Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Neuron ; 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32485136

RESUMO

New methods for investigating human astrocytes are urgently needed, given their critical role in the central nervous system. Here we show that CD49f is a novel marker for human astrocytes, expressed in fetal and adult brains from healthy and diseased individuals. CD49f can be used to purify fetal astrocytes and human induced pluripotent stem cell (hiPSC)-derived astrocytes. We provide single-cell and bulk transcriptome analyses of CD49f+ hiPSC-astrocytes and demonstrate that they perform key astrocytic functions in vitro, including trophic support of neurons, glutamate uptake, and phagocytosis. Notably, CD49f+ hiPSC-astrocytes respond to inflammatory stimuli, acquiring an A1-like reactive state, in which they display impaired phagocytosis and glutamate uptake and fail to support neuronal maturation. Most importantly, we show that conditioned medium from human reactive A1-like astrocytes is toxic to human and rodent neurons. CD49f+ hiPSC-astrocytes are thus a valuable resource for investigating human astrocyte function and dysfunction in health and disease.

2.
Environ Pollut ; 265(Pt A): 115017, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32593074

RESUMO

Quantifying methane (CH4) emissions from paddy fields is essential for evaluating the environmental risks of the paddy rice production system, and improving the accuracy of CH4 modeling is a key issue that needs to be addressed. Based on a database containing 835 field measurements, both single national and region-specific models were established to estimate CH4 emissions from paddy fields considering different environmental factors and management patterns using 70% of the measurements. The remaining 30% of the measurements were then used for model evaluation. The performance of the region-specific model was better than that of the single national model. The region-specific model could simulate CH4 emissions in an unbiased manner with R2 values of 0.15-0.70 and efficiency values of 11-60%. The paddy rice type, water regime, organic amendment, latitude, and soil characteristics (pH and bulk density) were identified as the main drivers in the models. By inputting the high-resolution spatial data of these drivers into the established model, the CH4 emissions from China's paddy fields were estimated to be 4.75 Tg in 2015, with a 95% confidence interval of 4.19-5.61 Tg. The results indicated that establishing and driving a region-specific model with high-resolution data can improve the estimation accuracy of CH4 emissions from paddy fields.

3.
J Environ Sci (China) ; 93: 120-128, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446447

RESUMO

The potential environmental implications of a Pb (Lead)-Zn (Zinc) sulfide tailing impoundment were found to be dependent on its geochemical characteristics. One typical lead-zinc sulfide tailing impoundment was studied. Ten boreholes were set with the grid method and 36 tailings were sampled and tested. According to the results of metal content analysis, the tailing samples contained considerably high contents of heavy metals, ranging from 6.99 to 89.0 mg/kg for Cd, 75.3 to 602 mg/kg for Cu, 0.53% to 2.63% for Pb and 0.30% to 2.54% for Zn. Most of the heavy metals in the sample matrix showed a uniform concentration distribution, except Cd. Cd, Pb, Zn, and Mn were associated with each other, and were considered to be the dominant contributors based on hierarchical cluster analysis. XRD, SEM and XPS were employed for evaluation of the tailing weathering characteristics, confirming that the tailings had undergone intensive weathering. The maximum potential acidity of the tailings reached 244 kg H2SO4/ton; furthermore, the bioavailability of heavy metals like Pb, Cd, Cr, Cu, and Zn was 37.8%, 12.9%, 12.2%, 5.95%, and 5.46% respectively. These metals would be potentially released into drainage by the weathering process. Analysis of a gastrointestinal model showed that Pb, Cr, Ni and Cu contained in the tailings were high-risk metals. Thus, control of the heavy metals' migration and their environmental risks should be planned from the perspective of geochemistry.

5.
Langmuir ; 36(24): 6635-6650, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32418428

RESUMO

Self-propelled jumping of condensate droplets (dew) enables their easy and efficient removal from surfaces and is essential for enhancing the condensation heat transfer coefficient and for delaying the frost growth rate on supercooled surfaces. Here, we report the droplet-jumping phenomenon using nanoporous vertically aligned carbon nanotube (VA-CNT) microstructures grown on smooth silicon substrates and coated with poly-(1H, 1H, 2H, 2H-perfluorodecylacrylate) (pPFDA). We also report droplet-sweeping phenomenon on horizontally mounted surfaces, concluding that the frost surface coverage area and the frost growth rates observed with the droplet-sweeping phenomenon are much lower than those that are observed with the droplet-jumping phenomenon alone. We also investigate the fundamentals of droplet-jumping and the frost growth phenomena using line-shaped, hollow-cylindrical, and cylindrical microstructures, comparing the frost surface coverage area and the ice-bridging times during condensation-frosting, prolonged condensation-frosting, and direct-frosting. We find that the closely spaced thin line-shaped microstructures and hollow-cylindrical microstructures are optimal for frost coverage reduction because of their ability to exhibit droplet-jumping and droplet-sweeping phenomena. We observe that adding nonuniform roughness on top of the microstructures leads to jumping-associated droplet-sweeping on supercooled surfaces. Here, we report the evaporation of an already frozen droplet because of freezing of a supercooled condensate droplet in its close vicinity, enabling the Cassie-Baxter state frost growth and enhancing defrosting efficiency. Finally, we discuss the dynamic defrosting behavior of the pPFDA-coated VA-CNT microstructures, concluding that the small gaps (spacings) between the microstructures not only enable dewetting transitions of droplets but also promote the Cassie-Baxter state frost formation.

6.
Acta Neurol Belg ; 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279236

RESUMO

This study investigated the imaging and clinical features of cervical artery web to improve disease diagnosis. Imaging and clinical data of 41 patients with cervical artery web were retrospectively analyzed and summarized in the context of the literature. Of the 8653 patients who underwent carotid computed tomography angiography (CTA) in the past 3 years at our hospital, 41 (0.47%) were diagnosed with cervical artery web. Among the 41 patients, there were 38 web structures in typical position, including 26 web structures located in the internal carotid artery and 12 in the proximal bifurcation of the common carotid artery. And the other three web structures were located outside carotid artery, including two in the subclavian artery and one in the vertebral artery. There were 47 web structures in 41 cases of cervical artery web; 35/41 (85.3%) were unilateral and 6/41 (14.7%) were bilateral. Among 41 patients, there were 20 patients who had cerebral infarction, 14 who experienced transient ischemic attack, 3 patients with cerebral hemorrhage; and 4 with other manifestations. Cervical artery web showed typical imaging features in the carotid CTA. Cervical artery web was most common in the internal carotid artery and at the bifurcation of the common carotid artery. It was also occasionally found in other rare artery such as vertebral and subclavian artery. Based on the various locations of web structure, we think it is necessary to rename carotid web as cervical artery web. Most of the attachment sites of the web structures were located in the posterior wall of the lumen, followed by the lateral wall; sites on the anterior wall were rare. Cervical artery web may be an underappreciated risk factor for stroke. And hypertension can increase the incidence of ischemic stroke in patients with cervical artery web.

7.
Nat Med ; 26(5): 769-780, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32284590

RESUMO

Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment. This module was enriched in AD genetic risk factors and in microglia and astrocyte protein markers associated with an anti-inflammatory state, suggesting that the biological functions it represents serve a protective role in AD. Proteins from this module were elevated in cerebrospinal fluid in early stages of the disease. In this study of >2,000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify proteins and biological processes in AD brains that may serve as therapeutic targets and fluid biomarkers for the disease.

8.
Mol Oncol ; 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239639

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors around the world. Numerous studies have revealed the function of long noncoding RNAs (lncRNAs) in cancers, including ESCC. In this study, lncRNA small nucleolar RNA host gene 12 (SNHG12), mainly distributed in ESCC cell cytoplasm, was overexpressed in ESCC specimens and CD133+ cells. In CD133- ESCC cells, SNHG12 overexpression promoted cell proliferation, migration, epithelial-mesenchymal transition (EMT), and stemness and SNHG12 silencing led to opposite results. Furthermore, SNHG12 sequestered miR-6835-3p and induced the proto-oncogene, polycomb ring finger (BMI1). SNHG12 also enhanced the stability of CTNNB1, the mRNA encoding ß-catenin, via recruiting insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) in ESCC. Rescue assays indicated that CTNNB1 and BMI1 were targets for SNHG12 to regulate ESCC cell proliferation, migration, EMT, and stemness. Furthermore, SOX4 (sex-determining region Y-box 4) bound with the SNHG12 promoter to transcriptionally activate SNHG12 in ESCC. Finally, in vivo data showed SNHG12 knockdown retarded tumorigenesis and metastasis in ESCC. In summary, SNHG12 induces proliferation, migration, EMT, and stemness of ESCC cells via post-transcriptional regulation of BMI1 and CTNNB1, indicating that targeting SNHG12 might be a novel target for ESCC treatment.

