RESUMO
Herein, we designed Comp. 1 to simultaneously respond to two enzymes: alkaline phosphatase and matrix metalloproteinase 2, which is commonly found in highly malignant cancer cell lines containing B16-F10 murine melanoma cells and CT26 murine colon carcinoma cells. We used the regional differences in the expression levels of dual-markers to accurately release immune molecule IND into tumor microenvironment for the activation of anti-tumor related immune effects, while in-situ self-assembly occurs. The dual-enzyme response process can further regulate the peptide precursors' self-assembly in the form of short rod-shaped nanofibers, enabling the delivery of the loaded chemotherapeutic drug HCPT into the cancer cells and further allowing the peptide assemblies to escape from lysosomes and return to cytoplasm in the form of tiny nanoparticles to induce apoptosis of cancer cells. This process does not occur in the single-positive breast cancer cell line MCF-7 or the normal hepatocytes cell line LO2, indicating the selectivity of the cancer cells exhibited using our strategy. In vivo studies revealed that Comp. 1 can effectively cooperate with chemotherapy to enhance the immunotherapy effect and induce immune responses associated with elevated pro-inflammatory cytokines in vivo to inhibit malignant tumors growth. Our dual-enzyme responsive chemo-immunotherapy strategy feasible in anti-tumor treatment, provides a new avenue for regulating peptide self-assembly to adapt to diverse tumor properties and may eventually be used for the development of novel multifunctional anti-tumor nanomedicines.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Herb couple Rehmannia glutinosa Libosch and Cornus officinalis Sieb (RC), originated from "Liuwei Dihuang Pill" which recorded in Key to Therapeutics of Children's Diseases. Traditionally, they have been used widely for their ability to nourish yin and energize the kidneys. Our previous study indicated that the RC could protect against adenine induced Chronic kidney disease (CKD) rats. Nevertheless, there is still no clear explanation of the mechanisms by which RC affects renal interstitial fibrosis in CKD rats. AIM OF THE STUDY: Current Work aims to explore the amelioration and potential mechanism of RC on renal interstitial fibrosis in CKD rats. MATERIALS AND METHODS: CKD rats were induced by adenine. Two weeks after administration, blood, urine, and kidney tissue were collected for biochemical analysis. Observing the physiological state of rats through the changes of rat body weight and renal index. The pro-inflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA), while renal tissue damage and fibrosis were assessed with Hematoxylin-eosin staining (H&E) and Masson's trichrome staining. In order to determine the levels of indicators and proteins associated with fibrosis signaling pathways, real time PCR (Rt-PCR), Western blot (WB), and immunofluorescence were employed. RESULTS: The renal interstitial fibrosis led to impaired cellular functions with increased the levels of Blood Urea Nitrogen (BUN), Urine protein (UP), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), and Tumor Necrosis Factor alpha (TNF-α). and simultaneous up-regulated collagenâ (COL-1), fibronection (FN), α-smooth muscle actin (a-SMA), transforming growth factor-ß1 (TGF-ß1), c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK), down-regulated the expression of the E-cadherin proteins. RC notably improved renal dysfunction in CKD rats as indicated by decreases in BUN, UP, and renal index. In addition, consistent with the morphological changes of renal tissue, renal interstitial fibrosis in CKD rats after RC intervention was significantly improved, mainly manifested by a decrease in the positive expression of COL-1, FN, and a-SMA, and increased levels of E-cadherin protein. Meanwhile, RC reduced the classical pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α in adenine-induced CKD rats. Additionally, RC administration also down-regulated TGF-ß1, JNK, p38 and ERK. CONCLUSION: In conclusion, RC may reduce inflammation in adenine induced CKD rats, improve extracellular matrix (ECM) components deposition, and diminish epithelial-mesenchymal transition (EMT) marker protein levels. Furthermore, RC intervention significantly reduces the release of inflammatory cytokines and inhibits the TGF-ß1/MAPK signaling pathway. Based on the results, RC might be useful in the treatment of adenine induced renal fibrosis.
