Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
J Transl Med ; 19(1): 456, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736500

RESUMO

Periodontitis is a chronic inflammatory disease that leads to the destruction of both soft and hard periodontal tissues. Complete periodontal regeneration in clinics using the currently available treatment approaches is still a challenge. Mesenchymal stem cells (MSCs) have shown promising potential to regenerate periodontal tissue in various preclinical and clinical studies. The poor survival rate of MSCs during in vivo transplantation and host immunogenic reaction towards MSCs are the main drawbacks of direct use of MSCs in periodontal tissue regeneration. Autologous MSCs have limited sources and possess patient morbidity during harvesting. Direct use of allogenic MSCs could induce host immune reaction. Therefore, the MSC-based indirect treatment approach could be beneficial for periodontal regeneration in clinics. MSC culture conditioned medium (CM) contains secretomes that had shown immunomodulatory and tissue regenerative potential in pre-clinical and clinical studies. MSC-CM contains a cocktail of growth factors, cytokines, chemokines, enzymes, and exosomes, extracellular vesicles, etc. MSC-CM-based indirect treatment has the potential to eliminate the drawbacks of direct use of MSCs for periodontal tissue regeneration. MSC-CM holds the tremendous potential of bench-to-bed translation in periodontal regeneration applications. This review focuses on the accumulating evidence indicating the therapeutic potential of the MSC-CM in periodontal regeneration-related pre-clinical and clinical studies. Recent advances on MSC-CM-based periodontal regeneration, existing challenges, and prospects are well summarized as guidance to improve the effectiveness of MSC-CM on periodontal regeneration in clinics.

2.
Chem Commun (Camb) ; 57(94): 12655-12658, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34766959

RESUMO

A practical electrophilic aminoselenation of O-homoallyl benzimidate with diselenides promoted by PhICl2/Cu2O has been developed. The easily available and stable diselenides were used as selenium sources. Various selenyl 1,3-oxazines, which are important frameworks in medicinal and biological chemistry, were easily obtained in moderate to good yields for the first time. Easy scaleup and scalability make this method attractive for the preparation of other valuable organoselenides.

3.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819370

RESUMO

The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative "engram") neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.

4.
Exp Ther Med ; 22(6): 1485, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765026

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is outbreaking globally. SARS-CoV-2 invades host cells via angiotensin-converting enzyme II (ACE2) and causes multiple-organ injury. Autopsy studies indicated that the testis of patients with COVID-19 exhibited various degrees of spermatogenic cell reduction and injury, but the composition of ACE2-expressing cells and their proportion in the testes have remained to be determined. Recent clinical evidence suggested that the ratio of male sex hormones in males with COVID-19 was significantly changed. The present study aimed to explore whether SARS-CoV-2 is able to damage the male reproductive system. For this, the ACE2-expressing cell composition and proportion in male testes were analyzed using single-cell RNA sequencing (RNA-seq) datasets downloaded from the Gene Expression Omnibus (GEO) database and immunohistochemical (IHC) staining. The single-cell RNA-seq data indicated that ACE2 mRNA was highly expressed in myoid cells, Leydig cells and spermatogenic cells, accounting for 5.45, 1.24 and 0.423% of adult testicular cells. ACE2 mRNA-expressing Sertoli cells, spermatogenic cells and myoid cells accounted for 5.00, 0.56 and 0.73% of infant testicular cells. IHC demonstrated that ACE2 protein was also highly expressed in testicular tissues. In conclusion, the present results demonstrated that testicular injury may be missed by clinicians in patients with COVID-19 and male reproductive function should be closely followed up.

5.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3341-3348, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658221

RESUMO

Crude oil may block soil pores, affect soil water repellency, and change soil water movement. In this study, soil column simulation was used to study the effects of different crude oil pollution levels (0, 0.5%, 1%, 2%, 4%) on the water infiltration processes in loessial soil and aeolian sandy soil. The results showed that soil wetting front speed and infiltration rate of those two soils decreased with increasing crude oil content. The time needed for wetting front reaching the bottom of the soil column was the longest under 4% crude oil polluted soil, which was 4 times and 48 times longer than that of no crude oil polluted soil for loessial soil and aeolian sandy soil, respectively. The cumulative infiltration of loessial soil decreased with increasing crude oil content, while it increased to the max and then decreased as the crude oil content increased in aeolian sandy soil. The cumulative infiltration curves of aeolian sandy soil with high crude oil contents (2% and 4%) presented "up-tail" phenomenon. Kostiakov infiltration model and Philip infiltration model could better fit the infiltration process than Green-Ampt model for loessial soil with different crude oil content. However, the two models could only well fit the infiltration process for aeolian sandy soil with low crude oil content (0, 0.5%, 1%). Crude oil pollution could significantly affect soil water infiltration process, especiall in aeolian sandy soil.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Areia , Solo , Poluentes do Solo/análise
6.
Chemosphere ; 287(Pt 4): 132431, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606900

