Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.993
Filtrar
1.
Food Chem ; 434: 137416, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734149

RESUMO

To achieve sensitive detection of trace substances in fluids by surface-enhanced Raman spectroscopy (SERS), effective enrichment of molecules at subwavelength regions (hot spots) with a large enhancement is adopted. In this work, a glass fibre paper with Ag nanoparticles (AgNPs) is employed for electrodynamic enrichment of analytes in fluids by paper electrophoresis integrated with field amplification sample stacking (FASS) and capillary effects to obtain both Raman and SERS convenient and sensitive detection. With the help of electrophoretic enrichment on the glass fibre paper and surface plasmon enhancement on the AgNPs, this paper electrophoretic enrichment could improve the detection limit of Raman and SERS detection by more than an order of magnitude, even achieving a SERS detection limit of 10-17 M for Nile Blue A. Furthermore, this flexible SERS detection method can also detect trace organic contaminants at the ppt level in aquaculture and food applications.

2.
Food Chem ; 433: 137283, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657161

RESUMO

This study aimed to investigate the specific changes in the anthocyanins and proanthocyanidins content of red rice during germination. Different methods including chemical detection, UPLC-QToF/MS, and metabolite analysis were used to examine these changes. The findings showed a significant increase in the overall levels of polyphenols and pigments in red rice as the germination period advanced. Specifically, the proanthocyanidins being the predominant pigments showed a significant increase during later stages of germination. Whereas, the anthocyanin levels reached their peak after 12 h of germination and subsequently declined. Furthermore, six anthocyanins and three proanthocyanidins were identified among the pigment constituents. Additionally, several significant precursor substances associated with pigments were identified, and their contents showed a significant increase, indicating that the proanthocyanidin synthesis pathway is activated by germination. These dynamic changes suggest that germination effectively stimulated the synthesis and accumulation of both anthocyanins and proanthocyanidins, thereby improving the nutritional value of red rice.


Assuntos
Oryza , Proantocianidinas , Antocianinas/análise , Proantocianidinas/análise , Oryza/química , Polifenóis/análise
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 304: 123386, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37703792

RESUMO

In this work, we successfully designed and synthesized a methoxydisubstituted bis(salamo)-type fluorescent chemical sensor BS, which can be applied as a highly sensitive and selective fluorescence probe for HCO3- and CO32- detection. The LODs of HCO3- and CO32- were experimentally calculated to be 5.4068 × 10-8 M and 4.4517 × 10-8 M, respectively. After relevant experiments, the sensing mechanism was investigated. Moreover, the application of the sensor in practice is explored, and the sensor BS can be loaded on portable test strips for ion detection. In the field of ion detection, salamo-like chemical sensors have been less studied compared to other sensor molecules, especially for the recognition and detection of anions. Therefore, this study will to some extent contribute to expanding the application of salamo-like compounds.

6.
Genes Dis ; 11(2): 807-818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37692505

RESUMO

Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.

7.
Food Chem ; 435: 137552, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774623

RESUMO

Food packaging is innovating towards more environmental-friendly polymers and broader applications of bioactive compounds. In this study, active packaging materials were successfully prepared by incorporating chlorogenic acid (CGA) nanoparticles into pullulan/gelatin polymer matrixes. The rhamnolipid (RL) and/or CGA were combined with chitosan (CS) to synthesize active nanoparticles by the ionic crosslinking method. The film containing CS/RL/CGA nanoparticles (F/CRC) exhibited both ultrahigh visible light (400-760 nm) transmittance (approximately 90%) and UVA (320-400 nm)-blocking efficiency (89.06%). Its fluorescent properties can be used for anti-counterfeiting. Significantly, the bacterial inhibition rates of F/CRC against E. coli and S. aureus were 92.14% and 98.72%. F/CRC also showed good antioxidant capability and biosafety. Finally, the packaging test further indicated that F/CRC could delay the browning of bananas and the bacteria growth of chicken samples. This work presents a green and feasible route to produce functional materials with UV-shielding properties for packaging applications.