9.
Microbiome ; 8(1): 39, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32178738

RESUMO

BACKGROUND: The abundance and diversity of antibiotic resistance genes (ARGs) in the human respiratory microbiome remain poorly characterized. In the context of influenza virus infection, interactions between the virus, the host, and resident bacteria with pathogenic potential are known to complicate and worsen disease, resulting in coinfection and increased morbidity and mortality of infected individuals. When pathogenic bacteria acquire antibiotic resistance, they are more difficult to treat and of global health concern. Characterization of ARG expression in the upper respiratory tract could help better understand the role antibiotic resistance plays in the pathogenesis of influenza-associated bacterial secondary infection. RESULTS: Thirty-seven individuals participating in the Household Influenza Transmission Study (HITS) in Managua, Nicaragua, were selected for this study. We performed metatranscriptomics and 16S rRNA gene sequencing analyses on nasal and throat swab samples, and host transcriptome profiling on blood samples. Individuals clustered into two groups based on their microbial gene expression profiles, with several microbial pathways enriched with genes differentially expressed between groups. We also analyzed antibiotic resistance gene expression and determined that approximately 25% of the sequence reads that corresponded to antibiotic resistance genes mapped to Streptococcus pneumoniae and Staphylococcus aureus. Following construction of an integrated network of ARG expression with host gene co-expression, we identified several host key regulators involved in the host response to influenza virus and bacterial infections, and host gene pathways associated with specific antibiotic resistance genes. CONCLUSIONS: This study indicates the host response to influenza infection could indirectly affect antibiotic resistance gene expression in the respiratory tract by impacting the microbial community structure and overall microbial gene expression. Interactions between the host systemic responses to influenza infection and antibiotic resistance gene expression highlight the importance of viral-bacterial co-infection in acute respiratory infections like influenza. Video abstract.

10.
Oncologist ; 25(3): e545-e554, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32162827

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-mutant lung cancer remains an orphan of specific targeted therapy. The variable responses to anti-HER2 therapies in these patients prompt us to examine impact of HER2 variants and co-mutations on responses to anti-HER2 treatments in lung cancer. PATIENTS AND METHODS: Patients with stage IV/recurrent HER2-mutant lung cancers identified through next-generation sequencings were recruited from seven hospitals. The study comprised a cohort A to establish the patterns of HER2 variants and co-mutations in lung cancer and a cohort B to assess associations between HER2 variants, co-mutations, and clinical outcomes. RESULTS: The study included 118 patients (cohort A, n = 86; cohort B, n = 32). Thirty-one HER2 variants and 35 co-mutations were detected. Predominant variants were A775_G776insYVMA (49/118, 42%), G778_P780dup (11/118, 9%), and G776delinsVC (9/118, 8%). TP53 was the most common co-mutation (61/118, 52%). In cohort B, objective response rates with afatinib were 0% (0/14, 95% confidence interval [CI], 0%-26.8%), 40% (4/10, 14.7%-72.6%), and 13% (1/8, 0.7%-53.3%) in group 1 (A775_G776insYVMA, n = 14), group 2 (G778_P780dup, G776delinsVC, n = 10), and group 3 (missense mutation, n = 8), respectively (p = .018). Median progression-free survival in group 1 (1.2 months; 95% CI, 0-2.4) was shorter than those in group 2 (7.6 months, 4.9-10.4; hazard ratio [HR], 0.009; 95% CI, 0.001-0.079; p < .001) and group 3 (3.6 months, 2.6-4.5; HR, 0.184; 95% CI, 0.062-0.552; p = .003). TP53 co-mutations (6.317; 95% CI, 2.180-18.302; p = .001) and PI3K/AKT/mTOR pathway activations (19.422; 95% CI, 4.098-92.039; p < .001) conferred additional resistance to afatinib. CONCLUSION: G778_P780dup and G776delinsVC derived the greatest benefits from afatinib among HER2 variants. Co-mutation patterns were additional response modifiers. Refining patient population based on patterns of HER2 variants and co-mutations may help improve the efficacy of anti-HER2 treatment in lung cancer. IMPLICATIONS FOR PRACTICE: Human epidermal growth factor receptor 2 (HER2)-mutant lung cancers are a group of heterogenous diseases with up to 31 different variants and 35 concomitant genomic aberrations. Different HER2 variants exhibit divergent sensitivities to anti-HER2 treatments. Certain variants, G778_P780dup and G776delinsVC, derive sustained clinical benefits from afatinib, whereas the predominant variant, A775_G776insYVMA, is resistant to most anti-HER2 treatments. TP53 is the most common co-mutation in HER2-mutant lung cancers. Co-mutations in TP53 and the PI3K/AKT/mTOR pathway confer additional resistance to anti-HER2 treatments in lung cancer. The present data suggest that different HER2 mutations in lung cancer, like its sibling epidermal growth factor receptor, should be analyzed independently in future studies.

13.
Neuroimage Clin ; 26: 102203, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062565

RESUMO

INTRODUCTION: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD). However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what biological processes underlie WM abnormality during disease progression. METHODS: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI), genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and gene subnetworks underlying WM abnormality in AD. RESULTS: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712 in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all the brain regions. DISCUSSION: Incorporation of image analysis with gene network analysis enhances our understanding of disease progression and facilitates identification of novel therapeutic strategies for AD.

14.
Neuron ; 105(6): 975-991.e7, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31926610

RESUMO

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aß-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-ß and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aß-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.

15.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937643

RESUMO

Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection.IMPORTANCE Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level.

16.
J Theor Biol ; 486: 110098, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31786183

RESUMO

At present, with the in-depth study of gene expression data, the significant role of tumor classification in clinical medicine has become more apparent. In particular, the sparse characteristics of gene expression data within and between groups. Therefore, this paper focuses on the study of tumor classification based on the sparsity characteristics of genes. On this basis, we propose a new method of tumor classification-Sparse Group Lasso (least absolute shrinkage and selection operator) and Support Vector Machine (SGL-SVM). Firstly, the primary selection of feature genes is performed on the normalized tumor datasets using the Kruskal-Wallis rank sum test. Secondly, using a sparse group Lasso for further selection, and finally, the support vector machine serves as a classifier for classification. We validate proposed method on microarray and NGS datasets respectively. Formerly, on three two-class and five multi-class microarray datasets it is tested by 10-fold cross-validation and compared with other three classifiers. SGL-SVM is then applied on BRCA and GBM datasets and tested by 5-fold cross-validation. Satisfactory accuracy is obtained by above experiments and compared with other proposed methods. The experimental results show that the proposed method achieves a higher classification accuracy and selects fewer feature genes, which can be widely applied in classification for high-dimensional and small-sample tumor datasets. The source code and all datasets are available at https://github.com/QUST-AIBBDRC/SGL-SVM/.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31678310

RESUMO

Insect growth regulators (IGRs) are attractive alternatives to chemical insecticides. Since it has been reported that secondary metabolites from actinomycetes show insecticidal activities against various insect pests, actinomycetes could be a potential source of novel IGR compounds. In the present study, insect juvenile hormone antagonists (JHANs) were identified from actinomycetes and their insect growth regulatory and insecticidal activities were investigated. A total of 363 actinomycetes were screened for their insect growth regulatory and insecticidal activities against Aedes albopictus and Plutella xylostella. Among them, Streptomyces sp. AN120537 showed the highest JHAN and insecticidal activities. Five antimycins were isolated as active compounds by assay-guided fractionation and showed high JHAN activities. These antimycins also exhibited significant insecticidal activities against A. albopictus, P. xylostella, F. occidentalis, and T. urticae. Moreover, dead larvae treated with these antimycins displayed morphological deformities that are similar to those of JH-based IGR-treated insects. This is the first report demonstrating that the insecticidal activities of antimycins resulted from their possible JHAN activity. Based on our results, it is expected that novel JHAN compounds potentially derived from actinomycetes could be efficiently applied as IGR insecticides with a broad insecticidal spectrum.


Assuntos
Actinobacteria/metabolismo , Aedes/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Hormônios Juvenis/isolamento & purificação , Hormônios Juvenis/farmacologia , Lepidópteros/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Animais , Inseticidas/química , Hormônios Juvenis/química , Metabolismo Secundário
18.
Bioorg Med Chem ; 28(1): 115241, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812324

RESUMO

Though antibiotics have been used for decades to treat bacterial infections, there is a great need for new treatment methods. Bacteria are becoming resistant to conventional antibiotics, as is the case with Methicillin resistant Staphylococcus aureus (MRSA). Herein we report the design of a series of lipidated α/Sulfono-α-AA heterogeneous peptides as mimics for Host Defense Peptides (HDPs). Utilizing fluorescence microscopy and depolarization techniques, our compounds demonstrate the ability to kill Gram-positive bacteria through cell membrane disruption. This mechanism of action makes it difficult for bacteria to develop resistance. Further time kill studies and hemolytic assays have also proven these compounds to be efficient in their ability to eradicate bacteria cells while remaining non-toxic to human red blood cells. This new class of peptidomimetics shows promise for the future antibiotic treatment of MRSA.

19.
Bioinformatics ; 36(6): 1855-1863, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626284

RESUMO

MOTIVATION: Detecting driver genes from gene mutation data is a fundamental task for tumorigenesis research. Due to the fact that cancer is a heterogeneous disease with various subgroups, subgroup-specific driver genes are the key factors in the development of precision medicine for heterogeneous cancer. However, the existing driver gene detection methods are not designed to identify subgroup specificities of their detected driver genes, and therefore cannot indicate which group of patients is associated with the detected driver genes, which is difficult to provide specifically clinical guidance for individual patients. RESULTS: By incorporating the subspace learning framework, we propose a novel bioinformatics method called DriverSub, which can efficiently predict subgroup-specific driver genes in the situation where the subgroup annotations are not available. When evaluated by simulation datasets with known ground truth and compared with existing methods, DriverSub yields the best prediction of driver genes and the inference of their related subgroups. When we apply DriverSub on the mutation data of real heterogeneous cancers, we can observe that the predicted results of DriverSub are highly enriched for experimentally validated known driver genes. Moreover, the subgroups inferred by DriverSub are significantly associated with the annotated molecular subgroups, indicating its capability of predicting subgroup-specific driver genes. AVAILABILITY AND IMPLEMENTATION: The source code is publicly available at https://github.com/JianingXi/DriverSub. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Pest Manag Sci ; 76(5): 1699-1704, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31758591

RESUMO

BACKGROUND: Sacbrood virus (SBV) is a fatal viruses that infects the Asian honey bee, Apis cerana in Korea. Recently, RNA interference (RNAi) has been suggested as a promising strategy for the suppression of honey bee viruses. For the efficient control of SBV infection using RNAi, simple and cost-effective methods to produce double-stranded RNA (dsRNA) are needed. RESULTS: To develop a dsRNA production platform using Bacillus thuringiensis (Bt), pBTdsSBV-VP1 vector was constructed in which the SBV vp1 gene was located between two oppositely oriented cyt promoters. Both strands of the vp1 gene were bidirectionally transcribed under the control of the sporulation-dependent cyt promoter in Bt cells transformed with pBTdsSBV-VP1, and the resulting dsRNA was easily extracted from the Bt transformant, Bt 4Q7/pBTdsSBV-VP1, by inducing its autolysis. The replication of SBV was dramatically suppressed in A. cerana workers who ingested the dsRNA produced from the Bt 4Q7/pBTdsSBV-VP1. CONCLUSION: In this study, we successfully silenced SBV in its host, A. cerana, by the application of exogenous dsRNA produced from an entomopathogenic bacteria, Bt. These results suggested that Bt could be a useful dsRNA production platform to control viral pathogens in their host insects. © 2019 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA