Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Surg ; : 1-9, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32166986

RESUMO

Growing evidence points at an association between microRNAs and tumor development. Although dysregulation of microRNA-103a-3p (miR-103a-3p) in multiple human cancers has been reported, its expression in prostate cancer (PCa) remains unknown and there is currently no research on the relationship between miR-103a-3p and tumor protein D52 (TPD52) in PCa. Our aim in this study was to explore the effect and potential mechanism of miR-103a-3p in PCa. qRT-PCR was performed to detected the level of miR-103a-3p in PCa tissues and cells, and in normal tissues. Colony, wound-healing, invasion, proliferation, and apoptosis assays were performed in search miR-103a-3p effect in PCa. TargetScan was used to predict potential targets of miR-103a-3p. Additionally, dual-luciferase reporter, western blot, and immunofluorescence assays were performed to detected the target gene of miR-103a-3p. Finally, we explore the differences in tumor xenograft experiments between nude mice injected with stably miR-103a-3p expressing cells and those expressing a miR-negative control. Low level of miR-103a-3p was detected in PCa tissues and cells, when compared with normal tissues. Enhancement of miR-103a-3p significantly inhibited migration and invasion of PCa cells, and negatively regulated expression of the oncogenic tumor protein D52 (TPD52) through direct binding to its 3'-UTR. Interestingly, overexpression of TPD52 significantly attenuated the effect of mir-103a-3p on PCa. Our study provides the first evidence that miR-103a-3p directly targets TPD52 and inhibits the proliferation and invasion of PCa. This finding helps clarify the role of mir-103a-3p-TPD52 axis in PCa and may provide new therapeutic targets for the disease.

2.
Eur Radiol ; 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144457

RESUMO

OBJECTIVE: To explore whether sex-specific abdominal visceral fat composition on CT can predict the Fuhrman nuclear grade of clear cell renal cell carcinoma (ccRCC). METHODS: One hundred seventy-one patients (123 males and 48 females) from four hospitals (multicentre group) and 159 patients (109 males and 50 females) from the cancer imaging archive (TCIA-KIRC group) with pathologically proven ccRCC (multicentre: 124 low grade and 47 high grade; TCIA-KIRC: 79 low grade and 80 high grade) were retrospectively included. Abdominal fat was segmented into subcutaneous fat area (SFA) and visceral fat area (VFA) on CT using ImageJ. The total fat area (TFA) and relative VFA (rVFA) were then calculated. Clinical characteristics (age, sex, waist circumference and maximum tumour diameter) were also assessed. Univariate and multivariate logistic regression analyses were performed to identify the association between general or sex-specific visceral fat composition and Fuhrman grade. RESULTS: Females with high-grade ccRCC from the multicentre group had a higher rVFA (42.4 vs 31.3, p = 0.001) than those with low-grade ccRCC after adjusting for age. There was no significant difference in males. The rVFA remained a stable and independent predictor for females high-grade ccRCC in both the univariate (multicentre: OR 1.205, 95% CI 1.074-1.352, p = 0.001; TCIA-KIRC: OR 1.171, 95% CI 1.016-1.349, p = 0.029) and multivariate (multicentre: OR 1.095, 95% CI 1.024-1.170, p = 0.003; TCIA-KIRC: OR 1.103, 95% CI 1.024-1.187, p = 0.010) models. CONCLUSIONS: Sex-specific visceral fat composition has different values for predicting high-grade ccRCC and could be used as an independent predictor for females with high-grade ccRCC. KEY POINTS: • Visceral fat measurement (rVFA) as an independent predictor for high-grade ccRCC had good predictive power in females, but not in males. • Sex-specific visceral fat composition was significantly associated with high-grade ccRCC in females only. • The rVFA could be considered one of the risk factors for high-grade ccRCC for females.

