Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 178: 113964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499982

RESUMO

Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.

2.
Hum Mol Genet ; 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415308

RESUMO

We conducted cohort- and race-specific epigenome-wide association analyses of mtDNA copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated CpG sites (p < 1 x 10-7), with a 0.7 to 3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes (PRDM16, NR1H3, XRCC3, POLK, and PDSS2), which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, p = 4 x 10-8) and positively associated with the NR1H3 expression level (effect size = 0.43, p = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor, and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.

3.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2699-2709, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296566

RESUMO

The cross combination of dry-method(network pharmacology analysis) and wet-method(high-resolution mass spectro-metry with antioxidation experiment) was used to predict antioxidant quality markers(Q-markers) of Hippophae tibetana. Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was developed to rapidly separate and identify the chemical constituents in H. tibetana. Then in DPPH free radicals and superoxide anion scavenging experiment, the antioxidant activity of the four different polar parts with extracts of petroleumether, ethyl acetate, n-butanol and water was evaluated. Network pharmacology method was used for functional enrichment and pathway analysis to screen antioxidant-related components and preliminarily explain the mechanism of action. On this basis, multi-source information was integrated to predict the antioxidant Q-markers. The results showed that 51 components in H. tibetana were identified, including 18 flavonoids, 14 terpenoids, 6 alkaloids, 4 coumarins and phenylpropanoids, 3 volatile components and 2 polyphenols. The antioxidant capacity of different fractions: ethyl acetate > n-butanol > water > petroleum ether. The medicine mainly acted on PI3 K-Akt and FoxO signaling pathways to perform antioxidant effects through flavonoids such as quercetin, luteolin and kaempferol. According to the results of dry-method and wet-method, quercetin, luteolin and kaempferol, the representatives of poly-hydroxy flavone, may be the antioxidant Q-markers of H. tibetana. In this study, with the antioxidant Q-markers of H. tibetana as an example, an investigation model of predicting Q-marker was discussed based on the ternary system of composition, function and informatics, providing a scientific basis for the establishment of quality evaluation standards for H. tibetana.


Assuntos
Antioxidantes , Hippophae , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Tecnologia
4.
ACS Appl Mater Interfaces ; 13(28): 32729-32742, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34247476

RESUMO

Aristolochic acid (AA) has been reported to cause a series of health problems, including aristolochic acid nephropathy and liver cancer. However, AA-containing herbs are highly safe in combination with berberine (Ber)-containing herbs in traditional medicine, suggesting the possible neutralizing effect of Ber on the toxicity of AA. In the present study, in vivo systematic toxicological experiments performed in zebrafish and mice showed that the supramolecule self-assembly formed by Ber and AA significantly reduced the toxicity of AA and attenuated AA-induced acute kidney injury. Ber and AA can self-assemble into linear heterogenous supramolecules (A-B) via electrostatic attraction and π-π stacking, with the hydrophobic groups outside and the hydrophilic groups inside during the drug combination practice. This self-assembly strategy may block the toxic site of AA and hinder its metabolism. Meanwhile, A-B linear supramolecules did not disrupt the homeostasis of gut microflora as AA did. RNA-sequence analysis, immunostaining, and western blot of the mice kidney also showed that A-B supramolecules almost abolished the acute nephrotoxicity of AA in the activation of the immune system and tumorigenesis-related pathways.


Assuntos
Ácidos Aristolóquicos/toxicidade , Berberina/uso terapêutico , Medicamentos de Ervas Chinesas/toxicidade , Nefropatias/prevenção & controle , Substâncias Macromoleculares/uso terapêutico , Animais , Ácidos Aristolóquicos/química , Berberina/química , Interações Medicamentosas , Medicamentos de Ervas Chinesas/química , Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Células Matadoras Naturais/efeitos dos fármacos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Peixe-Zebra , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Am Chem Soc ; 143(15): 5998-6005, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825481

RESUMO

Although a series of complexes with rare earth (RE) metal-metal bonds have been reported, complexes which have multiple RE-Rh bonds are unknown. Here we present the identification of the first example of a molecule containing multiple RE-Rh bonds. The complex with multiple Ce-Rh bonds was synthesized by the reduction of a d-f heterometallic molecular cluster Ce{N[(CH2CH2NPiPr2)RhCl(COD)]3} with excess potassium-graphite. The oxidation state of Ce in 3a appears to be a mixture of Ce(III) and Ce(IV), which was confirmed by X-ray photoelectron spectroscopy, magnetism, and theoretical investigations (DFT and CASSCF). For comparison, the analogous species with multiple La(III)-Rh and Nd(III)-Rh bonds were also constructed. This study provides a possible route for the construction of complexes with multiple RE metal-metal bonds and an investigation of their potential properties and applications.

6.
Vet Parasitol ; 291: 109326, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33545560

RESUMO

Parabronemosis is a disease that severely threatens camel health, causing huge economic losses to industries involved in camel husbandry. Previous studies have reported that horn flies (Haematobia irritans) act as intermediate hosts of Parabronema skrjabini; however, the infection and developmental processes of P. skrjabini in horn flies remain unclear. In the present study, the infection rates of P. skrjabini were determined in morphologically and molecularly identified horn flies collected from Bactrian camels (Camelus bactrianus) producing regions in Inner Mongolia, China that have high P. skrjabini infection rates. The horn flies were dissected to obtain the nematode larvae at various instar stages. The P. skrjabini found in the different instar stages of horn fly instars were counted and identified to assess the infection and developmental status. Nematode larvae at different developmental stages were obtained from the horn fly instars for further molecular analysis. Sequencing results confirmed that the nematode larvae were P. skrjabini. Furthermore, we found that the mean growth rate of the nematode larva increased as the horn fly instars develops. The results suggested that P. skrjabini infected the horn flies at the larval instar stage, and that the nematode larvae developed simultaneously with the horn fly instars stages. Our findings provide useful information into the elucidation of P. skrjabini infection and life history by studying horn fly development.


Assuntos
Muscidae/parasitologia , Nematoides/crescimento & desenvolvimento , Animais , China , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida
7.
Pharmacol Res ; 163: 105242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075491

RESUMO

Over a short span of two decades, the central role of angiogenesis in the treatment of wound healing, diverse cancers, nerve defect, vascular injury and several ophthalmic diseases has become evident. Tetrahydropalmatine, as the index component of Corydalis yanhusuo W. T. Wang, is inseparable from protecting cardiovascular system, yet its role in angiogenesis has been poorly characterized. We have demonstrated the binding potential of THP and VEGFR2 using molecular docking based on the clinical experience of traditional Chinese medicine in the pretest study. Here, we identified tetrahydropalmatine (THP) as one proangiogenic trigger via regulation of arginine biosynthesis by pharmacological assays and DESI-MSI/GC-MS based metabolomics. First, the proangiogenic effects of THP were evaluated by quail chorioallantoic membrane test in vivo and multiple models of endothelial cells in vitro. According to virtual screening, the main mechanisms of THP (2/5 of the top terms with smaller p-value) were metabolic pathways. Hence, metabolomics was applied for the main mechanisms of THP and results showed the considerable metabolite difference in arginine biosynthesis (p < 0.05) altered by THP. Finally, correlated indicators were deteced using targeted metabolomics and pharmacological assays for validation, and results suggested the efficacy of THP on citrulline to arginine flux, arginine biosynthesis, and endothelial VEGFR2 expression sequentially, leading to the promotion of angiogenesis. Overall, this manuscript identified THP as the proangiogenic trigger with the potential to develop as pharmacological agents for unmet clinical needs.

8.
Angew Chem Int Ed Engl ; 60(1): 473-479, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32930496

RESUMO

Activation of dinitrogen (N2 , 78 %) and dioxygen (O2 , 21 %) has fascinated chemists and biochemists for decades. The industrial conversion of N2 into ammonia requires extremely high temperatures and pressures. Herein we report the first example of N2 and O2 cleavage by a uranium complex, [N(CH2 CH2 NPi Pr2 )3 U]2 (TMEDA), under ambient conditions without an external reducing agent. The N2 triple bond breaking implies a UIII -PIII six-electron reduction. The hydrolysis of the N2 reduction product allows the formation of ammonia or nitrogen-containing organic compounds. The interaction between UIII and PIII in this molecule allows an eight-electron reduction of two O2 molecules. This study establishes that the combination of uranium and a low-valent nonmetal is a promising strategy to achieve a full N2 and O2 cleavage under ambient conditions, which may aid the design of new systems for small molecules activation.

9.
J Pharm Biomed Anal ; 195: 113820, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33303266

RESUMO

The current study presents a comprehensive analysis to explore the compositions of both the supernatant and naturally-occurring precipitate of Huanglian Jiedu decoction employing ultra-high-performance liquid chromatography hyphenated with quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Totally 109 constituents (32 alkaloids, 39 flavonoids, 12 iridoids, 9 phenolic acids, and 17 other compounds) were identified from accurate-mass measurements in full-scan MS/data-dependent MS/MS mode of acquisition. Furthermore, a quantitative method was developed for determination of 14 marker compounds in Huanglian Jiedu decoction. Experimental results revealed that all of these marker compounds were present in both the supernatant and naturally-occurring precipitate. Most notably, the contents of baicalin and berberine were significantly higher in the naturally-occurring precipitate than supernatant, presumably due to self-assembly complexation. The formation of the baicalin/berberine complex was comprehensively investigated by electrospray ionization (ESI)-MS, nuclear magnetic resonance (NMR), ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy, etc. The morphology and size distribution of the baicalin/berberine self-assembled nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). This study provides fundamental scientific evidence of the presence of a self-assembled phytochemical complex in the naturally-occurring precipitate, enabling better understanding of Huanglian Jiedu decoction.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos
10.
Curr Drug Deliv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234104

RESUMO

BACKGROUND: In the field of antibacterial, nanomaterials are favored by researchers because of their unique advantages. Medicinal plants, especially traditional Chinese medicine, are considered to be an important source of new chemicals with potential therapeutic effects, as well as an important source for the discovery of new antibiotics. MRSA is endangering people's lives as a kind of multidrug-resistant Staphylococcus aureus which are resistant to tetracycline, amoxicillin, norfloxacin and other first-line antibiotics. It is a hotspot to find good anti-drug-resistant bacteriae, nature-originated nanomaterials with good biocompatibility. OBJECTIVE: We reported the formation of phytochemical nanoparticles (NPs) by the self-assembly of berberine (BBR) and 3,4,5-methoxycinnamic acid (3,4,5-TCA) from Chinese herb medicine, which had good antibacterial activity against MRSA. METHOD AND RESULTS: We found that NPs had good antibacterial activity against MRSA; especially, its antibacterial activity was better than first-line amoxicillin, norfloxacin and its self-assembling precursors on MRSA. When the concentration reached 0.1 µmol/mL, the inhibition rate of NPs reached 94.62%, which was higher than that of BBR and the other two antibiotics (p < 0.001). It was observed by field-emission scanning electron microscopy (FESEM) that NPs could directly adhere to the bacterial surface, which might be an important aspect of the antibacterial activity of NPs. Meanwhile, we further analyzed that the self-assembly was formed by hydrogen bonds and π-π stacking through ultraviolet-visible (UV-vis), fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic spectrum (1 H NMR), and powder X-ray diffraction (pXRD). NPs' morphology was observed by FESEM and TEM. The particles size and surface charge were characterized by dynamic light scattering (DLS); and the surface charge was -31.6 mv, which proved that the synthesized NPs were stable. CONCLUSION: We successfully constructed a naturally self-assembled nanoparticle, originating from traditional Chinese medicine, which had good antibacterial activity for MRSA. It is a promising way to obtain natural nanoparticles from medicinal plants and apply them to antibacterial therapy.

11.
Inorg Chem ; 59(21): 15636-15645, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078928

RESUMO

Selective cleavage of the B-O bond or B-H bond in HBpin can be achieved by adjusting the pincer ligand of a phosphorus(III) compound guided by a combination of theoretical prediction and experimental verification. Theoretical calculations reveal that a pincer-type phosphorus compound with an [ONO]3- ligand reacts with HBpin, leading to cleavage of the stronger B-O bonds (ΔG°â§§ = 23.2 kcal mol-1) rather than the weaker B-H bond (ΔG°â§§ = 26.4 kcal mol-1). A pincer-type phosphorus compound with a [NNN]3- ligand reacts with HBpin, leading to the weaker B-H bond cleavage (ΔG°â§§ = 16.2 kcal mol-1) rather than cleavage of the stronger B-O bond (ΔG°â§§ = 33.0 kcal mol-1). The theoretical prediction for B-O bond cleavage was verified experimentally, and the final products were characterized by NMR, HRMS, and single-crystal X-ray diffraction. The chemoselectivity of B-O bond cleavage was also observed in the presence of B-C or B-B bonds in borane substrates.

12.
Acta Pharm Sin B ; 10(9): 1784-1795, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33088696

RESUMO

The application of nanotechnology for antimicrobial delivery has capacity to improve antibacterial efficacy. Currently, the usage of various inorganic and organic carriers, such as metal ions, nano-silicon and surfactants, might increase the potential toxicity of nanoparticles and make their clinical transformation more difficult. Herein, a nano-delivery system was constructed by direct self-assembly of antibacterial phytochemicals (berberine and rhein) originated from traditional Chinese medicine Coptis chinensis Franch. and Rheum palmatum L., respectively. Combining X-ray single crystal diffraction, nuclear magnetic resonance and other spectra characterizations, the stacked structure of nanoparticles was profoundly demonstrated. Briefly, rhein acted as the layered backbone and berberine embedded in it. In vitro bacteriostasis experiment showed the minimum bactericidal concentration of nanoparticles was 0.1 µmol/mL, which was lower than that of berberine and rhein. The results of confocal laser scanning microscope, biofilm quantitive assay and scanning electron microscopy indicated that nanoparticles had strong inhibitory effects on Staphylococcus aureus biofilm. More importantly, transmission electron microscopy and mass spectra indicated the further bacteriostatic mechanism of nanoparticles. Meanwhile, the nanoparticles had well biocompatibility and safety. Current study will open up new prospect that the design of self-assemblies between active phytochemicals can be originated from traditional Chinese medicine combination.

13.
Front Pharmacol ; 11: 1210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982718

RESUMO

Diarrhea-predominant irritable bowel syndrome (IBS-D) is one common chronic functional disease of the digestive system with limited treatments. The microbiota-gut-brain axis (MGBA) has a central function in the pathogeny of IBS-D, which includes the participation of many various factors, such as brain-gut peptides (BGPs), immune inflammation, and intestinal flora. Inspired by the drug combination in traditional Chinese medicine (TCM), our previous study discovered that berberine (BBR) and baicalin (BA) could form natural self-assemblies as BA-BBR nanoparticles (BA-BBR NPs) and showed synergistic effects against IBS-D. Here, we investigated the synergistic effects of BA-BBR NPs on IBS-D model mice induced by chronic restraint stress plus Senna alexandrina Mill decoction with the influence on MGBA. BA-BBR NPs showed the best therapeutic effect on improving visceral hypersensitivity and diarrhea on IBS-D model mice, compared with BBR, BA, and BA/BBR mixture. Furthermore, BA-BBR NPs significantly (P<0.05) reduced the levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal polypeptide (VIP) and choline acety transferase (CHAT) in colon tissues or of serum from BGPs; it lowered the expressions of the nuclear factor kappa-B (NF-κB) in colon tissues and changed the levels of basophil granulocyte (BASO) and leukomonocyte (LYMPH) in whole blood from immune inflammation; it altered the intestinal flora of Bacteroidia, Deferribacteres, Verrucomicrobia, Candidatus_Saccharibacteria, and Cyanobacteria from intestinal flora. In conclusion, BA-BBR NPs, after forming the natural self-assembly between BBR and BA, promoted the synergistic effect on IBS-D mice than the sum of BBR and BA effects, based to the formation of self-assemblies rather than the simple mixing. It further proved that synergistic effect of BA-BBR NPs on IBS-D mice might be related to BGPs, immune inflammation, and intestinal flora from three important interrelated components of MGBA. This study will provide a novel idea for the interpretation of TCM compatibility theory and provide the basis for BA-BBR NPs as a medicinal plant-derived natural and efficient nanomaterial for clinical use.

14.
Genome Med ; 12(1): 84, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988399

RESUMO

BACKGROUND: Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not currently understood. One such mechanism may be through regulation of nuclear gene expression via the modification of nuclear DNA (nDNA) methylation. METHODS: To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in 2507 African American (AA) and European American (EA) participants from the Atherosclerosis Risk in Communities (ARIC) study. To validate our findings, we assayed an additional 2528 participants from the Cardiovascular Health Study (CHS) (N = 533) and Framingham Heart Study (FHS) (N = 1995). We further assessed the effect of experimental modification of mtDNA-CN through knockout of TFAM, a regulator of mtDNA replication, via CRISPR-Cas9. RESULTS: Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P < 5 × 10- 8). Meta-analysis across all cohorts identified six mtDNA-CN-associated CpGs at genome-wide significance (P < 5 × 10- 8). Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN, including coronary heart disease, cardiovascular disease, and mortality. Experimental modification of mtDNA-CN demonstrated that modulation of mtDNA-CN results in changes in nDNA methylation and gene expression of specific CpGs and nearby transcripts. Strikingly, the "neuroactive ligand receptor interaction" KEGG pathway was found to be highly overrepresented in the ARIC cohort (P = 5.24 × 10- 12), as well as the TFAM knockout methylation (P = 4.41 × 10- 4) and expression (P = 4.30 × 10- 4) studies. CONCLUSIONS: These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and result in differential expression of specific genes that may impact human health and disease via altered cell signaling.


Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/mortalidade , Ilhas de CpG , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Mitocondrial , Mitocôndrias/genética , Estudos Transversais , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Proteínas Mitocondriais/genética , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Prognóstico , Locos de Características Quantitativas , Transdução de Sinais , Fatores de Transcrição/genética
16.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867101

RESUMO

Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes solubilization possible. This overview provides guidance regarding a better understanding of GlycyrrhizaeRadix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further development and utilization of Glycyrrhizae Radix et Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas/química , Glycyrrhiza/química , Saponinas/química , Anti-Infecciosos/química , Anti-Inflamatórios/química , Antineoplásicos/química , Estrutura Molecular
17.
Parasitology ; 147(13): 1509-1514, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32741381

RESUMO

Parabronema skrjabini is one of the most harmful nematodes to camels and is responsible for economic losses in animal husbandry industry. There is an urgent need for in-depth studies of potential vectors of the nematode due to its scant regarding information. As previous studies indicated that flies may be the vectors of P. skrjabini, we captured flies in the main camel-producing areas of Inner Mongolia. After autopsy of the specimens of two species of horn flies, we observed the morphology of the suspected nematode larvae found in them. Internal transcribed spacer ribosomal-DNA gene sequences were considered the best candidate to confirm the species of the larvae found. Our results showed that the homology compared with P. skrjabini was 99.5% in GenBank. Subsequently, we preliminarily identified two species of horn flies through morphological observation and then sequenced the mitochondrial-DNA-gene cytochrome oxidase subunit I obtained from two species of horn flies, with 100 and 99.2% similarity to sequences deposited in GenBank, respectively. Thus, we identified Haematobia titillans and Haematobia irritans and provided evidence for their potential role as vectors of parabronemosis. Our study provides reference for future research on the life history of the nematode and the vectors of parabronemosis.


Assuntos
Camelus , Insetos Vetores/parasitologia , Muscidae/parasitologia , Infecções por Spirurida/veterinária , Spiruroidea/fisiologia , Animais , China , Larva/crescimento & desenvolvimento , Larva/fisiologia , Infecções por Spirurida/parasitologia , Infecções por Spirurida/transmissão , Spiruroidea/crescimento & desenvolvimento
18.
Eur J Med Chem ; 203: 112496, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682196

RESUMO

Oxyntomodulin (OXM) was identified as a glucagon (GCG) receptor (GCGR) and glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) dual agonist to suppress appetite, increase energy expenditure, and induce body weight loss in obese humans. However, the activities of native OXM to activate GCGR and GLP-1R in vitro were much weaker than the natural ligands. To address this gap, structural modifications were adopted and novel OXM analogues were obtained through chimeric peptide sequence design. One specific analogue with enhanced and balanced GCGR/GLP-1R activations was chemically conjugated with polyethylene glycol (PEG) to achieve sustained release in vivo. This PEGylated analogue was further explored pharmacologically in db/db and diet-induced obese (DIO) mice models. Chronic weekly administration significantly induced hypoglycemic effects and body weight loss with dose dependency, along with normalized adiposity, lipid metabolism, and liver steatosis. Based on its profiles in vitro and in vivo, the analogue has the great potential to develop as a novel anti-diabetic and/or anti-obese candidate. As observed more insulin stimulation and improved insulin resistance, it may be also explored for the treatment of nonalcoholic steatohepatitis (NASH) in the future.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/farmacocinética , Obesidade/tratamento farmacológico , Oxintomodulina/farmacologia , Oxintomodulina/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Preparações de Ação Retardada , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Oxintomodulina/química , Oxintomodulina/uso terapêutico , Polietilenoglicóis/química
19.
J Pharm Biomed Anal ; 187: 113357, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464591

RESUMO

Pomegranate fruit has shown a variety of pharmacological effects, however, the bioactive constituents in pomegranate seeds have not been fully identified. To this end, the chemical compositions of pomegranate seeds were analyzed using ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole-Orbitrap high-resolution mass spectrometry (Q-Orbitrap HRMS). Prior to analysis, pomegranate seed samples were treated by ultrasonic/microwave-assisted extraction (UMAE). A total of 88 chemical compounds were tentatively identified based on accurate-mass measurements for precursor and fragment ions, including flavonoids, coumarins, phenolic acids, amino acids, and nucleosides. Their mass spectrometric fragmentation pathways were investigated. The study has revealed the nutritional value of pomegranate seeds, paving the way for future further applications of pomegranate seeds in nutrition and health care industry.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/análise , Romã (Fruta)/química , Frutas , Micro-Ondas , Extratos Vegetais/química , Sementes , Ondas Ultrassônicas
20.
Pak J Pharm Sci ; 33(2): 631-640, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32276909

RESUMO

Intestinal lymphatic transport has been proved to have contribution to oral absorption of some highly lipophilic drugs. T-OA, 3ßhydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methylester, has been reported to have anti-cancer activity. However,T-OA's poor solubility and difficulty to be absorbed cause low oral bioavailability. This work aims to investigate the influence of T-OA liposomes on intestinal lymphatic transport with rat model. T-OA liposomes were prepared by freeze-drying method, and particle size, zeta potential and entrapment efficiency of T-OA liposomes were detected to evaluate liposomes. Conscious restrained rat model was selected to evaluate intestinal lymphatic transport. The particle size, zeta potential and entrapment efficiency of T-OA liposomes were (184.05 ± 10.93) nm, (-21±0.85) mV and (93.24±2.25) %, respectively. The cumulative amounts in mesenteric lymph of T-OA liposomes and T-OA suspension within 12 h were (921.39±19.73) µg and (332.31±21.39) µg (n=6), respectively. Experimental results showed that T-OA liposomes could significantly promote T-OA's intestinal lymphatic transport and enhance its oral bioavailability.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Absorção Intestinal/fisiologia , Vasos Linfáticos/metabolismo , Ácido Oleanólico/metabolismo , Pirazinas/metabolismo , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Lipossomos , Vasos Linfáticos/efeitos dos fármacos , Masculino , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...