruit, such as phenylalanine ammonia-lyase (PAL), chitinase (CHI) and ß-1,3-glucanase (ß-1,3-GA), and increase total phenols and flavonoids contents. Generally, these results suggest that vanillin may contribute to the induced resistance of apple fruits to pathogenic fungi. To conclude, the results of this research provide theoretical foundations for the application of vanillin in the control of apple postharvest decay caused by fungal pathogens.

9.
Front Psychiatry ; 13: 963419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090368

RESUMO

Background: A better understanding of the factors and their correlation with clinical first-line nurses' sleep, fatigue and mental workload is of great significance to personnel scheduling strategies and rapid responses to anti-pandemic tasks in the post-COVID-19 pandemic era. Objective: This multicenter and cross-sectional study aimed to investigate the nurses' sleep, fatigue and mental workload and contributing factors to each, and to determine the correlation among them. Methods: A total of 1,004 eligible nurses (46 males, 958 females) from three tertiary hospitals participated in this cluster sampling survey. The Questionnaire Star online tool was used to collect the sociodemographic and study target data: Sleep quality, fatigue, and mental workload. Multi-statistical methods were used for data analysis using SPSS 25.0 and Amos 21.0. Results: The average sleep quality score was 10.545 ± 3.399 (insomnia prevalence: 80.2%); the average fatigue score was 55.81 ± 10.405 (fatigue prevalence: 100%); and the weighted mental workload score was 56.772 ± 17.26. Poor sleep was associated with mental workload (r = 0.303, P < 0.05) and fatigue (r = 0.727, P < 0.01). Fatigue was associated with mental workload (r = 0.321, P < 0.05). COVID-19 has caused both fatigue and mental workload. As 49% of nurses claimed their mental workload has been severely affected by COVID-19, while it has done slight harm to 68.9% of nurses' sleep quality. Conclusion: In the post-COVID-19 pandemic era, the high prevalence of sleep disorders and fatigue emphasizes the importance of paying enough attention to the mental health of nurses in first-class tertiary hospitals. Efficient nursing strategies should focus on the interaction of sleep, fatigue and mental workload in clinical nurses. In that case, further research on solutions to the phenomenon stated above proves to be of great significance and necessity. Clinical trial registration: [https://clinicaltrials.gov/], identifier [ChiCTR2100053133].

10.
Front Physiol ; 13: 937878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091385

RESUMO

Renal fibrosis is a common feature of all types of chronic kidney disease (CKD) and is tightly regulated by the TGF-ß/Smad3 pathway. Let-7i-5p belongs to the let-7 microRNA family with diverse biological functions. It has been reported that let-7i-5p suppresses fibrotic disease in the heart, lungs, and blood vessels, while the role of let-7i-5p in renal fibrosis remains limited. In this study, we aimed to investigate the role of let-7i-5p in renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO) and TGF-ß1-stimulated renal tubular cell line TCMK1. The RNA-targeting CRISPR/Cas13d system was used to knock down let-7i-5p. Renal injury and fibrosis were determined by histological analysis, RT-PCR, Western blot, and immunostaining. Our results have shown that in the kidneys after UUO, the expression of let-7i-5p was significantly increased along with notable tubular injury and interstitial fibrosis. Electroporation of let-7i-targeting Cas13d plasmid efficiently knocked down let-7i-5p in kidneys after UUO with reduced tubular injury, fibrotic area, and expression of fibrotic marker genes α-SMA, fibronectin, and Col1a1. In TGF-ß1-stimulated TCMK1 cells, knockdown of let-7i-5p by Cas13d plasmid transfection also blunted the expression of fibrotic marker genes. Most importantly, the genomic locus of let-7i showed enriched binding of Smad3 as revealed by chromatin immunoprecipitation. In TCMK1 cells, the overexpression of Smad3 can directly induce the expression of let-7i-5p. However, the deletion of Smad3 abolished TGF-ß1-stimulated let-7i-5p expression. Collectively, these findings suggest that let-7i-5p is a Smad3-dependent microRNA that plays a pathogenic role in renal fibrosis. Let-7i-5p could be a promising target for the treatment of CKD-associated renal fibrosis.