3.
Redox Biol ; 32: 101495, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171725

RESUMO

Autophagy is an evolutionarily conserved catabolic process that recycles proteins and organelles in a lysosome-dependent manner and is induced as an alternative source of energy and metabolites in response to diverse stresses. Inhibition of autophagy has emerged as an appealing therapeutic strategy in cancer. However, it remains to be explored whether autophagy inhibition is a viable approach for the treatment of hepatocellular carcinoma (HCC). Here, we identify that water-soluble yeast ß-D-glucan (WSG) is a novel autophagy inhibitor and exerts significant antitumour efficacy on the inhibition of HCC cells proliferation and metabolism as well as the tumour growth in vivo. We further reveal that WSG inhibits autophagic degradation by increasing lysosomal pH and inhibiting lysosome cathepsins (cathepsin B and cathepsin D) activities, which results in the accumulation of damaged mitochondria and reactive oxygen species (ROS) production. Furthermore, WSG sensitizes HCC cells to apoptosis via the activation of caspase 8 and the transfer of truncated BID (tBID) into mitochondria under nutrient deprivation condition. Of note, administration of WSG as a single agent achieves a significant antitumour effect in xenograft mouse model and DEN/CCl4 (diethylnitrosamine/carbon tetrachloride)-induced primary HCC model without apparent toxicity. Our studies reveal, for the first time, that WSG is a novel autophagy inhibitor with significant antitumour efficacy as a single agent, which has great potential in clinical application for liver cancer therapy.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32196901

RESUMO

Metal-organic frameworks (MOFs) have limited applications in electrochemical fields due to their poor conductivity. In this work, an electroactive MOF (E-MOF) is designed as a highly crystallized electrochemiluminescence (ECL) emitter in aqueous medium for the first time. The E-MOF contains mixed-ligands of hydroquinone and phenanthroline as oxidative and reductive couples, respectively. Interestingly, E-MOFs demonstrate excellent performance with surface state model in both co-reactant and annihilation ECL in aqueous medium. Compared with the individual components, E-MOFs significantly improve the ECL emission due to the framework structure. More importantly, the self-enhanced ECL emission with high stability is realized by the accumulation of MOF's cation radicals via pre-reduction electrolysis. The self-enhanced mechanism is theoretically identified by density functional theory. The mixed-ligand E-MOFs provide a proof of concept using molecular crystalline materials as new ECL emitters for fundamental mechanism studies, and broadens their applications in long-term ECL assays.

5.
J Cell Physiol ; 2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32064615

RESUMO

Colorectal cancer (CRC) is one of the most prevalent tumors worldwide. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators in postgenomic biology. Numerous lncRNAs have been identified as diagnostic biomarkers and therapeutic targets. However, the molecular mechanisms underlying the role of lncRNAs in CRC progression are not fully understood. Differentially expressed lncRNAs and messenger RNAs were investigated using a microarray approach in five paired primary CRC tumor tissues and the corresponding nontumor tissues and confirmed in an additional 116 paired tissues and 21 inflammatory bowel disease tissues and 15 adjacent normal tissues by a quantitative real-time polymerase chain reaction. We also performed comprehensive transcriptome profiling analysis on Gene Expression Omnibus and The Cancer Genome Atlas datasets. We identified LINC02595 and evaluated its clinical significance as a plasma biomarker. The function of LINC02595 was evaluated using a panel of in vivo and vitro assays, including cell counting kit-8, colony formation, cell cycle, apoptosis, RNA fluorescence in situ hybridization, luciferase reporter, immunohistochemistry, and CRC xenografts. We found that LINC02595 is upregulated in tumor tissues and blood samples of patients with CRC and CRC cell lines. Functional research found that LINC02595 promotes CRC cell growth, influences the cell cycle, and reduces apoptosis in vitro and vivo. Mechanistically, LINC02595 promoted BCL2-like 1 (BCL2L1) expression through miR-203b-3p sponging. Our research demonstrated that LINC02595 is an oncogene in CRC and established the presence of a LINC02595-miR-203b-BCL2L1 axis in CRC, which might provide a new diagnostic biomarker and therapeutic targets for the treatment of this disease.

6.
Life Sci ; 247: 117425, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057904

RESUMO

AIMS: Glioma is the most common type of malignant tumor of the nervous system, and aggressiveness and recurrence are major obstacles for treatment. This study is designed to explore the effects of amentoflavone (AF) on glioma, and to investigate the underlying mechanism of the anti-cancer activities of AF. METHODS: Cell morphology was recorded under microscopy. Cell viability and cell death ratio were determined by CCK-8 assay and lactate dehydrogenase (LDH) release assay, respectively. Cell cycle progression was assessed by flow cytometry. The levels of iron, MDA (malondialdehyde), lipid ROS, and GSH (reduced glutathione) were assessed by ELISA kit. The cycle-related proteins, ferroptosis-related protein, autophagy-related protein, and the phosphorylation of AMPK, mTOR and p70S6K were analyzed by western blotting. The autophagic flux was observed by transfecting cells with mRFP-GFP-LC3 plasmids. The xenograft murine models were established to analyze the effects of amentoflavone in vivo. The immunohistochemistry assay was performed to analyze the expression of LC3B, Beclin1, ATG5, ATG7, and ferritin heavy chain (FTH). RESULTS: Our results showed that AF treatment led to reduction in cell viability and cell death. In addition, AF was found to block cell cycle progression in a dose-dependent manner in vitro. Following treatment with AF, the intracellular levels of iron, MDA, and lipid OS were increased, and the levels of GSH and the mitochondrial membrane potential were reduced. In addition, our results showed that AF promoted the autophagic by regulating autophagy-relevant proteins. Our results also showed that the autophagy-induction by AF was associated with regulation of AMPK/mTOR signaling. Mechanistically, the inhibition effects of AF on glioma cell were reversed by DFO, ferreostatin-1 as well as upregulation of FTH. Meanwhile, the FTH levels were increased by compound C and knockdown of ATG7. Moreover, both autophagy inhibitor Baf A1 and knockdown of ATG7 were able to compromising AF-induce ferroptosis and cell death. In vivo, the tumor growth was suppressed by AF in a dose-dependent manner. The level of MDA in the tumor tissue was increased while the level of GSH in tumor tissue was decreased by AF in a dose-dependent manner. Furthermore, the expression of LC3B, Beclin1, ATG5, ATG7 were increased, and the expression of FTH were decreased by AF in a dose-dependent manner in vivo. Conclusion These results demonstrate that AF triggered ferroptosis in autophagy-dependent manner. Our results suggest that AF has the potential to be considered as a novel treatment agent in glioma.

7.
Blood Purif ; : 1-10, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050204

RESUMO

PURPOSE: Cardiac valve calcification (CVC) is frequently occurred in maintenance hemodialysis (MHD) patients and is associated with cardiovascular and all-cause mortality. This study aimed to evaluate the relationships between risk factors and extent of CVC and further provide the treatment target in MHD patients. METHODS: One hundred and forty-five patients who received MHD ≥3 months were enrolled. CVC was assessed by an echocardiographic, semi-quantitative manner called global cardiac calcium scoring system (GCCS), and demographic, clinical, and laboratory parameters including mineral metabolism markers were collected. RESULTS: The average age of the patients was 50 ± 12 years, and 54.5% were men. The mean GCCS was 1.8 ± 2.4; 57.2% of patients had GCCS ≥1. Age, dialysis vintage, serum alkaline phosphatase (ALP), and intact parathyroid hormone levels were positively correlated with CVC, whereas serum albumin levels were negatively related to CVC, based on univariate analysis. With multivariate linear regression analysis, serum ALP was the only bone-derived biomarker that showed significant correlation with CVC. Serum ALP ≥232 U/L was a robust predictor of CVC and was associated with the likelihood of GCCS ≥1 (OR 3.92, 95% CI 1.37-11.2, p = 0.011). The decision tree model was used to identify ALP ≥232 U/L and age ≥60 years as important determinative variables in the prediction of CVC in MHD patients. CONCLUSION: Serum ALP level is significantly associated with CVC in MHD patients. ALP is suggested to be a promising interventional target for cardiovascular calcification in MHD patients.

8.
Genes (Basel) ; 11(2)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075264

RESUMO

Interspecific hybridization creates genetic variation useful for crop improvement. However, whether pollen from a different genus affects the genomic stability and/or transcriptome of the recipient species during intergeneric pollination has not been investigated. Here, we crossed japonica rice cv. Z12 with the maize accession B73 (pollen donor) and obtained a morphologically stable line, MU1, exhibiting moderate dwarfism, higher tiller number, and increased grain weight compared with Z12. To reveal the genetic basis of these morphological changes in MU1, we performed whole-genome resequencing of MU1 and Z12. Compared with Z12, MU1 showed 107,250 single nucleotide polymorphisms (SNPs) and 23,278 insertion/deletions (InDels). Additionally, 5'-upstream regulatory regions (5'UTRs) of 429 and 309 differentially expressed genes (DEGs) in MU1 contained SNPs and InDels, respectively, suggesting that a subset of these DEGs account for the variation in 5'UTRs. Transcriptome analysis revealed 2190 DEGs in MU1 compared with Z12. Genes up-regulated in MU1 were mainly involved in photosynthesis, generation of precursor metabolites, and energy and cellular biosynthetic processes; whereas those down-regulated in MU1 were involved in plant hormone signal transduction pathway and response to stimuli and stress processes. Quantitative PCR (qPCR) further identified the expression levels of the up- or down-regulated gene in plant hormone signal transduction pathway. The expression level changes of plant hormone signal transduction pathway may be significant for plant growth and development. These findings suggest that mutations caused by intergeneric pollination could be the important reason for changes of MU1 in agronomic traits.

9.
J Infect ; 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32007525

RESUMO

Avian-to-human transmission of highly pathogenic avian influenza viruses (HPAIV) and their subsequent adaptation to humans are of great concern to public health. Surveillance and early warning of AIVs with the potential to infect humans and pandemic potential is crucial. In this study, we determined whether adaptive evolution occurred in human-isolated H5 viruses. We evaluated all available genomes of H5N1 and H5N6 avian influenza A virus. Firstly, we systematically identified several new mutations in H5 AIV that might be associated with human adaptation using a combination of novel comparative phylogenetic methods and structural analysis. Some changes are the result of parallel evolution, further demonstrating their importance. In total, we identified 102 adaptive evolution sites in eight genes. Some residues had been previously identified, such as 227 in HA and 627 in PB2, while others have not been reported so far. Ten sites from four genes evolved in parallel but no obvious positive selection was detected. Our study suggests that during infection of humans, H5 viruses evolved to adapt to their new host environment and that the sites of adaptive/parallel evolution might play a role in crossing the species barrier and the response to new selection pressure. The results provide insight to implement early detection systems for transitional stages in H5 AIV evolution before it potential adaptation for humans. Author Summary Line The prerequisite of surveillance and early warning of avian influenza viruses with the potential to infect humans depends on the identification of human-adaptation related mutations. In this study, we used a novel approach combining both phylogenetic and structural analysis to identify possible human-adaptation related mutations in H5 AIVs. Previous studies reported human-adaptation related mutations and some novel mutations exhibiting parallel evolution. Our result provides new insights into how avian viruses adapt to humans by point mutations.

10.
Anal Chem ; 92(3): 2714-2721, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31912732

RESUMO

The controllable growth of metal nanoparticles on nanomaterials is becoming a useful strategy for developing nanocomposites with designated performance. Here, a DNA-controlled strategy for growth of Pt nanoparticles on graphene oxide (GO-PtNPs) to regulate the nanozyme activity and a triplex-hybridization chain reaction (tHCR) for triggering the assembly of DNA probes to amplify the target-induced nanozyme catalytic signal were designed. The tHCR with one linear and two hairpin probes could be specially triggered by a tHCR trigger to form a long double-stranded DNA structure in the presence of target nucleic acid, which hindered the adsorption of these probes on a GO surface, and thus accelerated the growth of PtNPs. The formed GO-PtNPs showed strong catalytic activity toward the oxidation of 3,3,5,5-tetramethylbenzidine, thereby producing an amplified "turn-on" detection signal. The proposed method showed very high sensitivity with the detection limits down to 14.6 pM for mutant KRAS DNA and 21.7 pM for let-7a microRNA. This method was validated with better analytical performance than a general HCR system and could be effectively used for the identification of single-nucleotide polymorphisms, thus providing a novel approach for simple and sensitive detection of nucleic acids.

11.
Anal Chem ; 92(3): 2649-2655, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31920078

RESUMO

On the basis of a target microRNA (miRNA)-responsive DNA hydrogel, a novel surface-enhanced Raman scattering (SERS) sensor array with nine sensor units that can detect multiple cancer-related miRNAs in one sample was developed. The target miRNA-responsive DNA hydrogel was first formed in each sensor unit to realize the construction of the DNA hydrogel-based SERS sensor array. Initially, because of the blocking of the streptavidin (SA)-modified sensor units by the formed DNA hydrogel, the SERS tags (biotin/4-mercaptobenzonitrile-functionalized AuAg alloy nanoparticles (B/M-AuAgNPs)) could not pass through the hydrogel and bind to the SA-modified sensor surface; thus, obvious Raman signals could not be observed. After the introduction of the target miRNA, DNA hydrogels of the corresponding sensor unit were disintegrated accordingly, and SERS tags were able to pass through the hydrogel to be captured onto the SA-modified detection surface, thus resulting in strong Raman signals and the detection of target miRNA. The assay is validated under clean buffer conditions as well as in serum. This target miRNA-responsive DNA hydrogel-based SERS sensor array has attractive application prospects in cancer typing via blood miRNA measurements.

12.
Vet Microbiol ; 241: 108552, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928699

RESUMO

Ubiquitination is an important post-translational modification (PTM) that plays a key role in almost every aspect of cellular processes and many signaling pathways in eukaryotes. In this study, we performed a quantitative ubiquitome study to identify the global change of ubiquitination induced by rabies virus (RABV) infection in the mouse brain tissue. 4,243 ubiquitinated sites, mapping to 1,626 proteins were identified; using a cutoff of fold change >2, 644 and 70 ubiquitinated proteins were up- and down-regulated, respectively. GO analysis indicated that the differentially ubiquitinated proteins (DUPs) were significantly enriched in the myelin sheath of cells and binding activity. KEGG pathway analysis indicated that the identified proteins were related to biosynthesis of amino acids. Of note, ubiquitination was observed on all five RABV proteins by both proteomics and biochemical approaches. Our study revealed the global ubiquitome of RABV-infected mice and provides a valuable resource for investigating the pathogenic mechanisms of RABV.

13.
BMC Pregnancy Childbirth ; 20(1): 53, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992220

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a growing global epidemic. Our study aims to confirm the association between circulatory coiled-coil domain-containing 80 (CCDC80) in pregnant women with GDM, to investigate the discriminatory power of CCDC80 on GDM, and to explore the relationships between this molecular level and clinical cardiometabolic parameters. METHODS: A 1:2 matched case-control study with 61 GDM patients and 122 controls was conducted using a propensity score matching protocol. All participants were screened from a multicenter prospective pre-birth cohort: Born in Shenyang Cohort Study (BISCS). During 24 and 28 weeks of gestation, follow-up individuals underwent an oral glucose tolerance test (OGTT) and blood sampling for cardiometabolic characterization. RESULTS: Following propensity score matching adjustment for clinical variables, including maternal age, gestational age, body mass index, SBP and DBP, plasma CCDC80 levels were significantly decreased in patients with GDM when compared with controls (0.25 ± 0.10 vs. 0.31 ± 0.12 ng/ml, P = 0.003). Conditional multi-logistic regression analyses after adjustments for potential confounding factors revealed that CCDC80 was a strong and independent protective factor for GDM (ORs < 1). In addition, the results of the ROC analysis indicated the CCDC80 exhibited the capability to identify pregnant women with GDM (AUC = 0.633). Finally, multivariate regression analyses showed that CCDC80 levels were positively associated with AST, monoamine oxidase, complement C1q, LDL-C, apolipoprotein A1and B, and negatively associated with blood glucose levels at 1 h post- OGTT. CONCLUSIONS: Biomarker CCDC80 could be of great value for the development of prediction, diagnosis and therapeutic strategies against GDM in pregnant women.