Assuntos
Quitosana , Nanopartículas , Embalagem de Alimentos/métodos , Ácido Clorogênico , Escherichia coli , Staphylococcus aureus , Biopolímeros , Polímeros , Antibacterianos/farmacologia
8.
Ultrasonics ; 137: 107181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847943

RESUMO

Transcranial focused ultrasound is a novel technique for the noninvasive treatment of brain diseases. The success of the treatment greatly depends on achieving precise and efficient intraoperative focus. However, compensating for aberrated ultrasound waves caused by the skull through numerical simulation-based phase corrections is a challenging task due to the significant computational burden involved in solving the acoustic wave equation. In this article, we propose a promising strategy using the coupling of the boundary integral equation method (BIEM) and the finite element method (FEM) to overcome the above limitation. Specifically, we adopt the BIEM to obtain the Robin-to-Dirichlet maps on the boundaries of the skull and then couple the maps to the FEM matrices via a dual interpolation technique, resulting in a computational domain including only the skull. Three simulation experiments were conducted to evaluate the effectiveness of the proposed method, including a convergence test and two skull-induced aberration corrections in 2D and 3D ultrasound. The results show that the method's convergence is guaranteed as the element size decreases, leading to a decrease in pressure error. The computation times for simulating a 500 kHz ultrasound field on a regular desktop computer were found to be 0.47 ± 0.01 s in the 2D case and 43.72 ± 1.49 s in the 3D case, provided that lower-upper decomposition (approximately 13 s in 2D and 2.5 h in 3D) was implemented in advance. We also demonstrated that more accurate transcranial focusing can be achieved by phase correction compared to the noncorrected results (with errors of 1.02 mm vs. 6.45 mm in 2D and 0.28 mm vs. 3.07 mm in 3D). The proposed strategy is valuable for enabling online ultrasound simulations during treatment, facilitating real-time adjustments and interventions.

9.
J Colloid Interface Sci ; 654(Pt A): 774-784, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866049

RESUMO

Chemodynamic therapy (CDT) based on hydroxyl radicals (•OH) to suppress tumor cells is a promising strategy due to its efficacy and safety. Nevertheless, in tumor cells, CDT still faces challenges such as insufficient •OH and weak killing effect of tumor cells under physiological conditions due to inadequate amounts of endogenous hydrogen peroxide (H2O2) and heightened glutathione expression. These challenges limit the therapeutic potential of CDT. To improve the effects of CDT, combination treatment strategies have been developed. Here, we report a rationally designed nanocomposite (CaO2@Cu-LA) with self-supplying H2O2 ability from calcium peroxide, and nitric oxide (NO) generation ability from l-arginine. NO molecules not only exhibit a strong killing effect, but also have the potential to transfer into the more cytotoxic substance peroxynitrite anion by reacting with reactive oxygen species. The results showed that CaO2@Cu-LA could significantly suppress tumor growth by increasing •OH radicals and NO molecules. Taken together, the strategy developed here provides a good application foreground to yield a remarkable synergistic antitumor effect of CDT and NO gas therapy.


Assuntos
Nanocompostos , Neoplasias , Humanos , Medicina de Precisão , Peróxido de Hidrogênio , Arginina , Glutationa , Óxido Nítrico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
10.
J Intensive Care Med ; 39(1): 12-20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37455408

RESUMO

PURPOSE: We sought to determine the correlation between the Numeric Rating Scale (NRS) and Critical-Care Pain Observation Tool (CPOT) to determine whether clinical factors modified the relationship between NRS and CPOT assessments. MATERIALS AND METHODS: We included nonventilated adults admitted to the MICU or SICU who could self-report pain and had at least 3 paired NRS and CPOT assessments. We performed Spearman correlation to assess overall correlation and performed proportional odds logistic regression to evaluate whether the relationship between NRS and CPOT assessments was modified by clinical factors. RESULTS: Nursing staff performed NRS and CPOT assessments every 4 h in 1302 patients, leading to 61,142 matched assessments. We found that the NRS and CPOT have a Spearman correlation coefficient of 0.56 and an intraclass correlation coefficient of 0.32 in intensive care unit patients. Factors that modified the relationship between the NRS and CPOT included the presence of delirium (P < .001) and lower mean daily Richmond Agitation Sedation Scale (<0.001). CONCLUSIONS: The correlation coefficient between the NRS and the CPOT was found to be 0.56. The presence of delirium, decreased level of arousal, modified the relationship between the NRS and CPOT. Self-reported and behavioral pain assessments cannot be used interchangeably in critically ill adults.


Assuntos
Cuidados Críticos , Delírio , Adulto , Humanos , Hospitalização , Dor/diagnóstico , Unidades de Terapia Intensiva , Delírio/diagnóstico
11.
J Hazard Mater ; 462: 132756, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866146

RESUMO

The separation of Lns(III) from radioactive Ans(III) in high-level liquid waste remains a formidable hydrometallurgical challenge. Water-soluble ligands are believed to be new frontiers in the search of efficient Lns/Ans separation ligands to close the nuclear fuel cycles and dealing with current existing nuclear waste. Currently, the development of hydrophilic ligands far lags behind their lipophilic counterparts due to their complicated synthetic procedures, inferior extraction performances, and acid tolerances. In this paper, we have showed a series of hydroxyl-group functionalized phenanthroline diimides were efficient masking agents for Am(III)/Eu(III) separation under high acidity (˃ 1 M HNO3). Record high SFEu(III)/Am(III) of 162 and 264 were observed for Phen-2DIC2OH and Phen-2DIC4OH in 1.25 M HNO3 which represents the best Eu(III)/Am(III) separation performance at this acidity. UV-vis absorption, NMR and TRLFS titrations were conducted to elucidate the predominant of 1:1 ligand/metal species under extraction conditions. X-ray data of both the ligand and Eu(III) complex together with DFT calculations revealed the superior extraction performances and selectivities. The current reported hydrophilic ligands were easy to prepare and readily to scale-up, acid tolerant and highly efficient, together with their CHON-compatible nature make them promising candidates in the development of advanced separation processes.

12.
Carbohydr Polym ; 324: 121556, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37985119

RESUMO

Temporary plugging of the pipeline is necessary for safety in the hot work process of a flame-cutting pipeline. Chemical hydrogel plugging materials may block valves or sensors in the pipeline due to incomplete breakage. Herein, we prepared a carboxymethyl cellulose-based supramolecular hydrogel with thermo-responsive gel-sol transition, crosslinked by hydrogen bonding and π-π stacking between melamine (MEL) and 6-aminouracil modified carboxymethyl cellulose (AUCMC). The supramolecular hydrogel exhibits tunable mechanical properties and good self-recovery. Furthermore, the result of rheo-kinetics suggests a rapid gel-sol transition of the hydrogel with thermal stimulus due to the hydrogen bonding. The pressure resistance test indicates that the hydrogel has a good plugging effect in the simulated pipeline, and the great flame retardancy of the hydrogel can ensure the safety of operation. The residual hydrogel was completely broken and the simulated pipeline with the plugging length of 10 cm was dredged within 21 min by flushing hot water above 70 °C. The supramolecular hydrogel, as the plugging materials for hot work of oil pipeline, exhibits obvious advantages such as ensuring the safety of hot work, simplifying the operation process, and avoiding secondary damage to the pipeline, which further widens the application field of CMC.

13.
Bioact Mater ; 32: 530-542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026439

RESUMO

Immune checkpoint blockade (ICB) therapy is a revolutionary approach to treat cancers, but still have limited clinical applications. Accumulating evidence pinpoints the immunosuppressive characteristics of the tumor microenvironment (TME) as one major obstacle. The TME, characterized by acidity, hypoxia and elevated ROS levels, exerts its detrimental effects on infiltrating anti-tumor immune cells. Here, we developed a TME-responsive and immunotherapeutic catalase-loaded calcium carbonate nanoparticles (termed as CAT@CaCO3 NPs) as the simple yet versatile multi-modulator for TME remodeling. CaCO3 NPs can consume protons in the acidic TME to normalize the TME pH. CAT catalyzed the decomposition of ROS and thus generated O2. The released Ca2+ led to Ca2+ overload in the tumor cells which then triggered the release of damage-associated molecular patterns (DAMP) signals to initiate anti-tumor immune responses, including tumor antigen presentation by dendritic cells. Meanwhile, CAT@CaCO3 NPs-induced immunosupportive TME also promoted the polarization of the M2 tumor-associated macrophages to the M1 phenotype, further enhancing tumor antigen presentation. Consequently, T cell-mediated anti-tumor responses were activated, the efficacy of which was further boosted by aPD-1 immune checkpoint blockade. Our study demonstrated that local treatment of CAT@CaCO3 NPs and aPD-1 combination can effectively evoke local and systemic anti-tumor immune responses, inhibiting the growth of treated tumors and distant diseases.

14.
Patient Educ Couns ; 118: 108031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924743

RESUMO

OBJECTIVE: To comprehensively analyze and further enhance the established E4 communication model for online medical counseling in Chinese settings, by proposing the novel E5 model. Additionally, it aims to evaluate the performance of Chinese doctors in fulfilling the E5 model. METHODS: Through thematic analysis and grounded theory of 500 online medical consultations in China, we developed the extended E5 model from the E4 model. We identified four dimensions of patient attitudes and behaviors using Stanford Topic Modeling Toolbox, then employed Chi-square analysis to investigate their influence on doctors' performance of E5 model. RESULTS: Our study illustrates that the extended E5 model, with its operable strategies, accurately mirrors the nuanced dynamics of online medical counseling in China, significantly varying in doctors' execution in response to the four identified dimensions of patient attitudes and behaviors. CONCLUSION: The extended E5 model, coupled with insights into patient attitudes and behaviors, provides a comprehensive framework for understanding and enhancing communication in China's online healthcare context. PRACTICE IMPLICATIONS: The findings highlight the necessity for doctor training in the E5 model for effective online communication. Furthermore, fostering conducive relationship between patients and doctors could potentially boost doctors' E5 performance.

15.
Sci Total Environ ; 907: 167821, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37848141

RESUMO

The carbon dynamics of lacustrine deposits play an important role in controlling the atmospheric carbon cycle. However, the influences of various sedimentary factors on carbon accumulation in lacustrine deposits are rarely known. In this study, the petrological and geochemistry analyses of organic-rich (average total organic content = 24.22 wt%) lacustrine deposits and organic-poor (average total organic content = 2.48 wt%) lacustrine deposits buried under a peatland (the Zhibian peatland) in Northeast Asia are used to explore the above issues. Results suggest that the concentrations of major oxides, trace elements and rare earth elements in the organic-poor lacustrine deposits are higher than those in the organic-rich lacustrine deposits. Furthermore, these lacustrine deposits were sourced from felsic rocks. The tectonic background was continental island arc and active continental margin. Additionally, the sedimentary models of lacustrine deposits buried under peat sequence were also concluded. Organic-poor lacustrine deposits were developed in a deep-water area, that was freshwater and oxygenic condition. This type of lacustrine deposit was influenced by the frequent input of coarse-grained terrigenous debris and low productivity. In contrast, the organic-rich lacustrine deposits were developed in a shallow-water area, that was saline and anaerobic condition. This type of lacustrine deposit was influenced by a rare input of fine-grained terrigenous debris and high productivity. These findings should assist future studies on the carbon dynamics of buried lacustrine deposits. This study would provide a representative example of carbon accumulation processes and mechanisms in buried paleolake system in Northeast China.

16.
Food Chem ; 431: 137188, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604009

RESUMO

The consumption of noodles with a high glycemic index (GI) can affect health, prompting the need for dietary adjustments to manage abnormal blood glucose levels. This review delves into recent progress in low GI noodles and their potential effect for human well-being. Diverse approaches, encompassing the incorporation of soluble dietary fiber, modified starches, proteins, and plant polyphenols, have shown encouraging outcomes in diminishing the GI of noodles. Furthermore, variations in processing, storage, and cooking techniques can influence the GI of noodles, yielding both positive and negative impacts on their glycemic response. Soluble dietary fiber, protein cross-linkers, and plant polyphenols play a pivotal role in reducing the GI of noodles by hindering the interaction between digestive enzymes and starch, thereby curbing enzymatic activity. Future research spotlighting ingredients, processing methodologies, and the underlying mechanisms of low GI noodles will contribute substantively to the development of functional foods boosting enhanced nutritional profiles.


Assuntos
Grão Comestível , Índice Glicêmico , Humanos , Alimento Funcional , Veículos Farmacêuticos , Polifenóis , Amido , Fibras na Dieta
17.
J Ethnopharmacol ; 318(Pt B): 117077, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625605

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Resina Draconis (RD) is the red resin of Dracaena cochinchinensis (Lour.) S.C. Chen and most used as a hemostatic drug in traditional Chinese medicine. Recent studies have reported that RD has a therapeutic effect on gastrointestinal diseases. Loureirin A, B, and C (LA, LB, and LC) are dihydrochalcone compounds isolated from RD. AIM OF THE STUDY: Dehydration is the primary cause of death in rotaviral diarrhea. Inhibition of Ca2+-activated Cl- channels (CaCCs)-mediated Cl- secretion significantly reduced fluid secretion in rotaviral diarrhea. RD was used to treat digestive diseases such as diarrhea and abdominal pain; however, the pharmacological mechanism remains unclear. This study investigated the effects of RD and loureirin on intestinal Cl- channels and their therapeutic effects on rotavirus-induced diarrhea, aiming to reveal RD's molecular basis, targets, and mechanisms for treating rotaviral diarrhea. MATERIALS AND METHODS: Cell-based fluorescence quenching assays were used to examine the effect of RD and loureirin on Cl- channels activity. Electrophysiological properties were tested using short-circuit current experiments in epithelial cells or freshly isolated mouse intestinal tissue. Fecal water content, intestinal peristalsis rate, and smooth muscle contraction were measured in neonatal mice infected with SA-11 rotavirus before and after LC treatment or adult mice. RESULTS: RD, LA, LB, and LC inhibited CaCCs-mediated Cl- current in HT-29 cells and colonic epithelium. The inhibitory effect of LC on CaCCs was primarily on the apical side in epithelial cells, which may be partially produced by affecting cytoplasmic Ca2+ levels. LC significantly inhibited TMEM16A-mediated Cl- current. Characterization studies revealed that LC inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activity in the colonic epithelium. Although LC activated the cystic fibrosis transmembrane regulator in epithelial cells, its effect was not apparent in colonic epithelium. In vivo, LC significantly reduced the fecal water content, intestinal peristalsis rate, and smooth muscle contraction of mice infected with rotavirus. CONCLUSION: RD and its active compound LC inhibit intestinal CaCCs activity, which might mediate the anti-rotaviral diarrheal effect of RD.


Assuntos
Rotavirus , Animais , Camundongos , Diarreia/tratamento farmacológico , Canais de Cloreto
18.
Food Chem ; 432: 137199, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37633141

RESUMO

This study aims to the effect of arabinoxylan (AX) on gluten quality. Ultrasonic treatment is utilized to degrade water unextractable arabinoxylans (WUAX) from wheat bran, which obtains three molecular weights of AX. The results indicate that the shear viscosity and particle size of AX were decreased and the ζ-potential was increased after ultrasonic treatment. Analysis of the gluten shows that the free SH of gluten with 6% WUAX, SAX10, and SAX30 (ultrasound duration for 10 min and 30 min) was increased by 51.9%, 48.1%, and 17.0%, respectively, whereas the free SH of 2% SAX30-gluten was increased by 19.8%. Furthermore, WUAX impaired the viscoelasticity properties of gluten, while SAX30 improved the viscoelasticity of gluten. WUAX induced the open, fragile, and discontinuous structure of gluten. On the contrary, SAX30 promoted the formation of the compact and regular gluten structure. Overall, ultrasonic as a non-chemical treatment could be used to improve the quality of whole-wheat foods.


Assuntos
Farinha , Triticum , Peso Molecular , Glutens , Água
19.
J Colloid Interface Sci ; 653(Pt A): 844-856, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37769363

RESUMO

Poly(ionic liquid)s (PILs) bearing high ionic densities are promising candidates for carbon dioxide (CO2) fixation. However, efficient and metal-free methods for boosting the catalytic efficiencies of PILs are still challenging. In this study, a novel family of poly(ionic liquid)-coated carbon nanotube nanoarchitectures (CNTs@PIL) were facilely prepared via a noncovalent and in-situ polymerization method. The effects of different carbon nanotubes (CNTs) and PILs on the structure, properties, and catalytic performance of the composite catalysts were systematically investigated. Characterizations and experimental results showed that hybridization of PIL with hydroxyl- or carboxyl-functionalized CNTs (CNT-OH, CNT-COOH) endows the composite catalyst with increased porosity, CO2 capture capacity, swelling ability and diffusion rate with respect to individual PIL, and allows the CNTs@PIL to provide H-bond donors for the synergistic activation of epoxides at the interfacial layer. Benefiting from these merits, the optimal composite catalyst (CNT-OH@PIL) delivered a super catalytic efficiency in the cycloaddition of CO2 to propylene oxide, which was over 4.5 times that of control PIL under metal- and co-catalyst free conditions. Additionally, CNT-OH@PIL showed high carbon dioxide/nitrogen (CO2/N2) adsorptive selectivity and could smoothly catalyze the cycloaddition reaction with a simulated flue gas (15% CO2 and 85% N2). Furthermore, the CNT-OH@PIL exhibited broad substrate tolerance and could be readily recycled and efficiently reused at least 12 times. Hybridization of PIL with functionalized CNTs provides a feasible approach for boosting the catalytic performance of PIL-based solid catalysts for CO2 fixation.

20.
Environ Pollut ; 340(Pt 1): 122792, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879552

RESUMO

Soil cadmium (Cd) pollution poses a serious threat to both the productivity and quality of wheat. This study aimed to investigate the genotypic variation in grain Cd concentration in wheat through field and pot experiments. Among 273 wheat genotypes, a significant genotypic difference was found in grain Cd concentration, ranging from 0.01 to 0.14 mg kg-1. Two contrasting genotypes, X321 (a low grain Cd accumulator) and X128 (a high grain Cd accumulator), were selected for pot experiments. X321 exhibited a 17.9% greater reduction in yield and a 10.2% lower shoot-to-grain Cd translocation rate than X128 under Cd treatment. Grain Cd content showed a positive correlation with soil available Cd content and a negative correlation with Cu content. Soil catalase activity significantly decreased in X128 under Cd stress, whereas no difference was found in X321. The grains of X321 exhibited a more compact spatial distribution of starch grains and protein matrix than those of X128. Moreover, the size of A-type starch in X128 was larger than in X321. Meanwhile, X128 contained much B-type starch, with some surface pits observed on A-type granules under Cd stress. Cd treatment increased the abundance of rhizosphere microorganism communities, with Ellin6067 and Ramlibacter being enriched in X128 under Cd treatment, which might facilitate Cd uptake. The accumulation of Cd in grains demonstrated a strong positive correlation with the rhizosphere bacterial diversity (correlation coefficient = 0.78). These findings provide new insights into the basis of grain Cd accumulation in wheat and have potential implications for developing new verities with low Cd accumulation to ensure food safety and minimize human exposure.


Assuntos
Microbiota , Triticum , Humanos , Cádmio , Rizosfera , Solo , Grão Comestível , Poluição Ambiental , Genótipo , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...