Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Cancer Lett ; 524: 91-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656690

RESUMO

Currently, early detection of lung cancer relies on the characterisation of images generated from computed tomography (CT). However, lung tissue biopsy, a highly invasive surgical procedure, is required to confirm CT-derived diagnostic results with very high false-positive rates. Hence, a non-invasive or minimally invasive biomarkers is essential to complement the existing low-dose CT (LDCT) for early detection, improve responses to a certain treatment, predict cancer recurrence, and to evaluate prognosis. In the past decade, liquid biopsies (e.g., blood) have been demonstrated to be highly effective for lung cancer biomarker discovery. In this review, the roles of emerging liquid biopsy-derived biomarkers such as circulating nucleic acids, circulating tumour cells (CTCs), long non-coding RNA (lncRNA), and microRNA (miRNA), as well as exosomes, have been highlighted. The advantages and limitations of these blood-based minimally invasive biomarkers have been discussed. Furthermore, the current progress of the identified biomarkers for clinical management of lung cancer has been summarised. Finally, a potential strategy for the early detection of lung cancer, using a combination of LDCT scans and well-validated biomarkers, has been discussed.

2.
Anal Chem ; 93(46): 15373-15380, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34748327

RESUMO

The improvement of on-tissue chemical derivatization for mass spectrometry imaging (MSI) of low-abundance and/or poorly ionizable functional molecules in biological tissue without delocalization is challenging. Here, we developed a novel hydrogel-assisted chemical derivatization (HCD) approach coupled with airflow-assisted desorption electrospray ionization (AFADESI)-MSI, allowing for enhanced visualization of inaccessible molecules in biological tissues. The derivatization reagent Girard's P (GP) reagent was creatively packaged into a hydrogel to form HCD blocks that have reactivity to carbonyl compounds as well as the feasibility of "cover/uncover" contact mode with tissue sections. The HCD blocks provided a favorable liquid microenvironment for the derivatization reaction and reduced matrix effects from derivatization reagents and tissue without obvious molecular migration, thus improving the derivatization efficiency. With this methodology, unusual carbonyl metabolites, including 166 fatty aldehydes (FALs) and 100 oxo fatty acids (FAs), were detected and visualized in rat brain, kidney, and liver tissue. This study provides a new approach to enhance chemical labeling for in situ tissue submetabolome profiling and improves our knowledge of the molecular histology and complex metabolism of biological tissues.

3.
Chem Commun (Camb) ; 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34806098

RESUMO

The slow-photon effect of Pt/TiO2-SiO2 inverse opal on photocatalytic nonoxidative coupling of methane was explored regarding the cavity size and filming treatment. The ethane production rate was maximized to 72 µmol g-1 h-1 on a filmed microarray with a macroporous diameter of 170 nm, demonstrating the significance of enhancing light-matter interaction for methane conversion.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34661709

RESUMO

INTRODUCTION: Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC), and provides a target for a dendritic cell (DC) vaccine. CD137 ligand (CD137L) expressed on antigen presenting cells, costimulates CD137-expressing T cells, and reverse CD137L signaling differentiates monocytes to CD137L-DC, a type of DC, which is more potent than classical DC in stimulating T cells. METHODS: In this phase I study, patients with locally recurrent or metastatic NPC were administered CD137L-DC pulsed with EBV antigens (CD137L-DC-EBV-VAX). RESULTS: Of the 12 patients treated, 9 received full 7 vaccine doses with a mean administered cell count of 23.9 × 106 per dose. Treatment was well tolerated with only 4 cases of grade 1 related adverse events. A partial response was obtained in 1 patient, and 4 patients are still benefitting from a progression free survival (PFS) of currently 2-3 years. The mean pre-treatment neutrophil: lymphocyte ratio was 3.4 and a value of less than 3 was associated with prolonged median PFS. Progressors were characterized by a high frequency of naïve T cells but a low frequency of CD8+ effector T cells while patients with a clinical benefit (CB) had a high frequency of memory T cells. Patients with CB had lower plasma EBV DNA levels, and a reduction after vaccination. CONCLUSION: CD137L-DC-EBV-VAX was well tolerated. The use of CD137L-DC-EBV-VAX is demonstrated to be safe. Consistent results were obtained from all 12 patients, indicating that CD137L-DC-EBV-VAX induces an anti-EBV and anti-NPC immune response, and warranting further studies in patients post effective chemotherapy. PRECIS: The first clinical testing of CD137L-DC, a new type of monocyte-derived DC, finds that CD137L-DC are safe, and that they can induce an immune response against Epstein-Barr virus-associated nasopharyngeal carcinoma that leads to tumor regression or prevents tumor progression.

5.
Cell Prolif ; : e13143, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672397

RESUMO

Circular RNAs (circRNAs), a type of non-coding RNA, are single-stranded circularized molecules characterized by high abundance, evolutionary conservation and cell development- and tissue-specific expression. A large body of studies has found that circRNAs exert a wide variety of functions in diverse biological processes, including cell cycle. The cell cycle is controlled by the coordinated activation and deactivation of cell cycle regulators. CircRNAs exert mutifunctional roles by regulating gene expression via various mechanisms. However, the functional relevance of circRNAs and cell cycle regulation largely remains to be elucidated. Herein, we briefly describe the biogenesis and mechanistic models of circRNAs and summarize their functions and mechanisms in the regulation of critical cell cycle modulators, including cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Moreover, we highlight the participation of circRNAs in cell cycle-related signalling pathways and the clinical value of circRNAs as promising biomarkers or therapeutic targets in diseases related to cell cycle disorder.

6.
Chemosphere ; : 132627, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34678345

RESUMO

Advanced oxidation processes (AOPs) such as Fenton and Fenton-like process for pollutant removal have been widely reported. However, most papers choose one of the popular oxidants (H2O2, peroxymonosulfate (PMS) or peroxydisulfate (PDS)) as the oxidant via AOPs for pollutant degradation. The purpose of this work is to compare the degradation rates of the Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes. Furthermore, to solve the problem of slow regeneration of Fe2+, the visible light irradiation and inverse opal WO3 cocatalyst were added to the Fenton/Fenton-like process. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes greatly improved the degradation efficiency of norfloxacin (NOR), reaching about 30 times, 9 times and 12 times that of the homogeneous Fenton/Fenton-like process, respectively. On average, the TOC removal rates of PMS-based, H2O2-based and PMS-based processes for the five pollutants were 71.6%, 54.0%, and 59.6% within 60 min, and the corresponding co-catalyst treatment efficiencies were 0.215 mmol/g/h, 0.162 mmol/g/h, and 0.179 mmol/g/h, respectively. 1O2 and •O2- have been proven to play a vital role in the degradation of NOR via all the three IO WO3 co-catalytic photo-Fenton-like processes. In addition, the effects of different reaction parameters on the activity of degrading norfloxacin were explored. The IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes for removal of different persistent organic pollutants and norfloxacin in different actual wastewater have also been studied. Nonetheless, this study proves that IO WO3 co-catalytic visible light assisted Fe2+/PMS, Fe2+/H2O2 and Fe2+/PDS processes could effectively remove antibiotics from wastewater.

7.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684847

RESUMO

Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer's disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats' performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Lobo Frontal/metabolismo , Hipotálamo/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Doenças Neurodegenerativas/metabolismo , Ratos , Ratos Endogâmicos F344
8.
Transl Lung Cancer Res ; 10(8): 3567-3581, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34584857

RESUMO

Background: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are increasingly used for advanced non-small cell lung cancer (NSCLC) as first-line therapy. The bioavailability and efficacy of oral EGFR-TKIs could be affected by acid suppression (AS) therapy such as PPIs and H2RAs which are reported to be over-prescribed. Hence, there is a need to investigate the effect of AS on the overall survival (OS), progression-free survival (PFS) and adverse effect profile in patients treated with EGFR TKIs. Methods: An electronic database search of Medline and Embase was performed following PRISMA guidelines on 17 January 2021. Studies analyzing interactions between EGFR TKIs and PPIs/H2RAs in NSCLC patients were included. Abstracts, non-English or non-Japanese studies or studies using non-EGFR TKIs were excluded. Hazard ratios (HRs) were pooled using generic inverse variance random effects model. Effect sizes for dichotomous variables were pooled using Mantel-Haenszel random effects model. Significance was considered at P≤0.05. Heterogeneity was assessed with Cochran Q-test and I2 test. Publication bias was assessed with funnel plots. The assessment of quality and risk of bias of randomized and non-randomized studies were undertaken with RoB 2 and the ROBINS-I tool respectively. Results: Out of 1,173 potentially relevant articles, 14 articles were included in the final analysis. The pooled prevalence of AS in patients taking EGFR TKI was 30.71% in 4,010 individuals. Patients who were treated only with EGFR TKI had significantly better OS (HR =1.46, 95% CI: 1.27-1.72; P<0.00001) and PFS (HR =1.63, 95% CI: 1.35-1.98; P<0.00001). The OS for EGFR mutation positive patients only was as similarly significant as the OS in all patients taking EGFR TKI, while the PFS in mutation positive patients was significantly worsened with AS. PPIs resulted in a significantly worsened OS and PFS but H2RAs did not produce significantly different OS and PFS between AS and non-AS users. There were no significant differences in the incidence of rash (OR =0.81, 95% CI: 0.50-1.32; P=0.40), diarrhoea (OR =1.03, 95% CI: 0.63-1.67; P=0.91) or other adverse effects. Conclusions: Co-administration of AS medications with first-generation EGFR-TKIs in NSCLC worsens survival outcomes. Physicians should only prescribe AS medications when absolutely clinically indicated.

9.
Cancer Lett ; 521: 252-267, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34508794

RESUMO

Cancer is one of the world's biggest healthcare burdens and despite the current advancements made in treatment plans, the outcomes for oncology patients have yet to reach their full potential. Hence, there is a pressing need to develop novel anti-cancer drugs. A popular drug class for research are natural compounds, due to their multi-targeting potential and enhanced safety profile. One such promising natural bioactive compound derived from a vine, Tripterygium wilfordii is celastrol. Pre-clinical studies revolving around the use of celastrol have revealed positive pharmacological activities in various types of cancers, thus suggesting the chemical's potential anti-cancerous effects. However, despite the numerous preclinical studies carried out over the past few decades, celastrol has not reached human trials for cancer. In this review, we summarize the mechanisms and therapeutic potentials of celastrol in treatment for different types of cancer. Subsequently, we also explore the possible reasons hindering its development for human use as cancer therapy, like its narrow therapeutic window and poor pharmacokinetic properties. Additionally, after critically analysing both in vitro and in vivo evidence, we discuss about the key pathways effected by celastrol and the suitable types of cancer that can be targeted by the natural drug, thus giving insight into future directions that can be taken, such as in-depth analysis and research of the druggability of celastrol derivatives, to aid the clinical translation of this promising anti-cancer lead compound.

10.
Cell Death Discov ; 7(1): 265, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580286

RESUMO

Clinical trials repurposing peroxisome proliferator-activated receptor-gamma (PPARγ) agonists as anticancer agents have exhibited lackluster efficacy across a variety of tumor types. Here, we report that increased PPARG expression is associated with a better prognosis but is anticorrelated with histone deacetylase (HDAC) 1 and 2 expressions. We show that HDAC overexpression blunts anti-proliferative and anti-angiogenic responses to PPARγ agonists via transcriptional and post-translational mechanisms, however, these can be neutralized with clinically approved and experimental HDAC inhibitors. Supporting this notion, concomitant treatment with HDAC inhibitors was required to license the tumor-suppressive effects of PPARγ agonists in triple-negative and endocrine-refractory breast cancer cells, and combination therapy also restrained angiogenesis in a tube formation assay. This combination was also synergistic in estrogen receptor-alpha (ERα)-positive cells because HDAC blockade abrogated ERα interference with PPARγ-regulated transcription. Following a pharmacokinetics optimization study, the combination of rosiglitazone and a potent pan-HDAC inhibitor, LBH589, stalled disease progression in a mouse model of triple-negative breast cancer greater than either of the monotherapies, while exhibiting a favorable safety profile. Our findings account for historical observations of de-novo resistance to PPARγ agonist monotherapy and propound a therapeutically cogent intervention against two aggressive breast cancer subtypes.

11.
Mol Cell Biol ; 41(10): e0011521, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34309414

RESUMO

Long noncoding RNAs (lncRNAs) have key functions in modulating cervical cancer (CC) genesis and progression. This work focused on exploring lncRNA HNRNPU-AS1's function in CC and the underlying mechanism. HNRNPU-AS1, AXIN2, and microRNA 205-5p (miR-205-5p) levels in CC cases were measured through reverse transcription-quantitative PCR. The relationship between miR-205-5p and AXIN2 or HNRNPU-AS1 was validated through a dual-luciferase assay. Cell proliferation was examined by CCK-8 and cell apoptosis by colony formation and flow cytometry analysis. HNRNPU-AS1 expression loss could be observed in CC patients and cell lines, which predicted the dismal prognosis of CC cases. Moreover, it was identified that the miR-205-5p level was upregulated, which acted as an inhibitory target of HNRNPU-AS1 and AXIN2. HNRNPU-AS1 inhibited cell proliferation and promoted apoptosis. As revealed by Kaplan-Meier curve, CC cases showing low HNRNPU-AS1, high miR-205-5p, and low AXIN2 levels had the poorest prognosis. AXIN2 reversed the CC cell proliferation-promoting, apoptosis-inhibiting, and Wnt/ß-catenin signaling-activating behavior mediated by miR-205-5p or HNRNPU-AS1 knockout. In conclusion, the overexpression of lncRNA HNRNPU-AS1 suppressed CC progression by inhibiting the Wnt/ß-catenin pathway through the miR-205-5p/AXIN2 axis.


Assuntos
Proteína Axina/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , MicroRNAs/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Prognóstico , RNA Antissenso/genética , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Via de Sinalização Wnt/genética , beta Catenina/genética
12.
Int J Immunopathol Pharmacol ; 35: 20587384211031417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34240649

RESUMO

Hyperglycemia-induced oxidative stress plays important roles in the development of non-alcoholic fatty liver disease (NAFLD), which is a common complication in diabetic patients. The Nrf2-Keap1 pathway is important for cell antioxidant protection, while its role in exogenous antioxidant mediated protection against NAFLD is unclear. We thus, postulated that antioxidant treatment with allopurinol (ALP) may attenuate diabetic liver injury and explored the underlying mechanisms. Control (C) and streptozotocin (STZ)-induced diabetes rats (D) were untreated or treated with ALP for 4 weeks starting at 1 week after diabetes induction. Serum levels of alanine aminotransferase (ALT) and aspartate transaminase (AST), production of lipid peroxidation product malondialdehyde (MDA), and serum superoxide dismutase (SOD) were detected. Liver protein expressions of cleaved-caspase 3, IL-1ß, nuclear factor-erythroid-2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), P62, Kelch-like ECH-associated protein 1 (Keap1), and LC3 were analyzed. In vitro, cultured rat normal hepatocytes BRL-3A were grouped to normal glucose (5.5 mM, NG) or high glucose (25 mM, HG) and treated with or without allopurinol (100 µM) for 48 h. Rats in the D group demonstrated liver injury evidenced as increased serum levels of ALT and AST. Diabetes increased apoptotic cell death, enhanced liver protein expressions of cleaved-caspase 3 and IL-1ß with concomitantly increased production of MDA while serum SOD content was significantly reduced (all P < 0.05 vs C). In the meantime, protein levels of Nrf2, HO-1, and P62 were reduced while Keap1 and LC3 were increased in the untreated D group as compared to control (P < 0.05 vs C). And all the above alterations were significantly attenuated by ALP. Similar to our findings obtained from in vivo study, we got the same results in in vitro experiments. It is concluded that ALP activates the Nrf2/p62 pathway to ameliorate oxidative stress and liver injury in diabetic rats.

13.
J Hazard Mater ; 419: 126359, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171667

RESUMO

Photo-Fenton process is an advanced oxidation technology, which is used to eliminate organic pollutants in environmental pollution. In this paper, g-C3N4 quantum dots incorporated hierarchical macro-mesoporous CuO-SiO2 (MM SC-QDs) composite was successfully fabricated by a dual-template method combined with polystyrene sphere (PS) crystal and copolymer F127. With the presence of H2O2, MM SC-QDs exhibited excellent degradation performance against the antibiotic pollutant norfloxacin (NOR) under visible-light assisted heterogeneous Fenton process at neutral condition, which was 27 times higher than that of the Bulk CuO-SiO2. Interconnected macropores, together with abundant mesopores effectively expand specific surface area and improve mass transfer. In addition, the g-C3N4 QDs served as the separation center for photogenerated charges, promoting the separation and migration of the charge carriers. Wherein, the long-lived photogenerated electrons were effectively separated and transferred to the surface of CuO-SiO2, which accelerated the reduction rate of Cu2+ to Cu+, enhancing the photo-Fenton-like catalytic activity. This stable, efficient, and environmentally friendly Cu-based heterogeneous photo-Fenton-like catalyst is expected to become an effective implementation in organic pollution removal. Meanwhile, this paper proves that Cu-based materials can activate H2O2 to generate singlet oxygen (1O2) for the degradation of organic pollutants. The transformation mechanism of 1O2 was clarified, which is helpful to better understand the Fenton-like reaction process of Cu-based materials.


Assuntos
Peróxido de Hidrogênio , Norfloxacino , Catálise , Cobre , Dióxido de Silício
14.
Eur J Pharmacol ; 906: 174274, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34146587

RESUMO

Prostate cancer (PCa) is a common disease among men especially in the old age. The deregulated activation of oncogenic and pro-survival transcription factors has been linked with tumor progression in PCa patients. The consequence of diosgenin treatment on NF-κB/STAT3 activation in PCa cells as well as transgenic mouse model was determined. We also validated the hypothesis of targeting these transcription factors using in silico proteomics simulation model. Diosgenin abrogated NF-κB/STAT3 activation and this action was caused as a result of suppression of protein kinases and reporter gene activity that led to a substantial reduction in the expression of various tumorigenic gene products. In vivo, diosgenin (2% w/w) when mixed in diet and fed to mice abrogated tumor progression in transgenic mice. Diosgenin was also detected in serum and was well absorbed orally. Overall, our data highlights the promising efficacy of diosgenin in PCa therapy.

15.
Semin Cancer Biol ; 74: 105-120, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33989735

RESUMO

Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.

16.
ACS Sens ; 6(6): 2077-2107, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038091

RESUMO

The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.


Assuntos
Diamante , Nanopartículas , Magnetismo , Nitrogênio , Temperatura
17.
Semin Cancer Biol ; 2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33979675

RESUMO

Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.

18.
Cancer Lett ; 515: 63-72, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052324

RESUMO

Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been expected to ameliorate cancer and foster breakthroughs in cancer therapy. Despite thousands of preclinical studies on the anticancer activity of resveratrol, little progress has been made in translational research and clinical trials. Most studies have focused on its anticancer effects, cellular mechanisms, and signal transduction pathways in vitro and in vivo. In this review, we aimed to discern the causes that prevent resveratrol from being used in cancer treatment. Among the various limitations, poor pharmacokinetics and low potency seem to be the two main bottlenecks of resveratrol. In addition, resveratrol-induced nephrotoxicity in multiple myeloma patients hinders its further development as an anticancer drug. New insights and strategies have been proposed to accelerate the conversion of resveratrol from bench to bedside. In the interim, the most promising approach is to enhance the bioavailability of resveratrol with new formulations. Alternatively, more potent analogues of resveratrol could be developed to augment its anticancer potency. Given all the gaps mentioned, much work remains to be done. However, if remarkable progress can be made, resveratrol may finally be used for cancer therapy.

19.
Front Mol Biosci ; 8: 669361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026842

RESUMO

Fluorescent imaging combined with atomic force microscopy (AFM), namely AFM-fluorescence correlative microscopy, is a popular technology in life science. However, the influence of involved fluorophores on obtained mechanical information is normally underestimated, and such subtle changes are still challenging to detect. Herein, we combined AFM with laser light excitation to perform a mechanical quantitative analysis of a model membrane system labeled with a commonly used fluorophore. Mechanical quantification was additionally validated by finite element simulations. Upon staining, we noticed fluorophores forming a diffuse weakly organized overlayer on phospholipid supported membrane, easily detected by AFM mechanics. The laser was found to cause a degradation of mechanical stability of the membrane synergically with presence of fluorophore. In particular, a 30 min laser irradiation, with intensity similar to that in typical confocal scanning microscopy experiment, was found to result in a ∼40% decrease in the breakthrough force of the stained phospholipid bilayer along with a ∼30% reduction in its apparent elastic modulus. The findings highlight the significance of analytical power provided by AFM, which will allow us to "see" the "unseen" in correlative microscopy, as well as the necessity to consider photothermal effects when using fluorescent dyes to investigate, for example, the deformability and permeability of phospholipid membranes.

20.
Front Oncol ; 11: 626659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898307

RESUMO

Epstein-Barr virus (EBV)-the prototypical human tumor virus-is responsible for 1-2% of the global cancer burden, but divergent strains seem to exist in different geographical regions with distinct predilections for causing lymphoid or epithelial malignancies. Here we report the establishment and characterization of Yu103, an Asia Pacific EBV strain with a highly remarkable provenance of being derived from nasopharyngeal carcinoma biopsy but subsequently propagated in human B-lymphoma cells and xenograft models. Unlike previously characterized EBV strains which are either predominantly B-lymphotropic or epitheliotropic, Yu103 evinces an uncanny capacity to infect and transform both B-lymphocytes and nasopharyngeal epithelial cells. Genomic and phylogenetic analyses indicated that Yu103 EBV lies midway along the spectrum of EBV strains known to drive lymphomagenesis or carcinogenesis, and harbors molecular features which likely account for its unusual properties. To our knowledge, Yu103 EBV is currently the only EBV isolate shown to drive human nasopharyngeal carcinoma and B-lymphoma, and should therefore provide a powerful novel platform for research on EBV-driven hematological and epithelial malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...