14.
Ren Fail ; 42(1): 66-76, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31928297

RESUMO

Purpose: Microwave ablation (MWA) is feasible for severe renal secondary hyperparathyroidism (SHPT) and primary hyperparathyroidism (PHPT) patients ineligible for parathyroidectomy (PTX). Here we compared the clinical manifestations and characteristics of parathyroid glands in these two groups, and summarized the techniques, safety and efficacy of MWA.Methods: Baseline clinical characteristics, ablation-related techniques, adverse events/complications, and efficacy were recorded.Results: In SHPT group, malnutrition, cardiovascular/pulmonary complications, and abnormal bone metabolism were severe. SHPT patients had more hyperplastic parathyroid glands. The volume of each gland was smaller, and the time of ablation for a single parathyroid was shorter in the SHPT group, although there were no significant differences compared with patients in the PHPT group. Three patients in both groups had recurrent laryngeal nerve injuries and all recovered, except for one SHPT patient. By the end of follow-up, serum iPTH levels had decreased from 2400.26 ± 844.26 pg/mL to 429.39 ± 407.93 pg/mL (p < .01) in SHPT and from 297.73 ± 295.32 pg/mL to 72.22 ± 36.51 pg/mL in PHPT group (p < .01). Hypocalcemia was more common (p < .001) and serum iPTH levels were prone to rebound in SHPT patients after MWA.Conclusion: MWA can be reserved for those who had high surgical risks because of less invasiveness. Injuries of recurrent laryngeal nerves should be noticed. The health status, perioperative, and intraoperative procedures were more complicated and all parathyroids found by ultrasound should be ablated completely in SHPT patients.

15.
Chemosphere ; 242: 124959, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31669990

RESUMO

Long-term exposure to arsenic can cause liver injury and fibrosis. The activation of hepatic stellate cells (HSCs) plays an essential role in the process of liver fibrosis. We found that NaAsO2 caused liver damage and fibrosis in vivo, accompanied by excessive collagen deposition and HSCs activation. In addition, NaAsO2 upregulated autophagy flux, elevated the level of cytoplasmic cathepsin B (CTSB), and activated the NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome in a subtle way. Consistent with these findings in vivo, we demonstrated that NaAsO2-induced activation of HSCs depended on CTSB-mediated NLRP3 inflammasome activation in HSC-t6 cells and rats primary HSCs. Moreover, inhibition of autophagy decreased the cytoplasmic CTSB and alleviated the activation of the NLRP3 inflammasome, thereby attenuating the NaAsO2-induced HSCs activation. In summary, these results indicated that NaAsO2 induced HSCs activation via autophagic-CTSB-NLRP3 inflammasome pathway. These findings may provide a novel insight into the potential mechanism of NaAsO2-induced liver fibrosis.


Assuntos
Arsênico/toxicidade , Autofagia , Catepsina B/metabolismo , Células Estreladas do Fígado/metabolismo , Inflamassomos/fisiologia , Cirrose Hepática/induzido quimicamente , Animais , Arsênico/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos
16.
J Phys Condens Matter ; 32(10): 105001, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31658445

RESUMO

Plasmonic nanoparticle (NP) dimers, generating highly intense areas of electric field enhancement named hot spots, have been playing a vital role in various applications like surface enhanced Raman scattering. For stabilization and functionalization, such metallic NPs are often coated with dielectric shells, yet suffer from a rapid degeneration of the hot spot with the increase of the shell thickness. Herein, it is demonstrated that the use of appropriately high refractive dielectric coatings can greatly reduce the loss of local electric field enhancement, maintaining usable hot spots. Two mechianisms work synergistically. Firstly, the high refractive index dielectric coating enables a great leap of the local electric fields reaching the gap, which follows the boundary conditions at the interface within electrodynamics. Secondly, owing to its strong Mie resonances that can participate in the plasmon hybridization, the high refractive index dielectric coating contributes to a strong light coupling effect in terms of improving the light absorption. Taking advantage of the proposed physical process decomposition, both the resonance shift and local electric field enhancement can be elaborated. These findings should be of significant importance in extended applications of surface enhanced spectroscopies and related plasmonic devices based on hot spots.