RESUMO

Reutilization of the waste by-products from industrial and agricultural activities is crucially important towards attainment of environmental sustainability and the 'circular economy'. In this study, we have developed and evaluated a sustainably-sourced adsorbent from coal fly ash, which was modified by a small amount of lanthanum (La-FA), for the recapture of phosphorous (P) from both synthetic and real natural waters. The prepared La-FA adsorbent possessed typical characteristic diffraction peaks similar to zeolite type Na-P1, and the BET surface area of La-FA was measured to be 10.9 times higher than that of the original FA. Investigation of P adsorption capability indicated that the maximum adsorption (10.8 mg P g-1) was 6.14 times higher than that (1.8 mg P g-1) of the original fly ash material. The ζ potentials measurement and P K-edge X-ray Absorption Near Edge Structure (XANES) spectra demonstrated that P was bonded on La-FA surfaces via an adsorption mechanism. After applying the proposed adsorbent to real lake water with La/P molar ratios in the range from 0.5:1 to 3:1, the La-FA adsorbent showed the highest phosphate removal ability with a La/P molar ratio 1:1, and the P adsorption was similar to that performance with the synthetic solution. Moreover, the La-FA absorbent produced a negligible effect on the concentrations of total dissolved nitrogen (TDN), NH4+-N and NO3--N in water. This study thus provides a potential material for effective P recapture and details of its operation.

7.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681824

RESUMO

Chloroplasts play an essential role in plant growth and development. Any factors affecting chloroplast development will lead to abnormal plant growth. Here, we characterized a new maize mutant, albino seedling mutant 81647 (as-81647), which exhibits an entirely albino phenotype in leaves and eventually died before the three-leaf stage. Transmission electron microscopy (TEM) demonstrated that the chloroplast thylakoid membrane was impaired and the granum lamellae significantly decreased in as-81647. Map-based cloning and transgenic analysis confirmed that PPR647 encodes a new chloroplast protein consisting of 11 pentratricopeptide repeat domains. Quantitative real-time PCR (qRT-PCR) assays and transcriptome analysis (RNA-seq) showed that the PPR647 mutation significantly disrupted the expression of PEP-dependent plastid genes. In addition, RNA splicing and RNA editing of multiple chloroplast genes showed severe defects in as-81647. These results indicated that PPR647 is crucial for RNA editing, RNA splicing of chloroplast genes, and plays an essential role in chloroplast development.

8.
Front Pharmacol ; 12: 728458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539410

RESUMO

Periodontitis is one of the most prevalent oral inflammatory diseases leading to teeth loss and oral health problems in adults. Periodontitis mainly affects periodontal tissue by affecting the host immune system and bone homeostasis. Moreover, periodontitis is associated with various systemic diseases. Diabetes is a metabolic disease with systemic effects. Both periodontitis and diabetes are common inflammatory diseases, and comorbidity of two diseases is linked to exacerbation of the pathophysiology of both diseases. Since bacterial dysbiosis is mainly responsible for periodontitis, antibiotics are widely used drugs to treat periodontitis in clinics. However, the outcomes of antibiotic treatments in periodontitis are not satisfactory. Therefore, the application of anti-inflammatory drugs in combination with antibiotics could be a treatment option for periodontitis-diabetes comorbidity. Anti-diabetic drugs usually have anti-inflammatory properties and have shown beneficial effects on periodontitis. Sulfonylureas, insulin secretagogues, are the earliest and most widely used oral hypoglycemic drugs used for type-2 diabetes. Studies have found that sulfonylurea drugs can play a certain role in the mitigation of periodontitis and inflammation. This article reviews the effects of sulfonylurea drugs on the mitigation of periodontitis-diabetes comorbidity-related inflammation, bone loss, and vascular growth as well as the involved molecular mechanisms. We discuss the possibility of a new application of sulfonylureas (old drug) to treat periodontitis-diabetes comorbidity.

9.
J Nutr ; 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510220

RESUMO

BACKGROUND: Several studies have reported that dietary and serum concentrations of vitamin D and cholesterol are correlated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, little is known about whether 25 hydroxyvitamin D [25(OH)D], lipids, and oxysterols are related to cognitive function. OBJECTIVE: This study sought to explore the relations between 25(OH)D, lipids, oxysterols, and cognitive function. METHODS: In this study, about 209 MCI patients and 209 age- and gender-matched healthy controls were recruited from the Shanxi province of China (49.5% male; median [IQR] age: 63 [59-66] y). Serum concentrations of 25(OH)D, lipids, and oxysterols were measured using ultra-performance LC-MS. Cognitive performance was determined via comprehensive mental, verbal, and auditory cognitive tests. Dietary information was collected using a semiquantitative FFQ and 3 consecutive days of 24-h dietary recalls. Logistic regression analyses, Spearman's correlation, and partial correlation analyses were used to explore correlation between the variables. RESULTS: Participants with vitamin D deficiency [serum 25(OH)D <20.0 ng/mL] were 3 times more likely to develop MCI compared to those with adequate vitamin D (≥30 ng/mL) concentrations. The AUC of 25(OH)D was 0.72 and the cut-off was 16.5 ng/mL (sensitivity:  50.3%,  specificity: 84.4%). Serum 25(OH)D concentrations were negatively correlated with total cholesterol (TC) (r = -0.19, P = 0.02), LDL-cholesterol (r = -0.17, P = 0.04), and 24S,25-epoxycholesterol (24S,25-epoxy-CHO) (r = -0.21, P = 0.01). Conversely, the Montreal Cognitive Assessment (MoCA) (r = 0.185, P < 0.001) and symbol digit modalities test (SDMT) (r = 0.11, P = 0.03) scores were positively correlated with serum 25(OH)D concentrations. CONCLUSION: The study identified significant differences in serum 25(OH)D concentrations between MCI patients and cognitive healthy controls, and there was a correlation between serum concentrations of 25(OH)D, lipids, and oxysterols and cognitive impairment among people. This study was registered at the Chinese Clinical Trial Registry as ChiCTR1900025452.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34515012

RESUMO

BACKGROUND: Breast cancer is one of the most common cancers worldwide among women, and angiogenesis has an important effect on its growth and metastasis. Glipizide, which is a widely used drug for type 2 diabetes mellitus, has been reported to inhibit tumor growth and metastasis by upregulating the expression of natriuretic peptide receptor A (NPRA). Atrial natriuretic peptide (ANP), the receptor of NPRA, plays an important role in angiogenesis. The purpose of this study was to explore the effect of glipizide combined with ANP on breast cancer growth and metastasis. METHODS: To investigate the effect of glipizide combined with ANP on breast cancer, glipizide, ANP or glipizide combined with ANP was intraperitoneally injected into MMTV-PyMT mice. To explore whether the anticancer efficacy of glipizide combined with ANP was correlated with angiogenesis, a tube formation assay was performed. RESULTS: Glipizide combined with ANP was found to inhibit breast cancer growth and metastasis in MMTV-PyMT mice, which spontaneously develop breast cancer. Furthermore, the inhibitory effect of ANP combined with glipizide was better than that of glipizide alone. ANP combined with glipizide significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) by suppressing vascular endothelial growth factor (VEGF)/VEGFR2 (vascular endothelial growth factor receptor 2) signaling. CONCLUSIONS: These results demonstrate that glipizide combined with ANP has a greater potential than glipizide alone to be repurposed as effective agents for the treatment of breast cancer by targeting tumor-induced angiogenesis.