11.
Front Physiol ; 13: 953702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091404

RESUMO

A fast prediction of blood flow in stenosed arteries with a hybrid framework of machine learning and immersed boundary-lattice Boltzmann method (IB-LBM) is presented. The integrated framework incorporates the immersed boundary method for its excellent capability in handling complex boundaries, the multi-relaxation-time LBM for its efficient modelling for unsteady flows and the deep neural network (DNN) for its high efficiency in artificial learning. Specifically, the stenosed artery is modelled by a channel for two-dimensional (2D) cases or a tube for three-dimensional (3D) cases with a stenosis approximated by a fifth-order polynomial. An IB-LBM is adopted to obtain the training data for the DNN which is constructed to generate an approximate model for the fast flow prediction. In the DNN, the inputs are the characteristic parameters of the stenosis and fluid node coordinates, and the outputs are the mean velocity and pressure at each node. To characterise complex stenosis, a convolutional neural network (CNN) is built to extract the stenosis properties by using the data generated by the aforementioned polynomial. Both 2D and 3D cases (including 3D asymmetrical case) are constructed and examined to demonstrate the effectiveness of the proposed method. Once the DNN model is trained, the prediction efficiency of blood flow in stenosed arteries is much higher compared with the direct computational fluid dynamics simulations. The proposed method has a potential for applications in clinical diagnosis and treatment where the real-time modelling results are desired.

12.
Front Bioeng Biotechnol ; 10: 972837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091444

RESUMO

Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.

13.
Heliyon ; 8(9): e10253, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091962

RESUMO

The worldwide mortality rate of gastric cancer worldwide remains high. Immunoglobulin-like domain containing receptor 1 (ILDR1) belongs to an evolutionarily conserved protein family, and little is known about this gene in gastric cancer. In this paper, we analyzed the expression of ILDR1 and its relationship with clinical outcomes in gastric cancer using publicly available databases. ONCOMINE, GEPIA2, UALCAN, Kaplan-Meier Plotter, cBioPortal, GeneMANIA and LinkedOmics databases were used to analyze the expression, prognostic values, mutations and functional networks of ILDR1 in gastric cancer. We observed that ILDR1 was overexpressed in gastric cancer than in normal tissues. ILDR1 expression was significantly higher in patients with gastric cancer than in normal controls during subgroup analysis based on cancer stage, patient's race, sex, age, tumor grade, H. pylori infection, histological subtype, and nodal metastasis status. Survival analysis showed that upregulation of ILDR1 expression was significantly associated with poor prognosis. Genomic alterations in ILDR1 were analyzed using cBioPortal, protein-protein interaction (PPI) networks were constructed using GeneMANIA and the co-expressed genes, gene ontology, and pathways of ILDR1 were determined using the LinkedOmics web tool. ILDR1 showed significant differences in expression between gastric cancer and normal tissues and, thus, may be a promising prognostic biomarker for gastric cancer.

14.
Int J Nanomedicine ; 17: 3893-3911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092245

RESUMO

The recent rapid development in the field of extracellular vesicles (EVs) based nanotechnology has provided unprecedented opportunities for nanomedicine platforms. As natural nanocarriers, EVs such as exosomes, exosome-like nanoparticles and outer membrane vesicles (OMVs), have unique structure/composition/morphology characteristics, and show excellent physical and chemical/biochemical properties, making them a new generation of theranostic nanomedicine. Here, we reviewed the characteristics of EVs from the perspective of their formation and biological function in inflammatory bowel disease (IBD). Moreover, EVs can crucially participate in the interaction and communication of intestinal epithelial cells (IECs)-immune cells-gut microbiota to regulate immune response, intestinal inflammation and intestinal homeostasis. Interestingly, based on current representative examples in the field of exosomes and exosome-like nanoparticles for IBD treatment, it is shown that plant, milk, and cells-derived exosomes and exosome-like nanoparticles can exert a therapeutic effect through their components, such as proteins, nucleic acid, and lipids. Moreover, several drug loading methods and target modification of exosomes are used to improve their therapeutic capability. We also discussed the application of exosomes and exosome-like nanoparticles in the treatment of IBD. In this review, we aim to better and more clearly clarify the underlying mechanisms of the EVs in the pathogenesis of IBD, and provide directions of exosomes and exosome-like nanoparticles mediated for IBD treatment.