Assuntos
Cornus , Rehmannia , Insuficiência Renal Crônica , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Rim/patologia , Transdução de Sinais , Insuficiência Renal Crônica/metabolismo , Citocinas/metabolismo , Fibrose , Caderinas/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Marveled at the discovery of artemisinin, the world's expectations for traditional Chinese medicine are rising. He's Yangchao formula (HSYC) is a traditional Chinese herbal formula with the effects of tonifying kidney and essence, and reconciling yin and yang. It has been clinically proven to have anti-ovarian aging effects. Age is the primary cause of diminished ovarian reserve and assisted reproductive failure in women, whether HSYC has the potential to improve in vitro maturation of oocytes from advanced maternal age (AMA) mice has yet to be determined. AIM OF THE STUDY: This study aims to evaluate the efficacy and possible mechanism of HSYC in promoting in vitro maturation of oocytes from AMA mice. MATERIALS AND METHODS: The GV oocytes were obtained from young and aged mice. The GV oocytes from young mice were cultured in drops of M16 medium, and the GV oocytes from AMA mice were randomly divided four groups: Vehicle group (cultured in 90% M16 medium +10% blank serum), Low HSYC group (cultured in 90% M16 medium + 10% Low HSYC-medicated serum), High-HSYC group (cultured in 90% M16 medium +10% High HSYC-medicated serum), and Quercetin group (cultured in M16 medium supplemented with 10 µM quercetin). The rates of first polar body extrusion, reactive oxygen species (ROS), intracellular calcium, and mitochondrial membrane potential levels in each groups were observed. In addition, expression levels of mitochondrial function, autophagy, DNA damage, and antioxidant-related proteins were assessed. RESULTS: Supplementation of HSYC in vitro alleviated age-associated meiotic progression defects in maternally aged oocytes. Importantly, HSYC supplementation eliminated the age-related ROS accumulation to suppress DNA damage and autophagy during the in vitro maturation of maternally aged oocytes. Meanwhile, the mitochondrial function was improved after HSYC treatment, as manifested by higher mitochondrial membrane potential and lower Ca2+ levels. Furthermore, we found that HSYC supplementation during in vitro maturation of maternally aged oocytes upregulated the expression level of SIRT3, a crucial protein in regulating mitochondrial function. Consistently, the expression levels of the SOD2, PCG1α, and TFAM were increased, while the SOD2 acetylation level was decreased, which further proved its antioxidant function. CONCLUSIONS: HSYC supplementation promotes in vitro maturation of oocytes from AMA mice mainly via improving mitochondrial function and alleviating oxidative stress. The mechanism may be related to the regulation of SIRT3-dependent deacetylation of the SOD2 pathway.
Assuntos
Técnicas de Maturação in Vitro de Oócitos , Sirtuína 3 , Masculino , Feminino , Animais , Camundongos , Idade Materna , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quercetina/farmacologia , OócitosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum bungeanum Maxim. (Rutaceae) is a known herbal medicine with various bioactivities, including anti-obesity, lipid-lowering, learning & memory improving and anti-diabetes, and amides in Z. bungeanum (AZB) are considered as the major active agents for its bioactivities. AIM OF THE STUDY: This research was carried out to uncover the anti-NAFL effect of AZB and its corresponding molecular mechanisms. METHODS: The central composite design-response surface methodology (CCD-RSM) was utilized to optimize the AZB extraction process, and the anti-NAFL effect of AZB was investigated on high fat diet (HFD) fed mice (HFD mice). The levels of ROS in liver tissues were determined using laser confocal microscopy with DCFH-DA probe staining, and anti-enzymes (such as HO-1, SOD, CAT & GSH-PX) and MDA in liver tissues were measured using commercial detecting kits. GC-MS was used to determine the short-chain fatty acids (SCFAs) contents in feces and blood of mice. 16S high-throughput sequencing, western blotting (WB) assay and immunofluorescence (IF) were used to explore the intestinal flora changes in mice and the potential mechanisms of AZB for treatment of NAFL. RESULTS: Our results showed AZB reduced body weight, alleviated liver pathological changes, reduced fat accumulation, and improved oxidative stress in HFD mice. In addition, we also found AZB improved OGTT and ITT, reduced TG, TC, LDL-C, whereas increased HDL-C in HFD mice. AZB increased total number of the species and interspecies kinship of gut microbiota and reduced the richness and diversity of gut microbiota in HFD mice. Moreover, AZB decreased the ratio of Firmicutes/Bacteroidota, whereas increased the abundance of Allobaculum, Bacteroides and Dubosiella in feces of HFD-fed mice. Furthermore, AZB increased the production of SCFAs, and up-regulated the phosphorylation of AMPK and increased the nuclear transcription of Nrf2 in liver of HFD mice. CONCLUSION: Collectively, our results suggested AZB can improve NAFL, which could reduce body weight, reverse liver lesions and fat accumulation, improve oxidative stress in liver tissues of HFD mice. Furthermore, the mechanisms are related to increase of the abundance of high-producing bacteria for SCFAs (e.g. Allobaculum, Bacteroides and Dubosiella) to activate AMPK/Nrf2 signaling.
Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Zanthoxylum , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Quinases Ativadas por AMP , Fator 2 Relacionado a NF-E2 , Amidas/farmacologia , Fígado/patologia , Obesidade/tratamento farmacológico , Ácidos Graxos Voláteis , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Metabolismo dos LipídeosRESUMO
A novel deep learning-enabled smartphone platform is developed to assist a colorimetric aptamer biosensor for fast and highly sensitive detection of dimethoate. The colorimetric determination of dimethoate is based on the specific binding of dimethoate and aptamer, which leads to the aggregation of AuNPs in high-concentration NaCl solution, resulting in an obvious color change from red to blue. This color change provides sufficient data for self-learning enabled by a convolutional neural network (CNN) model, which is established to predict dimethoate concentration based on images acquired from a smartphone. To enhance user-friendliness for non-experts, the CNN model is then embedded into a smartphone app, enabling offline detection of dimethoate pesticide in real environments within just 15 min using a pre-configured colorimetric probe. The developed platform exhibits superior performance, achieving a regression coefficient of 0.9992 in the concentration range of 0-10 µM. Moreover, the app's performance is found to be consistent with the ELISA kit. These remarkable findings demonstrate the potential of combining colorimetric biosensors with smartphone-based deep learning methods for the development of portable and affordable tools for pesticide detection.
RESUMO
Continuous 6-mercaptopurine (6-MP) dose titration is necessary because of its narrow therapeutic index and frequently encountered dose-limiting hematopoietic toxicity. However, evidence-based guidelines for gene-based 6-MP dosing have not been established for Chinese children with acute lymphoblastic leukemia (ALL). This multicenter, randomized, open-label, active-controlled clinical trial randomly assigned Chinese children with low- or intermediate-risk ALL in a 1:1 ratio to receive TPMT-NUDT15 gene-based dosing of 6-MP (N = 44, 10 to 50 mg/m2 /day) or standard dosing (N = 44, 50 mg/m2 /day) during maintenance therapy. The primary endpoint was the incidence of 6-MP myelosuppression in both groups. Secondary endpoints included frequencies of 6-MP hepatotoxicity, duration of myelosuppression and leukopenia, event-free survival, and steady-state concentrations of active metabolites (6-thioguaninenucleotides and 6-methylmercaptopurine nucleotides) in erythrocytes. A 2.2-fold decrease in myelosuppression, the primary endpoint, was observed in the gene-based-dose group using approximately 50% of the standard initial 6-MP dose (odds ratio, 0.26, 95% confidence interval, 0.11 to 0.64; p = 0.003). Patients in the gene-based-dose group had a significantly lower risk of developing thiopurine-induced myelosuppression and leukopenia (p = 0.015 and p = 0.022, respectively). No significant differences were observed in the secondary endpoints of the incidence of hepatotoxicity and steady-state concentrations of active metabolites in erythrocytes between the two groups. TPMT- and NUDT15-based dosing of 6-MP will significantly contribute toward further reducing the incidence of leukopenia in Chinese children with ALL. This trial is registered at www.clinicaltrial.gov as #NCT04228393.
RESUMO
BACKGROUND: The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis.VDR is widely expressed in testis cells such as Leydig cells, Sertoli cells, and sperm. The levels of steroids are critical for sexual development. In the early stage of steroidogenesis, cholesterol is converted to pregnenolone (precursor of most steroid hormones) by cholesterol side-chain lyase (CYP11A1), which eventually synthesizes the male hormone testosterone. OBJECTIVE: This study aims to reveal how VDR regulates CYP11A1 expression and affects testosterone synthesis in murine Leydig cells. METHODS: The levels of VDR, CYP11A1 were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. Targeted relationship between VDR and Cyp11a1 was evaluated by dual-luciferase reporter assay. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). RESULTS: Phylogenetic and motif analysis showed that the Cyp11a1 family had sequence loss, which may have special biological functions during evolution. The results of promoter prediction showed that vitamin D response element (VDRE) existed in the upstream promoter region of murine Cyp11a1. Dual-luciferase assay confirmed that VDR could bind candidate VDREs in upstream region of Cyp11a1, and enhance gene expression. Tissue distribution and localizatio analysis showed that Cyp11a1 was mainly expressed in testis, and dominantly existed in murine Leydig cells. Furthermore, over-expression VDR and CYP11A1 significantly increased testosterone synthesis in mice Leydig cells. CONCLUSIONS: Active vitamin D3 (VD3) and Vdr interference treatment showed that VD3/VDR had a positive regulatory effect on Cyp11a1 expression and testosterone secretion. VDR promotes testosterone synthesis in male mice by up-regulating Cyp11a1 expression, which played an important role for male reproduction.
RESUMO
MicroRNAs (miRNAs) are a group of RNAs that regulate gene expression in the post-transcriptionally. miRNAs can regulate numerous processes, such as the immune response, due to their dynamic expression patterns. The giant freshwater prawn Macrobrachium rosenbergii is a major freshwater aquaculture prawn that is attacked by various bacteria, including Aeromonas hydrophila. For this study, we performed an analysis of the miRNA and mRNA transcriptome analysis of M. rosenbergii which was infected with A. hydrophila. We identified 56 differentially expressed miRNAs (DEMs) and 1542 differentially expressed mRNAs. Furthermore, an integrated analysis of miRNA-mRNA expression led to the identification of 729 differentially predicted target genes (DETGs) of the DEMs. Multiple functional categories related to immunity, apoptosis, and autophagy were found to be enriched in the DETGs. During the infection of M. rosenbergii by A. hydrophila, an elaborate regulatory network involving Toll and immune deficiency (IMD) signaling, mitogen-activated protein kinase (MAPK) signaling, lysosome, and cell apoptosis was formed by a complex interplay of 40 crucial DEMs and 22 DETGs, all associated with the immune and autophagy pathway. The findings suggest that infection with A. hydrophila triggers intricate responses in both miRNA and mRNA, significantly impacting immune and autophagy processes in M. rosenbergii.
Assuntos
MicroRNAs , Palaemonidae , Animais , Aeromonas hydrophila/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica/veterinária , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
OBJECTIVE: SIRT1, an NAD+-dependent deacetylase, is up-regulated in CD4+ T cells from SLE patients and MRL/lpr lupus-like mice. This study aimed to explore the role of SIRT1 in Tfh cell expansion and its potential value as a therapeutic target for SLE. METHODS: Frequencies of CD4+CXCR5+PD-1+ Tfh cells in peripheral blood from SLE patients and their expression of SIRT1 and BCL-6 were determined with flow cytometry. Naïve CD4+ T cells were transfected with SIRT1-expressing lentivirus and small interfering RNA (siRNA) targeting SIRT1, respectively, and then cultured in a Tfh-polarizing condition to study the impact of SIRT1 on Tfh cell differentiation. This impact was also evaluated in both CD4+ T cells and naïve CD4+ T cells by treatment with SIRT1 inhibitors (EX527 and nicotinamide) in vitro. MRL/lpr mice and pristane-induced lupus mice were treated with continuous daily intake of nicotinamide, and their lupus phenotypes including skin rash, arthritis, proteinuria and serum anti-dsDNA autoantibodies were compared with controls. RESULTS: Expression of SIRT1 was elevated in Tfh cells from SLE patients and positively correlated with Tfh cell frequencies. SIRT1 expression gradually increased during Tfh cell differentiation. Overexpression of SIRT1 by lentiviral vectors significantly promoted Tfh cell differentiation/proliferation. Reciprocally, suppressing expression of SIRT1 by siRNA and inhibiting SIRT1 activity by EX-527 or nicotinamide hindered Tfh cell expansion. Continuous daily intake of nicotinamide alleviated lupus-like phenotypes and decreased serum CXCL13 in the two mouse models. CONCLUSION: SIRT1 overexpression contributes to the expansion of Tfh cells in SLE and may serve as a potential target for treatment.
RESUMO
There lacks real-world study with a large sample size assessing olmesartan medoxomil-amlodipine besylate (OM-AML) tablet. Therefore, this study aimed to evaluate the efficacy and safety of OM-AML tablet in patients with essential hypertension. Totally, 1341 patients from 36 medical centers with essential hypertension who took OM-AML (20/5 mg) tablet were analyzed in the current prospective, single-arm, multi-center, real-world study (SVK study). Seated systolic blood pressure (SeSBP) and seated diastolic blood pressure (SeDBP) at baseline, week (W)4 and W8 were measured. The mean (±SE) change of SeSBP/SeDBP was -10.8 ± 0.4/-6.6 ± 0.3 mmHg at W4 and -12.7 ± 0.5/-7.6 ± 0.3 mmHg at W8, respectively. At W4, 78.8% and 29.0% patients achieved BP target by China and American Heart Association (AHA) criteria; at W8, 84.7% and 36.5% patients reached blood pressure (BP) target by China and AHA criteria, accordingly. Meanwhile, 80.2% and 86.4% patients achieved BP response at W4 and W8, respectively. Home-measured SeSBP and SeDBP decreased from W1 to W8 (both p < .001). Besides, patients' and physicians' satisfaction were elevated at W8 compared with W0 (both p < .001). The medication possession rate was 94.8% from baseline to W4 and 91.3% from baseline to W8. The most common drug-related adverse events were nervous system disorders (4.6%), vascular disorders (2.6%), and general disorders and administration site conditions (2.3%) by system organ class, which were generally mild and manageable. In conclusion, OM-AML tablet is one of the best antihypertensive agents in patients with essential hypertension.
RESUMO
The degradation of chlorophyll during fruit development is essential in order to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruits of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ( 'JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidates, down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation, were identified. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable over-expression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II) AcHZP45 showed significantly increased expression during 'JS' fruit ripening, which both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that contrary dynamics of chlorophyll biosynthesis and degradation coordinate the differences in chlorophyll content in kiwifruit flesh, which is orchestrated by the key transcription factor AcHZP45.
RESUMO
BACKGROUND: Interoceptive awareness (perception of body conditions and processes) and heart rate variability are connected physiologically in cardiovascular disease (CVD) patients. At present, there is no specific evaluation model for the perception of the physical state and processes of CVD patients in China. OBJECTIVES: The objective of this study is to examine the reliability and validity of the Chinese Interoceptive Awareness Questionnaire (C-IAQ) for Chinese CVD patients. METHODS: 160 CVD patients were recruited from a hospital in Hubei province using a convenient sampling method. A standard "forward-backward" translation method was applied to convert the C-IAQ into Mandarin. Split-half reliability and internal consistency were conducted by using reliability tests. Validity testing was conducted on the content, structure, and criterion-related validity. Criterion-related validity was assessed by using the Anxiety Sensitivity Index-III (ASI-III). RESULTS: The research results indicate that the dual factor structure of the original C-IAQ has 19 items, including attention to unpleasant sensations (9 items) and awareness of neutral body sensations (10 items). Moreover, C-IAQ is positively correlated with ASI-III (r = 0.48, P<0.01). The entire scale has a Cronbach's α value of 0.85 and split-half dependability of 0.77. CONCLUSION: The C-IAQ has favorable psychometric feature. Hence, it can be used to measure the interoceptive awareness of CVD patients.
RESUMO
BACKGROUND: Studies exploring whether metastatic organotropism and risk in gastric cancer (GC) differ by primary anatomical site are scarce. METHODS: This study included 15,260 and 1623 patients diagnosed with GC from the Surveillance, Epidemiology, and End Results (SEER) registry database and the Nanfang Hospital in China, respectively. Patients were stratified according to primary site of GC, and the incidence of metastasis to different organs was used to determine the metastatic organotropism for each GC subsite. Finally, the metastatic organotropism and risk were compared among the different subsite groups. RESULTS: Liver metastasis was the most common metastasis site in cardia GC, whereas other-site metastases were more common in the body, antrum, overlapping lesions, and unspecified GCs. Liver and other-site metastases were also frequently observed in the fundus, pylorus, lesser curvature, and greater curvature GCs. Patients with GC with definite primary tumor sites in the SEER and validation Nanfang hospital cohorts were compared by grouping as proximal and distal GCs for further analysis. In the SEER cohort, the top three metastatic sites of proximal GC were liver (21.4%), distant lymph node (LN) (14.6%), and other-site (mainly peritoneum, 11.9%), whereas those of distal GC were other-site (mainly peritoneum, 19.5%), liver (11.8%), and distant LN (9.5%). The incidence of metastasis to the liver, distant LN, lung, and brain was significantly higher in patients with proximal GC than in those with distal GC in both the SEER and Nanfang cohorts (p < 0.05). However, metastasis to other-site/peritoneum was significantly lower in patients with proximal GC compared to those with distal GC in the Nanfang Hospital and SEER cohorts, respectively (p < 0.05). CONCLUSION: Liver and distant LN are the preferred metastatic sites for proximal GC, whereas peritoneal metastasis is more common in distal GC. Proximal GC has a higher risk of lymphatic and hematogenous metastases, and a lower risk of transcoelomic metastasis than distal GC. Our findings highlight the need to stratify GC by its primary subsite to aid in planning and decision-making related to metastatic management in clinical practice.
RESUMO
Polymer elastomers with reversible shape-changing capability have led to significant development of artificial muscles, functional devices, and soft robots. By contrast, reversible shape transformation of inorganic nanoparticles is notoriously challenging due to their relatively rigid lattice structure. Here, the authors demonstrate the synthesis of shape-changing nanoparticles via an asymmetrical surface functionalization process. Various ligands are investigated, revealing the essential role of steric hindrance from the functional groups. By controlling the unbalanced structural hindrance on the surface, the as-prepared clay nanoparticles can transform their shape in a fast, facile, and reversible manner. In addition, such flexible morphology-controlled mechanism provides a platform for developing self-propelled shape-shifting nanocollectors. Owing to the ion-exchanging capability of clay, these self-propelled nanoswimmers (NS) are able to autonomously adsorb rare earth elements with ultralow concentration, indicating the feasibility of using naturally occurring materials for self-powered nanomachine.
RESUMO
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes demyelination, neuronal damage and white matter loss, but there is still no known cure. Exosomes are 30-200 nm-sized double-layered membrane vesicles that can easily cross the blood-brain barrier (BBB). Exosomes from umbilical cord mesenchymal stem cellsï¼UMSCsï¼ have been found to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-exos, also known as a TAxI-peptide-chimeric UMSC-exos, for CNS-specific accumulation and curative effect in EAE. We used the EAE model in vivo as well as active T cell and BV-2 cell models in vitro to explore the efficacy and mechanisms. Exosomes from UMSCs with TAxI or DiR labels were given to EAE mice in one dosage (150 g) prior to the peak at day 15. The mice were sacrificed on day 30 so that spinal cords, spleens, and blood could be taken for analysis of demyelination, inflammation, microglia, T-cell subset proportions, and inflammatory cytokine expression. In vitro, PBMCs and splenocytes isolated from healthy C57BL/6 mice were activated and incubated with 0.15 mg/mL of UMSC-exos or TAxI-exos for immune mechanism investigations. Activated BV-2 cells were used to investigate the targeting and controlling polarization ability and mechanism of UMSC-exos and TAxI-exos. As expected, TAxI-exos exhibited significantly greater therapeutic action in EAE mice than UMSC-exos due to their improved targeting-ability. The medication reduced T-cell subset proportions and inflammation, reduced active-microglia proportions and promoted M1 to M2 microglial cell polarization through TNF pathway, upregulated IL-4, IL-10, TGF-ß, and IDO-1 expression, and downregulated IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. The CNS-targeting properties of TAxI-exos and their capacity to inhibit degenerative processes in EAE mice have considerable potential therapeutic value for MS and other CNS illnesses.
RESUMO
BACKGROUND: Accumulating evidence suggested increasing energy expenditure is a feasible strategy for combating obesity, and browning of white adipose tissue (WAT) to promote thermogenesis might be one of the attractive ways. Hydroxy-α-sanshool (HAS), a natural amide alkaloid extracted from the fruits of Zanthoxylum bungeanum Maxim, possesses lots of benefits in lipid metabolism regulation. METHODS: The anti-obesity effect of HAS was investigated by establishing an animal model of obesity and a 3T3-L1 differentiation cell model. Effects of HAS on the whole-body fat and liver of obese mice, and the role of HAS in inducing browning of white fat were studied by Micro CT, Metabolic cage detection, Cell mitochondrial pressure detection, transmission electron microscopy and cold exposure assays. Furthermore, the Real-time PCR (qPCR), digital PCR (dPCR), western blot, Co-immunoprecipitation (Co-IP), molecular docking, drug affinity responsive target stability (DARTS), Cellular thermal shift assay (CETSA) and other methods were used to investigate the target and mechanisms of HAS. RESULTS: We found that treatment with HAS helped mice combat obesity caused by a high fat diet (HFD) and improve metabolic characteristics. In addition, our results suggested that the anti-obesity effect of HAS is related to increase energy consumption and thermogenesis via induction of browning of WAT. The further investigations uncovered that HAS can up-regulate UCP-1 expression, increase mitochondria number, and elevate the cellular oxygen consumption rates (OCRs) of white adipocytes. Importantly, the results indicated that browning effects of HAS is closely associated with SIRT1-dependent PPAR-γ deacetylation through activating the TRPV1/AMPK pathway, and TRPV1 is the potential drug target of HAS for the browning effects of WAT. CONCLUSIONS: Our results suggested the HAS can promote browning of WAT via regulating AMPK/SIRT-1/PPARγ signaling, and the potential drug target of HAS is the membrane receptor of TRPV1.
RESUMO
Forests are the most productive terrestrial ecosystems across the world. They can play both a direct and indirect role in global poverty alleviation through their social, economic and environmental functions. However, the potential of forests in poverty alleviation is underestimated to a great extent. Sustainability, the most essential advantage and characteristic of forests for poverty alleviation, has not been fully recognized. To that end, we propose the concept of sustainable poverty alleviation through forests (SPAF). This concept shifts the vision of poverty alleviation through forests from a narrow focus on subsistence and livelihood to a sustainable poverty alleviation that promotes all dimensions of human development. There is abundant evidence that forests can at least contribute to sustainable poverty alleviation through a synergy of seven pathways: subsistence materials, health, income, employment, women's empowerment, climate change mitigation and biodiversity, which are highly consistent with the United Nations Sustainable Development Goals. SPAF also faces enormous implementation challenges, so a sustainable global strategy is urgently needed to provide direction for worldwide poverty alleviation at the crossroads of nature and humanity.
RESUMO
Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 µM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.