11.
Front Aging Neurosci ; 13: 707958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512309

RESUMO

Background: Nutrients are associated with cognitive function, but limited research studies have systematically evaluated on multi-domain cognitive function. The aim of this study was to investigate the effect and mechanism of specific nutrient on multi-domain cognitive function, and provide nutrition guidance for improving cognitive function. Methods: Participants were selected based on a multicenter prospective study on middle-aged and older adults in China. Global cognitive function was evaluated by the Mini-Mental State Examination (MMSE). Nutrients intake was assessed according to food frequency questionnaire and China Food Composition Database, and principal component analysis was performed to extract nutrient patterns. Associations between specific nutrients and cognitive function were assessed using log-binomial regression. Restricted cubic spline was used to illustrate the dose-response relationship of nutrients with multi-domain cognitive function. Mediation analysis was used to determine the mechanism of nutrients in cognitive function. Results: Four nutrient patterns were identified (vitamin-mineral, protein-carbohydrate, fatty acid-vitamin E, and cholesterol-vitamin B12), and only a nutrient pattern rich in cholesterol and vitamin B12 was found associated with cognitive function (RR = 0.891, 95%CI = 0.794-0.999). In multi-domain cognitive function, dietary cholesterol and vitamin B12 were related to better performance of visual memory function (P = 0.034, P = 0.02). In dose-response relationship, it suggested a U-shaped association between vitamin B12 and MMSE (P = 0.02) within a certain range. Conclusions: Dietary intake rich in cholesterol and vitamin B12 was associated with better cognitive function, and vitamin B12 had a U-shaped dose-response relation with MMSE. Thus, ensuring moderate cholesterol and vitamin B12intake may be an advisable strategy to improve cognitive function in middle-aged and older adults. Clinical Trial Registration: EMCOA, ChiCTR-OOC-17011882, Registered 5th, July 2017-Retrospectively registered, http://www.medresman.org/uc/project/projectedit.aspx?proj=2610.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34465138

RESUMO

Unique recombinant forms (URFs) are more likely developed among HIV-1 infections through men who have sex with men (MSM) because of cocirculation of multiple subtypes. In this study, two novel URFs deriving from two HIV-positive subjects (HB010014, HB010063) were identified in Shijiazhuang, Hebei province, China, and two sequences formed a distinct monophyletic cluster. Further recombination analysis showed that of two new URFs were consisted of circulating recombinant form (CRF)01_AE and CRF07_BC. The subregion phylogenetic analysis indicated that CRF01_AE segments were traced back to cluster 4 of CRF01_AE strains, which were prevalent among HIV-1 infections through MSM in China. New URFs being developing gradually and spreading released that more and more novel recombinant strains of HIV-1 could be developed, which means that the past prevention strategies need to be adjusted.

13.
medRxiv ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494030

RESUMO

What is already known about this topic?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. What is added by this report?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. What are the implications for public health practice?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

14.
Front Physiol ; 12: 714195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497538

RESUMO

Background: Arterial stiffness assessed by pulse wave velocity is a major risk factor for cardiovascular diseases. The incidence of cardiovascular events remains high in diabetics. However, a clinical prediction model for elevated arterial stiffness using machine learning to identify subjects consequently at higher risk remains to be developed. Methods: Least absolute shrinkage and selection operator and support vector machine-recursive feature elimination were used for feature selection. Four machine learning algorithms were used to construct a prediction model, and their performance was compared based on the area under the receiver operating characteristic curve metric in a discovery dataset (n = 760). The model with the best performance was selected and validated in an independent dataset (n = 912) from the Dryad Digital Repository (https://doi.org/10.5061/dryad.m484p). To apply our model to clinical practice, we built a free and user-friendly web online tool. Results: The predictive model includes the predictors: age, systolic blood pressure, diastolic blood pressure, and body mass index. In the discovery cohort, the gradient boosting-based model outperformed other methods in the elevated arterial stiffness prediction. In the validation cohort, the gradient boosting model showed a good discrimination capacity. A cutoff value of 0.46 for the elevated arterial stiffness risk score in the gradient boosting model resulted in a good specificity (0.813 in the discovery data and 0.761 in the validation data) and sensitivity (0.875 and 0.738, respectively) trade-off points. Conclusion: The gradient boosting-based prediction system presents a good classification in elevated arterial stiffness prediction. The web online tool makes our gradient boosting-based model easily accessible for further clinical studies and utilization.

15.
Proc Natl Acad Sci U S A ; 118(32)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344824

RESUMO

Sleep loss disrupts consolidation of hippocampus-dependent memory. To characterize effects of learning and sleep loss, we quantified activity-dependent phosphorylation of ribosomal protein S6 (pS6) across the dorsal hippocampus of mice. We find that pS6 is enhanced in dentate gyrus (DG) following single-trial contextual fear conditioning (CFC) but is reduced throughout the hippocampus after brief sleep deprivation (SD; which disrupts contextual fear memory [CFM] consolidation). To characterize neuronal populations affected by SD, we used translating ribosome affinity purification sequencing to identify cell type-specific transcripts on pS6 ribosomes (pS6-TRAP). Cell type-specific enrichment analysis revealed that SD selectively activated hippocampal somatostatin-expressing (Sst+) interneurons and cholinergic and orexinergic hippocampal inputs. To understand the functional consequences of SD-elevated Sst+ interneuron activity, we used pharmacogenetics to activate or inhibit hippocampal Sst+ interneurons or cholinergic input from the medial septum. The activation of either cell population was sufficient to disrupt sleep-dependent CFM consolidation by gating activity in granule cells. The inhibition of either cell population during sleep promoted CFM consolidation and increased S6 phosphorylation among DG granule cells, suggesting their disinhibition by these manipulations. The inhibition of either population across post-CFC SD was insufficient to fully rescue CFM deficits, suggesting that additional features of sleeping brain activity are required for consolidation. Together, our data suggest that state-dependent gating of DG activity may be mediated by cholinergic input and local Sst+ interneurons. This mechanism could act as a sleep loss-driven inhibitory gate on hippocampal information processing.

16.
Inflamm Res ; 70(9): 971-980, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34374795

RESUMO

OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is a major cause of death globally. Inflammation plays a crucial role in COPD development. Pyroptosis, an inflammatory form of cell death, may involve in the pathogenesis of COPD. This study aims to explore the role and action mechanism of triggering receptor expressed on myeloid cells 1 (TREM-1) in COPD. METHODS: Here, cigarette smoke stimulation was used to establish COPD model in mice. Cigarette smoke extract combined with lipopolysaccharide was used to stimulate RAW264.7 cells for COPD model in vitro. QRT-PCR and Western blot were performed to detect the expression of mRNA and proteins, respectively, in the lung tissues and cells. Concentration of cytokines was measured using ELISA. H&E staining was used to analyze the pathological changes in lung tissues. The number of infiltrated macrophage was examined using immunofluorescence. LP17 was used to silence the expression of TREM-1. RESULTS: The results showed that TREM-1 was highly expressed in COPD. In vivo, inhibition of TREM-1 effectively improved the injury in lung tissues of COPD mouse, and reduced the infiltration of macrophages. Moreover, inhibition of TREM-1 in vivo and in vitro notably suppressed the activation of NLRP3 inflammasome and pyroptosis. Rescue experiment demonstrated that TREM-1 activated pyroptosis via regulating NLRP3 inflammasome. CONCLUSION: Overall, our results proved that TREM-1 promoted the lung injury and inflammation in COPD mouse through activation of NLRP3 inflammasome-mediated pyroptosis. Our data indicated a novel mechanism of TREM-1 in COPD development, and maybe provide a novel therapeutic target for COPD treatment.

17.
BMC Cancer ; 21(1): 964, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452609

RESUMO

OBJECTIVE: The main aim of this study was to ascertain the effectiveness of ultrasound-guided fine needle aspiration cytology (US-FNAC) in the diagnosis of para-aortic lymph node (PALN) metastasis in uterine cervical cancer and to establish its potential impact on clinical therapeutic decision making. METHODS: We retrospectively reviewed clinical data from 92 patients diagnosed with cervical cancer with PALN enlargement between 2010 and 2018. Cytological results obtained with US-FNAC were classified by the same experienced cellular pathologists. Diagnostic indicators were determined on the basis of biopsy, imaging and clinical follow-up results. Univariate and multivariate analyses were used to assess the differences of influencing factors. The effect of US-FNAC on clinical decision making was evaluated. RESULTS: Cytological results of US-FNAC were categorized as malignancy (n = 62; 67.4%), suspicious malignancy (n = 11; 12.0%), undetermined (n = 5; 5.4%), benign (n = 10; 10.9%), and inadequate (n = 4; 4.3%). Satisfactory biopsy samples were obtained from 95.7% of PALNs sampled (88/92). The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of FNAC in distinguishing benign from malignant cases were 90.1% (95% CI: 0.809-0.953), 100% (95% CI: 0.561-1), 100% (95% CI: 0.938-1), 46.7% (95% CI: 0.223-0.726) and 90.9% (95% CI: 0.848-0.970), respectively. Univariate analysis indicated significant differences in experience of puncture physicians (radiologists) between the correct and wrong diagnosis groups (P < 0.05), which was further confirmed as an independent predictor of diagnostic accuracy in multivariate analysis (p = 0.031, OR = 0.077, 95% CI: 0.354-0.919). All patients tolerated the US-FNAC procedure well and only nine presented slight abdominal discomfort. The therapeutic strategies for 74 patients (80.4%) were influenced by US-FNAC findings. CONCLUSIONS: US-FNAC was a relatively safe and effective technique for examination of enlarged para-aortic lymph nodes and may therefore serve as a routine diagnostic tool to guide clinical decision making for management of cervical cancer.


Assuntos
Tomada de Decisão Clínica , Citodiagnóstico/métodos , Linfonodos/patologia , Metástase Linfática/diagnóstico , Biópsia de Linfonodo Sentinela/métodos , Ultrassonografia/métodos , Neoplasias do Colo do Útero/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha Fina , Feminino , Seguimentos , Humanos , Biópsia Guiada por Imagem/métodos , Metástase Linfática/diagnóstico por imagem , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem
18.
Front Cell Dev Biol ; 9: 686737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336836

RESUMO

Many carcinomas feature hypoxia, a condition has long been associated with tumor progression and poor prognosis, as well as resistance to chemoradiotherapy. Here, we report that the F-box protein JFK promotes mammary tumor initiation and progression in MMTV-PyMT murine model of spontaneous breast cancer. We find that JFK is inducible under hypoxic conditions, in which hypoxia-inducible factor HIF-1α binds to and transcriptionally activates JFK in breast cancer cells. Consistently, analysis of public clinical datasets reveals that the mRNA level of JFK is positively correlated with that of HIF-1α in breast cancer. We show that JFK deficiency leads to a decrease in HIF-1α-induced glycolysis in breast cancer and sensitizes hypoxic breast cancer cells to ionizing radiation and chemotherapeutic treatment. These results indicate that JFK is an important player in hypoxic response, supporting the pursuit of JFK as a potential therapeutic target for breast cancer intervention.

19.
Front Cell Dev Biol ; 9: 643525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249905

RESUMO

Tumor growth and metastasis are responsible for breast cancer-related mortality. Andrographolide (Andro) is a traditional anti-inflammatory drug used in the clinic that inhibits NF-κB activation. Recently, Andro has been found in the treatment of various cancers. Andro inhibits breast cell proliferation and invasion and induces apoptosis via activating various signaling pathways. Therefore, the underlying mechanisms with regard to the antitumor effects of Andro still need to be further confirmed. Herein, a MMTV-PyMT spontaneous luminal-like breast cancer lung metastatic transgenic tumor model was employed to estimate the antitumor effects of Andro on breast cancer in vivo. Andro significantly inhibited tumor growth and metastasis in MMTV-PyMT mice and suppressed the cell proliferation, migration, and invasion of MCF-7 breast cancer cells in vitro. Meanwhile, Andro significantly inhibited the expression of NF-κB, and the downregulated NF-κB reduced miR-21-5p expression. In addition, miR-21-5p dramatically inhibited the target gene expression of programmed cell death protein 4 (PDCD4). In the current study, we demonstrated the potential anticancer effects of Andro on luminal-like breast cancer and indicated that Andro inhibits the expression of miR-21-5p and further promotes PDCD4 via NF-κB suppression. Therefore, Andro could be an antitumor agent for the treatment of luminal-like breast cancer in the clinic.

20.
J Colloid Interface Sci ; 604: 500-507, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274713

RESUMO

Design of highly efficient heterojunctions for photocatalytic hydrogen evolution is of significant importance to address the energy shortage and environmental crisis. Nevertheless, the smart design of semiconductor-based heterojunctions at the atomic scale still remains a significant challenge hitherto. Herein, we report novel atomic CdS/ZnIn2S4 heterojunctions by in-situ epitaxially growing 2D ZnIn2S4 nanosheets onto the surface of 1D defective CdS nanorods. The strong electronic coupling between defective CdS and ZnIn2S4 is confirmed by transient photocurrent response measurements, •O2- and •OH radicals experiments, and PL results, leading to accelerated interfacial charge separation and transfer. Additionally, the elevated charge transfer and electronic coupling are further confirmed by theoretical calculations. Consequently, CdS/ZnIn2S4 hybrids exhibit superior photocatalytic hydrogen generation activity to pristine CdS. Our findings offer a new paradigm for designing atomic 1D/2D heterojunctions for efficient solar-driven energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...