Assuntos
Exossomos , Vesículas Extracelulares , Doenças Inflamatórias Intestinais , Doença Crônica , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Nanomedicina , Nanomedicina Teranóstica
15.
Microbiol Spectr ; : e0054722, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098533

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that currently poses a serious threat to global health. Novel antimicrobial agents against MRSA are urgently being developed. In this study, we investigated WYBQ-4, which is an effective antibacterial agent with potent bactericidal activity and bactericidal efficiency against MRSA USA300 and clinical isolate strains. In addition, WYBQ-4 exhibited low cytotoxicity without hemolytic activity according to a safety evaluation. Importantly, WYBQ-4 showed potent in vivo efficacy in an MRSA-induced mouse pneumonia model, systemic infection model, and intramuscular infection model. The efficacy of this new cephalosporin against MRSA was associated with a high affinity for penicillin-binding proteins (PBP1, PBP2, PBP3, PBP4, PBP2a) evaluated in a competition assay using bocillin as a reporter. In conclusion, WYBQ-4 has a significant bactericidal effect in vitro and in vivo, indicating that it is a promising compound to control MRSA infection. IMPORTANCE Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Novel antimicrobial agents against MRSA are urgently being developed. In this study, we investigated WYBQ-4, which is an effective antibacterial agent with potent bacteriostatic activity and bactericidal efficiency against MRSA USA300 and clinical isolate strains. WYBQ-4 showed potent in vivo efficacy in MRSA-induced mouse models. Subsequently, we further revealed its antibacterial mechanism. In conclusion, WYBQ-4 has a significant bactericidal effect in vitro and in vivo, indicating that it is a promising compound to control MRSA infection.

16.
Environ Sci Technol ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098667

RESUMO

The biotransformation of heavy metals in the environment is usually affected by co-existing pollutants like selenium (Se), which may lower the ecotoxicity of heavy metals, but the underlying mechanisms remain unclear. Here, we shed light on the pathways of copper (Cu2+) and selenite (SeO32-) synergistic biodetoxification by Shewanella oneidensis MR-1 and illustrate how such processes are affected by anthraquinone-2,6-disulfonate (AQDS), an analogue of humic substances. We observed the formation of copper selenide nanoparticles (Cu2-xSe) from synergistic detoxification of Cu2+ and SeO32- in the periplasm. Interestingly, adding AQDS triggered a fundamental transition from periplasmic to extracellular reaction, enabling 14.7-fold faster Cu2+ biodetoxification (via mediated electron transfer) and 11.4-fold faster SeO32- detoxification (via direct electron transfer). This is mainly attributed to the slightly raised redox potential of the heme center of AQDS-coordinated outer-membrane proteins that accelerates electron efflux from the cells. Our work offers a fundamental understanding of the synergistic detoxification of heavy metals and Se in a complicated environmental matrix and unveils an unexpected role of AQDS beyond electron mediation, which may guide the development of more efficient environmental remediation and resource recovery biotechnologies.

17.
J Clin Lab Anal ; : e24692, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098904

RESUMO

OBJECTIVE: The sensitivity and specificity of current biomarkers for gastric cancer were insufficient. The aim of the present study was to screen novel biomarkers and determine the diagnostic values of ornithine aminotransferase (OAT) and carbamoyl phosphate synthetase 1 (CPS1) for detecting gastric cancer. METHODS: With stable isotope tags, we labelled an initial discovery group of four paired gastric cancer tissue samples and identified with LC-ESI-MS/MS. A validation group of 159 gastric cancer samples and 30 healthy controls were used to validate the candidate targets. GSEA was used to explore the pathways activated in gastric cancer. RESULTS: Four hundred and thirty one proteins were found differentially expressed in gastric cancer tissues. Of these proteins, OAT and CPS1 were found over-expressed in gastric cancer patients, with sensitivity of 70.4% (95% CI: 63.3%-77.6%) and specificity of 80.5% (95% CI: 74.3%-86.7%) for ornithine aminotransferase, and with sensitivity of 68.6% (95% CI: 61.3%-75.8%) and specificity of 73% (95% CI: 66%-79.9%) for carbamoyl phosphate synthetase 1. The co-expression of OAT and CPS1 in gastric cancer tissues has a sensitivity of 81% (95% CI: 73.2%-88.8%) and specificity of 89% (95% CI: 83%-95%). Furthermore, both OAT and CPS1 were overexpressed in patients with local invasion T3 and T4 stages than those in patients with T1 and T2 stages. The co-expression of OAT and CPS1 was strongly correlated with histological grade I 68% (95% CI: 58.7%-77.3%) and TNM stage I/II 52% (95% CI: 42%-62%). The areas under ROC curves were up to 0.758 for the co-expression of OAT and CPS1 in gastric cancer. GSEA results showed that two gene sets and 30 gene sets were activated in OAT high- and CPS1 high-expression patients with gastric cancer, respectively. CONCLUSIONS: The present findings indicated a tight correlation between the co-expression of OAT and CPS1 and the histological grade, local invasion, and TNM stages of gastric cancer. Therefore, OAT and CPS1 might be predictors for gastric cancer invasion and potential targets for anticancer drug design for gastric cancer.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36098912