17.
Clin Nephrol ; 93(2): 65-76, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793871

RESUMO

OBJECTIVE: The aim of this study was to evaluate the changes of urinary kidney injury molecule-1(uKIM-1) in chronic kidney disease (CKD) at different stages, and to determine the relationships between uKIM-1 and circulating bone metabolism markers. MATERIALS AND METHODS: This cross-sectional study included CKD patients (n = 121) and controls (n = 65). CKD stages were assigned to each individual according to their estimated glomerular filtration rate (eGFR), which was calculated with the modification of diet in renal disease (MDRD) equation. We evaluated the relationships of bone metabolism markers (including calcium, phosphorus, intact parathyroid hormone (iPTH), 25 hydroxy vitamin D (25(OH)D), alkaline phosphatase (ALP), fibroblast growth factor 23 (FGF23), and α-Klotho), uKIM-1, and eGFR. We also compared the levels of bone metabolism markers and uKIM-1 at different CKD stages. The uKIM-1 level was standardized with urine creatinine (uCr). RESULTS: Compared with healthy controls, CKD patients had higher levels of uKIM-1/uCr, serum creatinine, urea, phosphorus, iPTH, and plasma FGF23, whereas they had lower levels of serum calcium, α-Klotho, and plasma 25(OH)D. In CKD patients, eGFR was positively correlated with levels of serum calcium, α-Klotho, and plasma 25(OH)D, whereas it was negatively correlated with serum phosphorus, iPTH, plasma FGF23, and uKIM-1/uCr. Serum calcium and α-Klotho were significantly decreased in patients with stage 5 CKD compared to those with stage 1 CKD. Serum phosphorus, iPTH, and plasma FGF23 were significantly elevated in patients with stage 4 CKD when compared to those with stage 1 CKD. UKIM-1/uCr was significantly elevated in patients with stage 5 CKD when compared to those with stage 1 CKD. In CKD patients, uKIM-1/uCr levels were positively correlated with levels of serum phosphorus and plasma FGF23, whereas they were negatively correlated with serum calcium and plasma 25(OH)D. CONCLUSION: UKIM-1/uCr levels are increased with the deterioration of CKD stage and are correlated with the development of CKD-mineral and bone disorder (CKD-MBD).

18.
Toxicol Lett ; 320: 95-102, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760062

RESUMO

Exposure to organic solvent in industry, including n-hexane is correlated with central-peripheral axonopathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). However, the underlying mechanism is still largely unknown. Recently identified microRNAs (miRNAs) may play important roles in toxicant exposure and in the process of toxicant-induced neuropathys. To examine the role of miRNAs in HD-induced toxicity, neuropathic animal model was successfully built. miRNA microarray analysis revealed 105 differentially expressed miRNAs after HD exposure. Bioinformatics analysis showed that "Axon" and "Neurotrophin Signaling Pathway" was the top significant GO term and pathway, respectively. 7 miRNAs both related to "Axon" and "Neurotrophin Signaling Pathway" were screened out and further confirmed by Real-Time PCR. Correspondingly, the deregulation expression levels of proteins of four target genes (GSK3ß, Map3k1, BDNF and MAP1B) were further confirmed via western blot, verifying the results of gene target analysis. Taken together, our results showed that the axon-related miRNAs to be associated with MAP1B or neurotrophin signal pathways changed in nerve tissues following HD exposure. These miRNAs may play important roles in HD-induced neurotoxicity.


Assuntos
Axônios/efeitos dos fármacos , Hexanonas/toxicidade , MicroRNAs/metabolismo , Síndromes Neurotóxicas/etiologia , Nervo Isquiático/efeitos dos fármacos , Solventes/toxicidade , Medula Espinal/efeitos dos fármacos , Animais , Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Transcriptoma
19.
Anal Chem ; 92(1): 583-587, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31818103

RESUMO

Herein, we describe a novel two-photon excitation/red emission-based ratiometric pH nanosensor consisting of a pH-sensitive two-photon dye and Tm3+-doped upconversion nanoparticles (UCNP). The fluorescence emission ratio between the dye (610 nm) and UCNPs (810 nm) (I610/I810) provides a linear indicator of pH values in the range from pH 4.0 to 6.5 with high sensitivity. These nanoprobes selectively accumulate in the lysosomes of cells, making them suitable for lysosomal pH tracking. This pH nanoprobe has been successfully applied in visualizing chemically stimulated changes of intracellular pH in living cells and tissues.

20.
Transbound Emerg Dis ; 67(1): 121-132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31408582

RESUMO

Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA