Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883836

RESUMO

An in-line slot waveguide sensor built in a polished flat platform of a D-shaped silicon cored fiber with a taper coupled region is proposed and investigated thoroughly. Simulation results show that the single-mode light field sustained in the silicon cored fiber can be efficiently transferred to the slot waveguides through the tapered region. The geometry parameters of the slot waveguide sensors are optimized to have the corresponding highest power confinement factors and the resultant sensor sensitivities. The three-slot waveguide sensor is found to have the best performance among one-, two- and three-slot waveguides at the mid-IR wavelength.

2.
Nanomaterials (Basel) ; 7(5)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28468325

RESUMO

Immunoglobulins are important biomarkers to evaluate the immune status or development of infectious diseases. To provide timely clinical treatments, it is important to continuously monitor the level of multiple immunoglobulins. Localized surface plasmon resonance (LSPR)-based nanoplasmonic sensors have been demonstrated for multiplex immunoglobulins detection. However, the sensor fabrication process is usually slow and complicated, so it is not accessible for large-area and batch fabrication. Herein, we report a large-area (2 cm × 2 cm) nanofabrication method using physical vapor deposition followed by a rapid thermal annealing treatment. To optimize the sensor performance, we systematically characterized three fabrication conditions, including (1) the deposition thickness; (2) the maximum annealing temperature, and (3) the annealing time. The corresponding absorbance spectrum profile and surface morphology of the nanostructures were observed by a UV-VIS spectrometer and atomic force microscopy. We then tested the sensitivity of the sensor using a glucose solution at different concentrations. The results showed that the sensor with 10 nm gold deposition thickness under 5-min 900 °C rapid thermal annealing can achieve the highest sensitivity (189 nm RIU-1). Finally, we integrated this nanoplasmonic sensor with a microchannel and a motorized stage to perform a 10-spot immunoglobulin detection in 50 min. Based on its real-time, dynamic and multi-point analyte detection capability, the nanoplasmonic sensor has the potential to be applied in high-throughput or multiplex immunoassay analysis, which would be beneficial for disease diagnosis or biomedical research in a simple and cost-effective platform.

3.
Biomed Opt Express ; 7(11): 4416-4423, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895984

RESUMO

Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications.

4.
Opt Lett ; 39(17): 4998-5001, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25166058

RESUMO

We demonstrate ultrafast all-optical switching in GaAs microdisk resonators using a femtosecond pump-probe technique through tapered-fiber coupling. The temporal tuning of the resonant modes resulted from the refractive index change due to photoexcited carrier density variation inside the GaAs microdisk resonator. Transmission through the GaAs microdisk resonator can be modulated by more than 10 dB with a switching time window of 8 ps in the switch-off operation using pumping pulses with energies as low as 17.5 pJ. The carrier lifetime was fitted to be 42 ps, much shorter than that of the bulk GaAs, typically of the order of nanoseconds. The above observation indicates that the surface recombination plays an important role in increasing the switching speed.

5.
Opt Express ; 22 Suppl 2: A438-45, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922253

RESUMO

The aluminum and sliver multilayered nano-grating structure is fabricated by laser interference lithography and the intervals between nanoslits is filled with modified PEDOT:PSS. The grating structured transparent electrode functions as the anti-reflection layer which not only decreases the reflected light but also increases the absorption of the active layer. The performances of P3HT:PC61BM solar cells are studied experimentally and theoretically in detail. The field intensities of the transverse magnetic (TM) and transverse electrical (TE) waves distributed in the active layer are simulated by rigorous coupled wave analysis (RCWA). The power conversion efficiency of the plasmonic ITO-free polymer solar cell can reach 3.64% which is higher than ITO based polymer solar cell with efficiency of 3.45%.

6.
Opt Express ; 22(7): 7388-98, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718114

RESUMO

Three different nano-grating structures are designed as phase retarders that can transform linearly polarized light to circularly polarized emission for the wavelengths of 488 nm, 532 nm and 632.8 nm, respectively. Gold based nano-grating structures with various periods are fabricated by utilizing laser interference lithography. The ellipticity of all circularly polarized emission can reach around 90% such that the structure has great potential in the applications of three-dimensional (3D) display. The effects of the slit width and metal thickness modulations are simulated by rigorous coupled wave analysis (RCWA) method. Besides, the field intensity and phase of the transmitted TM and TE waves are also simulated to understand their polarization characteristics.

7.
Appl Opt ; 51(10): 1453-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505062

RESUMO

We demonstrate a method to make possible the mass production of corrugated long-period fiber gratings (C-LPFGs) by utilizing imprint lithography on polycarbonate (PC) substrates. For such C-LPFGs whose working principle is based on photoelastic effect, pretensile tension is required to be applied to inducing periodical refractive index variation. We then present an attempt to use PC as embedding material for providing internal compressive stress for C-LPFGs to have a photoelastic effect. This type of LPFG, termed embedded corrugated long-period fiber gratings (EC-LPFGs), is obtained after reimprinting the C-LPFGs into other PC substrates. Since compressive stress is retained due to the materials of different coefficients of thermal expansion (CTE), unlike C-LPFGs, EC-LPFGs can serve as strain, bending, and temperature sensors without the need of pretensile strain. The two most troublesome problems, the fragility of an etched fiber grating and the requirement of pretensile strain, can be simultaneously alleviated or solved by EC-LPFGs.

8.
Nanotechnology ; 22(21): 215303, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21451220

RESUMO

In this paper, an effective method for fabricating artificial compound-eye structures is demonstrated. The fabrication of high fill factor microlens arrays (MLAs) with sub-wavelength structures (SWSs) on a polycarbonate (PC) substrate involves nanoimprint and thermo-extrusion techniques by using two different scales of nano/micromolds. In addition, the MLAs with SWSs on the PC substrate would be replicated on a polymethylmethacrylate (PMMA) millimeter concave surface by hot-embossing, forming three-level compound-eye structures. The optical properties of these samples are characterized. The transmittances of two-level PC and three-level PMMA compound structures are increased by 2.5% and 2%, and the uniformities are enhanced by 18% and 24%, respectively.

9.
ACS Nano ; 4(1): 165-73, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-19968294

RESUMO

In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).


Assuntos
Lasers , Nanopartículas Metálicas/química , Fenômenos Ópticos , Processos Fotoquímicos , Raios Ultravioleta , Vidro/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Silício/química , Análise Espectral , Temperatura
10.
Appl Opt ; 44(1): 77-82, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15662888

RESUMO

An erbium-doped superfluorescent fiber source utilizing a double-pass backward configuration is analyzed when a polarizer is inserted into an erbium-doped fiber to obtain polarized output light. Such a polarized configuration is simulated and experimentally confirmed to have the following characteristics: high polarization power conversion efficiency, pump-power-independent mean-wavelength operation, and low sensitivity to polarizer insertion loss.

11.
Appl Opt ; 42(13): 2264-72, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12737456

RESUMO

A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating.

12.
Appl Opt ; 41(31): 6576-84, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12412648

RESUMO

The beam-propagation method (BPM) is employed to analyze the coupling behavior of our scheme proposed previously, which combines a lensed fiber and a long-period fiber grating (LPFG) [Chen and Wang, Appl. Opt. 39,4490-4500 (2000)]. The influences of a core within the fiber lens are investigated. As for the fiber dependence of our coupling scheme, two typical fibers are studied: dispersion-shifted and single-mode, step-index fibers. With the BPM, the optimal coupling efficiencies for various source waists with corresponding lens radii and working distances are determined. We also compare the results with those obtained by use of the ABCD method and found that the BPM gives better agreement with experimental results.

13.
J Opt Soc Am A Opt Image Sci Vis ; 19(4): 772-80, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11934170

RESUMO

An approach is presented to the design of binary long-period fiber grating (LPFG) filters based on the Gel'fand-Levitan-Marchenko (GLM) inverse-scattering method and genetic algorithm optimization. The nonuniform coupling strength of the binary grating can be realized by varying the local duty ratio. A coupled-mode theory combined with the Poisson sum formula for treating the binary index perturbation is developed for the application of the GLM synthesis method. Since the coupled-mode theory, which smears out the discrete coupling nature, can be regarded only as an approximation to the modeling of a binary LPFG, we use instead the transfer-matrix model to analyze the coupling behavior of a nonuniform binary LPFG. Based on the synthesized grating patterns from the GLM method, a real-coded genetic algorithm with the transfer-matrix model is used to compensate for the discrepancies resulting from use of the coupled-mode theory and to optimize the design. We exemplify the above procedure by designing a flatband LPFG filter and a high-visibility all-fiber Mach-Zehnder filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...