RESUMO

Developing efficient and cost-effective non-noble metal catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is of great importance. Herein, Co-promoted 1T-MoS2 nanoflowers were synthesized via a one-step hydrothermal method. The influence of Co content on the structure and catalytic performance of 1T-MoS2 was studied in detail. It was found that Co doping not only enhanced the electronic conductivity but also increased the hydrogen adsorption ability of 1T-MoS2. Meanwhile, the highest activity was achieved due to the synergy effect of Co-Mo-S and CoS2 active phase. In the catalytic reduction of 4-NP, the reaction rate constant of Co/1T-MoS2-0.3 was as high as 0.908 min-1 and the catalyst exhibited excellent stability after recycling five times. The present work provides new insights for the rational design of highly efficient metal-doped MoS2 catalysts towards 4-NP reduction in wastewater.

19.
Langmuir ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098991

RESUMO

High internal phase emulsions (HIPEs) provide a versatile platform for encapsulating large volumes of therapeutics that are immiscible in water. A stable scaffold is obtained by polymerizing the external phase, resulting in polyHIPEs. However, fabrication of polyHIPEs usually requires using a considerable quantity of surfactants along with nonbiocompatible components, which hinders their biological applications, e.g., drug-eluting devices. We describe here a straightforward method for generating porous biomaterials by using proteins as both the emulsifier and the building blocks for the fabrication of polyHIPEs. We demonstrate the versatility of this method by using different essential oils as the internal phase. After the gelation of protein building blocks is triggered by the addition of reducing agents, a stable protein hydrogel containing essential oils can be formed. These oils can be either extracted to obtain protein-based porous scaffolds or slowly released for antimicrobial applications.

20.
Water Res ; 224: 119046, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096026

RESUMO

Thermally activated peroxydisulfate In Situ Chemical Oxidation (TAP-ISCO) is often applied for the remediation of soil-sorbed hydrophobic organic contaminants (HOCs) and nonaqueous phase liquids (NAPLs), which act as long-term sources of groundwater contamination. TAP-ISCO benefits from improved desorption/dissolution of organic contaminants into the aqueous phase and efficient activation of peroxydisulfate at elevated temperatures, but the primary limitation of TAP-ISCO is the short lifetime of peroxydisulfate (therefore the availability of reactive radical species). To resolve this problem, coupling of peroxide stabilizers with TAP were tested. The compatibility of seven representative commercial organic and inorganic peroxide stabilizers, including sodium stannate, trisodium phosphate, sodium pyrophosphate, sodium silicate, sodium citrate, ethylene diamine tetra methylene phosphonic acid and ethylenediaminetetraacetic acid disodium salt, with TAP in aqueous solutions and solutions containing goethite or soil particles were first studied. The effects of stabilizers on the formation, distribution and reactivity of reactive oxygen species were then investigated through electron paramagnetic resonance (EPR) spin-trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide, chemical probe experiments using anisole, nitrobenzene and hexachloroethane, and biphasic trichloroethylene (TCE) dense nonaqueous phase liquids (DNAPLs) TAP-ISCO mimicking experiments. The results indicate that organic stabilizers significantly accelerate peroxydisulfate decomposition at both ambient and elevated temperatures. In contrast, inorganic stabilizers can markedly increase peroxydisulfate longevity by suppressing the acid-catalyzed peroxydisulfate decomposition, quenching radical-chain acceleration, and sequestering transition metal species. In addition, TAP systems containing inorganic stabilizers can effectively generate a variety of reactive radical species, including SO4•-, HO•, and O2•-, and improve the oxidation of anisole and nitrobenzene, though suppressing the reduction of hexachloroethane to some extent. Especially, suitable inorganic stabilizers (e.g., trisodium phosphate) can effectively improve TAP oxidation of TCE DNAPL while suppressing peroxydisulfate decomposition. Overall, this study provides the fundamental basis of coupling TAP-ISCO with peroxide stabilizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...