Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
1.
Food Chem X ; 18: 100675, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122553

RESUMO

Honeysuckle leaves are rich in bioactive ingredients, but often considered as agro-wastes. In this study, honeysuckle leaf extract (HLE) was added to the carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film (CMKH). Compared to films without HLE addition (CMK), the water vapor barrier properties of CMKH slightly decreased, but the transmittance of the CMKH films in UV region (200-400 nm) as low as zero. The elongation at break of CMKH film was 1.39 âˆ¼ 1.5 fold higher than those of CMK films. The DPPH and ABTS scavenging activity of CMKH-Ⅱ was 85.75% and 90.93%, respectively, which is similar to the equivalent content of Vc. The inhibition rate of CMKH-Ⅰ and CMKH-Ⅱ against Escherichia coli and Listeria monocytogenes were close to 90%, and the inhibition rate against Staphylococcus aureus were up to 96%. The results emphasized that the composite film containing 25% (v/v) HLE has potential application value in food preservation.

2.
Front Plant Sci ; 14: 1108560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139110

RESUMO

Introduction: The classification of the four tobacco shred varieties, tobacco silk, cut stem, expanded tobacco silk, and reconstituted tobacco shred, and the subsequent determination of tobacco shred components, are the primary tasks involved in calculating the tobacco shred blending ratio. The identification accuracy and subsequent component area calculation error directly affect the composition determination and quality of the tobacco shred. However, tiny tobacco shreds have complex physical and morphological characteristics; in particular, there is substantial similarity between the expanded tobacco silk and tobacco silk varieties, and this complicates their classification. There must be a certain amount of overlap and stacking in the distribution of tobacco shreds on the actual tobacco quality inspection line. There are 24 types of overlap alone, not to mention the stacking phenomenon. Self-winding does not make it easier to distinguish such varieties from the overlapped types, posing significant difficulties for machine vision-based tobacco shred classification and component area calculation tasks. Methods: This study focuses on two significant challenges associated with identifying various types of overlapping tobacco shreds and acquiring overlapping regions to calculate overlapping areas. It develops a new segmentation model for tobacco shred images based on an improved Mask region-based convolutional neural network (RCNN). Mask RCNN is used as the segmentation network's mainframe. Convolutional network and feature pyramid network (FPN) in the backbone are replaced with Densenet121 and U-FPN, respectively. The size and aspect ratios of anchors parameters in region proposal network (RPN) are optimized. An algorithm for the area calculation of the overlapped tobacco shred region (COT) is also proposed, which is applied to overlapped tobacco shred mask images to obtain overlapped regions and calculate the overlapped area. Results: The experimental results showed that the final segmentation accuracy and recall rates are 89.1% and 73.2%, respectively. The average area detection rate of 24 overlapped tobacco shred samples increases from 81.2% to 90%, achieving high segmentation accuracy and overlapped area calculation accuracy. Discussion: This study provides a new implementation method for the type identification and component area calculation of overlapped tobacco shreds and a new approach for other similar overlapped image segmentation tasks.

3.
Acta Pharmacol Sin ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142682

RESUMO

Voltage-gated sodium channel 1.7 (Nav1.7) remains one of the most promising drug targets for pain relief. In the current study, we conducted a high-throughput screening of natural products in our in-house compound library to discover novel Nav1.7 inhibitors, then characterized their pharmacological properties. We identified 25 naphthylisoquinoline alkaloids (NIQs) from Ancistrocladus tectorius to be a novel type of Nav1.7 channel inhibitors. Their stereostructures including the linkage modes of the naphthalene group at the isoquinoline core were revealed by a comprehensive analysis of HRESIMS, 1D, and 2D NMR spectra as well as ECD spectra and single-crystal X-ray diffraction analysis with Cu Kα radiation. All the NIQs showed inhibitory activities against the Nav1.7 channel stably expressed in HEK293 cells, and the naphthalene ring in the C-7 position displayed a more important role in the inhibitory activity than that in the C-5 site. Among the NIQs tested, compound 2 was the most potent with an IC50 of 0.73 ± 0.03 µM. We demonstrated that compound 2 (3 µM) caused dramatical shift of steady-state slow inactivation toward the hyperpolarizing direction (V1/2 values were changed from -39.54 ± 2.77 mV to -65.53 ± 4.39 mV, which might contribute to the inhibition of compound 2 against the Nav1.7 channel. In acutely isolated dorsal root ganglion (DRG) neurons, compound 2 (10 µM) dramatically suppressed native sodium currents and action potential firing. In the formalin-induced mouse inflammatory pain model, local intraplantar administration of compound 2 (2, 20, 200 nmol) dose-dependently attenuated the nociceptive behaviors. In summary, NIQs represent a new type of Nav1.7 channel inhibitors and may act as structural templates for the following analgesic drug development.

4.
Nat Commun ; 14(1): 2241, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193694

RESUMO

The "death cap", Amanita phalloides, is the world's most poisonous mushroom, responsible for 90% of mushroom-related fatalities. The most fatal component of the death cap is α-amanitin. Despite its lethal effect, the exact mechanisms of how α-amanitin poisons humans remain unclear, leading to no specific antidote available for treatment. Here we show that STT3B is required for α-amanitin toxicity and its inhibitor, indocyanine green (ICG), can be used as a specific antidote. By combining a genome-wide CRISPR screen with an in silico drug screening and in vivo functional validation, we discover that N-glycan biosynthesis pathway and its key component, STT3B, play a crucial role in α-amanitin toxicity and that ICG is a STT3B inhibitor. Furthermore, we demonstrate that ICG is effective in blocking the toxic effect of α-amanitin in cells, liver organoids, and male mice, resulting in an overall increase in animal survival. Together, by combining a genome-wide CRISPR screen for α-amanitin toxicity with an in silico drug screen and functional validation in vivo, our study highlights ICG as a STT3B inhibitor against the mushroom toxin.


Assuntos
Hexosiltransferases , Micotoxinas , Humanos , Masculino , Animais , Camundongos , Alfa-Amanitina/farmacologia , Verde de Indocianina/farmacologia , Antídotos , Amanita , Proteínas de Membrana
5.
EBioMedicine ; 92: 104588, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37148584

RESUMO

BACKGROUND: The human leukocyte antigen (HLA) is a highly polymorphic region, and HLA diversity may play a role in presenting tumour-associated peptides and inducing immune responses. However, the effect of HLA diversity on cancers has not been fully assessed. We aimed to explore the role of HLA diversity on cancer development. METHODS: A pan-cancer analysis was performed to evaluate the effect of HLA diversity, measured by HLA heterozygosity and HLA evolutionary divergence (HED), on the susceptibility of 25 cancers in the UK Biobank. FINDINGS: We observed that the diversity of HLA class II locus was associated with a lower risk of lung cancer (ORhetero = 0.94, 95% CI = 0.90-0.97, P = 1.29 × 10-4) and head and neck cancer (ORhetero = 0.91, 95% CI = 0.86-0.96, P = 1.56 × 10-3). Besides, a lower risk of non-Hodgkin lymphoma was associated with an increased diversity of HLA class I (ORhetero = 0.92, 95% CI = 0.87-0.98, P = 8.38 × 10-3) and class II locus (ORhetero = 0.89, 95% CI = 0.86-0.92, P = 1.65 × 10-10). A lower risk of Hodgkin lymphoma was associated with the HLA class I diversity (ORhetero = 0.85, 95% CI = 0.75-0.96, P = 0.011). The protective effect of HLA diversity was mainly observed in pathological subtypes with higher tumour mutation burden, such as lung squamous cell carcinoma (P = 9.39 × 10-3) and diffuse large B cell lymphoma (Pclass I = 4.12 × 10-4; Pclass Ⅱ = 4.71 × 10-5), as well as the smoking subgroups of lung cancer (P = 7.45 × 10-5) and head and neck cancer (P = 4.55 × 10-3). INTERPRETATION: We provided a systematic insight into the effect of HLA diversity on cancers, which might help to understand the etiological role of HLA on cancer development. FUNDING: This study was supported by grants from the National Natural Science Foundation of China (82273705, 82003520); the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515420007); the Science and Technology Planning Project of Guangzhou, China (201804020094); Sino-Sweden Joint Research Programme (81861138006); the National Natural Science Foundation of China (81973131, 81903395, 81803319, 81802708).

6.
Insect Sci ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162266

RESUMO

Male animals may adjust their resource allocations for reproduction and other fitness functions in response to cues from rivals. For instance, adult males increase their investment in sperm for a higher paternity share when they perceive sperm competition risk in their surroundings. In nature, both juveniles and adults may coexist spatially and temporally. Yet, it is not clear how juvenile males of different ages respond to cues from adult rivals and fine-tune their lifetime investment in sperm production and ejaculation in any insect. Here we used the Mediterranean flour moth, Ephestia kuehniella, which produces both fertile eupyrene and infertile apyrene sperm, to explore this question. We demonstrate that the late, but not early, instar larvae are sensitive to adult male cues. As a response, they produce more sperm before emergence and their resultant adults have shorter mating latency and ejaculate more sperm in the first few matings. When the juvenile stage produces more eupyrenes, the adult stops making these sperm, but regardless of the number of apyrenes produced during the juvenile stage, the adult continues to make them. These findings suggest that the number of spermatogonia for eupyrenes may be limited and that for apyrenes may be flexible. Our results show that the insect does not trade off survival, mating frequency, body size, or testis size for sperm production in response to adult males during the larval stage. Knowledge created in the present study offers insight into the stage-dependent sensitivity of juvenile males to cues from adult rivals and subsequent lifetime resource allocations.

7.
Proteomics ; : e2200437, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170646

RESUMO

Lactate is closely related to various cellular processes, such as angiogenesis, responses to hypoxia, and macrophage polarization, while regulating natural immune signaling pathways and promoting neurogenesis and cognitive function. Lysine lactylation (Kla) is a novel posttranslational modification, the examination of which may lead to new understanding of the nonmetabolic functions of lactate and the various physiological and pathological processes in which lactate is involved, such as infection, tumorigenesis and tumor development. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), researchers have identified lactylation in human gastric cancer cells and some other species, but no research on lactylation in human lungs has been reported. In this study, we performed global profiling of lactylation in human lungs under normal physiological conditions, and 724 Kla sites in 451 proteins were identified. After comparing the identified proteins with those reported in human lactylation datasets, 141 proteins that undergo lactylation were identified for the first time in this study. Our work expands the database on human lactylation and helps advance the study on lactylation function and regulation under physiological and pathological conditions.

8.
Remote Sens Environ ; 293: 113602, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159819

RESUMO

Anthropogenic heat (AH) is an important input for the urban thermal environment. While reduction in AH during the Coronavirus disease 2019 (COVID-19) pandemic may have weakened urban heat islands (UHI), quantitative assessments on this are lacking. Here, a new AH estimation method based on a remote sensing surface energy balance (RS-SEB) without hysteresis from heat storage was proposed to clarify the effects of COVID-19 control measures on AH. To weaken the impact of shadows, a simple and novel calibration method was developed to estimate the SEB in multiple regions and periods. To overcome the hysteresis of AH caused by heat storage, RS-SEB was combined with an inventory-based model and thermal stability analysis framework. The resulting AH was consistent with the latest global AH dataset and had a much higher spatial resolution, providing objective and refined features of human activities during the pandemic. Our study of four Chinese megacities (Wuhan, Shanghai, Beijing, and Guangzhou) indicated that COVID-19 control measures severely restricted human activities and notably reduced AH. The reduction was up to 50% in Wuhan during the lockdown in February 2020 and gradually decreased after the lockdown was eased in April 2020, similar to that in Shanghai during the Level 1 pandemic response. In contrast, AH was less reduced in Guangzhou during the same period and increased in Beijing owing to extended central heating use in winter. AH decreased more in urban centers and the change in AH varied in terms of urban land use between cities and periods. Although UHI changes during the COVID-19 pandemic cannot be entirely attributed to AH changes, the considerable reduction in AH is an important feature accompanying the weakening of the UHI.

9.
J Phys Chem B ; 127(19): 4338-4350, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37133933

RESUMO

Sodium-containing calcium-alumino-silicate-hydrate (CNASH) gels, the primary binder phase of alkali-activated materials (AAMs), significantly impact the performance of the AAM. Although the effect of the calcium content on the AAM has been extensively studied in the past, few studies focus on the effect of calcium on the structure and performance of gels at a molecular scale. As an important element in gels, the effect of calcium in gels on its atomic-scale properties remains unclear. This study establishes a molecular model of the CNASH gel via reactive molecular dynamics (MD) simulation and verifies the feasibility of the gel model. By employing the reactive MD, the effect of calcium on the physicochemical properties of gels in the AAM is investigated. The simulation highlights that the condensation process of the system containing Ca is accelerated dramatically. This phenomenon is explained from the perspective of thermodynamics and kinetics. The increased calcium content enhances the thermodynamic stability and reduces the energy barrier of the reaction. Then, the phenomenon is further analyzed through the nanosegregation in the structure. It is proved that this behavior is driven by the weaker affinity of calcium for aluminosilicate chains than the particles in the aqueous environment. The difference in affinity leads to nanosegregation in the structure, making Si(OH)4 and Al(OH)3 monomers and oligomers closer for better polymerization.

10.
Nat Sci Sleep ; 15: 363-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220426

RESUMO

Purpose: Obstructive sleep apnea hypopnea syndrome (OSAHS) can lead to cognitive impairment, though few studies have so far examined hypercapnia as its causal mechanism, due to the invasive nature of conventional arterial CO2 measurement. The study aims to investigate the effects of daytime hypercapnia on working memory in young and middle-aged patients with OSAHS. Patients and Methods: This prospective study screened 218 patients and eventually recruited 131 patients (aged 25-60 years) with polysomnography (PSG)-diagnosed OSAHS. Using a cut-off of 45mmHg daytime transcutaneous partial pressure of carbon dioxide (PtcCO2), 86 patients were assigned into the normocapnic group and 45 patients into the hypercapnic group. Working memory was evaluated using the Digit Span Backward Test (DSB) and the Cambridge Neuropsychological Test Automated Battery. Results: Compared with the normocapnic group, the hypercapnic group performed worse in verbal, visual, and spatial working memory tasks. PtcCO2≥45mmHg was an independent predictor for lower DSB scores (OR=4.057), lower accuracy in the immediate Pattern Recognition Memory (OR=2.600), delayed Pattern Recognition Memory (OR=2.766) and Spatial Recognition Memory (OR=2.722) tasks, lower Spatial Span scores (OR=4.795), and more between errors in the Spatial Working Memory task (OR=2.734 and 2.558, respectively). Notably, PSG indicators of hypoxia and sleep fragmentation did not predict task performance. Conclusion: Hypercapnia may be plays an important role in working memory impairment in patients with OSAHS, perhaps more so than hypoxia and sleep fragmentation. Routine CO2 monitoring in these patients could prove of utility in clinical practices.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37220681

RESUMO

Cerebrolysin (CBL) is a peptide-rich preparation made by hydrolysis and purified extraction of porcine brain. CBL contains various neuroprotective peptides, such as neurotrophic factor, nerve growth factor and ciliary neurotrophic factor, which can be used to treat neurodegenerative diseases. However, the active peptides in CBL had not been studied in depth. In this study, the following was carried out in order to investigate the active peptides in CBL. First, CBL samples were treated using organic reagents (acetonitrile and acetone) to precipitate the proteins and different solid phase extraction methods (MCX mixed-mode cartridges, C18 SPE cartridge columns and HILIC sorbent). Then the samples were analyzed using nanoLC-MS, followed by the identification of peptides using different sequence analysis software (PEAKS, pNovo and novor). Finally, bioinformatics analysis was performed to predict peptides with potential neuroprotective functions in CBL, such as anti-inflammatory and antioxidant peptides. Results showed that the number of peptides obtained by the MCX method coupled with PEAKS was the highest and the method was the most stable. Bioinformatic analysis of the detected peptides showed that two anti-inflammatory peptides (LLNLQPPPR and LSPSLRLP) and an antioxidant peptide (WPFPR) might be neuroprotective peptides in CBL. In addition, this study found that some peptides in CBL were present in myelin basic protein and tubulin beta chain. The results of this study for the detection of active peptides in CBL laid the foundation for the subsequent study of its active ingredients.

12.
Cell Rep ; 42(5): 112503, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37178120

RESUMO

Striking antibody evasion by emerging circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants drives the identification of broadly neutralizing antibodies (bNAbs). However, how a bNAb acquires increased neutralization breadth during antibody evolution is still elusive. Here, we identify a clonally related antibody family from a convalescent individual. One of the members, XG005, exhibits potent and broad neutralizing activities against SARS-CoV-2 variants, while the other members show significant reductions in neutralization breadth and potency, especially against the Omicron sublineages. Structural analysis visualizing the XG005-Omicron spike binding interface reveals how crucial somatic mutations endow XG005 with greater neutralization potency and breadth. A single administration of XG005 with extended half-life, reduced antibody-dependent enhancement (ADE) effect, and increased antibody product quality exhibits a high therapeutic efficacy in BA.2- and BA.5-challenged mice. Our results provide a natural example to show the importance of somatic hypermutation during antibody evolution for SARS-CoV-2 neutralization breadth and potency.

13.
Clin Cancer Res ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166477

RESUMO

PURPOSE: To assess whether higher plasma 25-hydroxyvitamin D (25[OH]D) are associated with improved outcomes in colon cancer and whether circulating inflammatory cytokines mediate such association. PATIENTS AND METHODS: Plasma samples were collected from 1437 patients with stage III colon cancer enrolled in a phase III randomized clinical trial (CALGB/SWOG 80702) from 2010 to 2015, who were followed until 2020. Cox regressions were used to examine associations between plasma 25(OH)D and disease-free survival (DFS), overall survival (OS), and time to recurrence (TTR). Mediation analysis was performed for circulating inflammatory biomarkers of CRP, IL-6, and sTNF-R2. RESULTS: Vitamin D deficiency (25(OH)D<12 ng/ml) was present in 13% of total patients at baseline and in 32% of Black patients. Compared with deficiency, non-deficient vitamin D status (≥12 ng/ml) was significantly associated with improved DFS, OS and TTR (all Plog-rank<0.05), with multivariable-adjusted hazard ratios of 0.68 (95% confidence interval [CI], 0.51-0.92) for DFS, 0.57 (0.40-0.80) for OS, and 0.71 (0.52-0.98) for TTR. A U-shaped dose-response pattern was observed for DFS and OS (both Pnon-linearity<0.05). The proportion of the association with survival that was mediated by sTNF-R2 was 10.6% (P mediation=0.04) for DFS and 11.8% (P mediation=0.05) for OS, whereas CRP and IL-6 were not shown to be mediators. Plasma 25(OH)D was not associated with the occurrence of ≥ grade 2 adverse events. CONCLUSIONS: Non-deficient vitamin D is associated with improved outcomes in patients with stage III colon cancer, largely independent of circulation inflammations. A randomized trial is warranted to elucidate if adjuvant vitamin D supplementation improves patient outcomes.

14.
Org Lett ; 25(20): 3800-3805, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37195798

RESUMO

A visible-light induced direct C(sp3)-H functionalization of alkylarenes with trifluoromethyl ketones has been reported to access valuable benzyl-substituted trifluoromethyl alcohols in a stoichiometric manner. Readily available petroleum-derived alkylarenes are employed as latent benzylation reagents. With a bromine radical as the hydrogen atom transfer reagent, primary, secondary, and tertiary benzyl C-H bonds are suitable coupling partners. Additionally, the late-stage modification of bioactive molecules highlights the potential application of this approach.

15.
Sci Total Environ ; 883: 163477, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37062321

RESUMO

The upper troposphere (UT) nucleation is thought to be responsible for at least one-third of the global cloud condensation nuclei. Although NH3 was considered to be extremely rare in the UT, recent studies show that NH3 is convected aloft, promoting H2SO4-HNO3-NH3 rapid nucleation in the UT during the Asian monsoon. In this study, the roles of HNO3, H2SO4 (SA), and NH3 in the nucleation of SA-HNO3-NH3 were investigated by quantum chemical calculation and molecular dynamic (MD) simulations at the level of M06-2×/6-31 + G (d, p). The nucleation ability of SA-HNO3-NH3 is suppressed as the temperature increases in the UT. The results indicated that bisulfate (HSO4-), nitrate (NO3-), and ammonium (NH4+) ionized from SA, HNO3, and NH3, respectively, can significantly enhance the nucleation ability of SA-HNO3-NH3. In addition, hydrated hydrogen ion (H3O+) as well as sulfate ions (SO42-) ionized by SA can also actively participate in the process of ion-induced nucleation. The results reveal that the enhancement effect of five ions on the SA-HNO3-NH3 nucleation can be ordered as follows: SO42- > H3O+ > HSO4- > NO3- > NH4+. Many ion-induced nucleation pathways of SA-HNO3-NH3 with the Gibbs free energies of formation (ΔG) lower than -100 kcal mol-1 were energetically favorable. HNO3 and NH3 can promote the nucleation of SA-HNO3-NH3 and water (W) molecules are also beneficial to promote the new particle formation (NPF) of SA-HNO3-NH3. Under the action of H-bonds and electrostatic interaction, ion-induced nucleation could lead to the rapid nucleation of H2SO4-HNO3-NH3 in the UT.

16.
Zhongguo Gu Shang ; 36(4): 393-8, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37087632

RESUMO

Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.


Assuntos
Reabsorção Óssea , Consolidação da Fratura , Osteoporose , Animais , Masculino , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , Consolidação da Fratura/genética , Osteoblastos , Osteoclastos , Osteogênese , Osteoporose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia
17.
Small ; : e2301894, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093185

RESUMO

Developing novel synthetic strategies to downsize metal-organic frameworks (MOFs) from polydisperse crystals to monodisperse nanoparticles is of great importance for their potential bioapplications. In this work, a novel synthetic strategy termed gelothermal synthesis is proposed, in which coordination polymer gel is first prepared and followed by a thermal reaction to give the monodisperse MOF nanoparticles. This novel synthetic strategy successfully leads to the isolation of Materials of Institute Lavoisier (MIL-88), Cu(II)-fumarate MOFs (CufumDMF), and Zeolitic Imidazolate Frameworks (ZIF-8) nanoparticles. Focused on MIL-88A, the studies reveal that the size can be well-tuned from nanoscale to microscale without significant changes in polydispersity index (PDI) even in the case of in situ metal substitution. A possible mechanism is consequently proposed based on extensive studies on the gelothermal condition including sol-gel chemistry, thermal condition, kinds of solvents, and so on. The unique advantages of monodisperse MIL-88A nanoparticles over polydisperse ones are further demonstrated in terms of in vitro magnetic resonance imaging (MRI), cellular uptake, and drug-carrying properties.

18.
Water Res ; 236: 119943, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054608

RESUMO

Membrane technologies have been widely applied in water treatment over the past few decades. However, membrane fouling remains a hinderance for the widespread use of membrane processes because it decreases effluent quality and increases operating costs. To mitigate membrane fouling, researchers have been exploring effective anti-fouling strategies. Recently, patterned membranes are gaining attention as a novel non-chemical membrane modification for membrane fouling control. In this paper, we review the research on patterned membranes used in water treatment over the past 20 years. In general, patterned membranes show superior anti-fouling performances, which mainly results from two aspects: hydrodynamic effects and interaction effects. Due to the introduction of diversified topographies onto the membrane surface, patterned membranes yield dramatic improvements on hydrodynamic properties, e.g., shear stress, velocity field and local turbulence, restraining concentration polarization and foulants' deposition on the membrane surface. Besides, the membrane-foulant and foulant-foulant interactions play an important role in the mitigation of membrane fouling. Due to the existence of surface patterns, the hydrodynamic boundary layer is destroyed and the interaction force as well as the contact area between foulants and surface are decreased, which contributes to the fouling suppression. However, there are still some limitations in the research and application of patterned membranes. Future research is suggested to focus on the development of patterned membranes appropriate for different water treatment scenarios, the insights into the interaction forces affected by surface patterns, and the pilot-scale and long-term studies to verify the anti-fouling performances of patterned membranes in practical applications.


Assuntos
Hidrodinâmica , Purificação da Água , Membranas Artificiais , Purificação da Água/métodos , Estresse Mecânico
19.
Sci Total Environ ; 884: 163190, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37061051

RESUMO

Large-scale restrictions on anthropogenic activities in China in 2020 due to the Corona Virus Disease 2019 (COVID-19) indirectly led to improvements in air quality. Previous studies have paid little attention to the changes in nitrogen dioxide (NO2), fine particulate matter (PM2.5) and ozone (O3) concentrations at different levels of anthropogenic activity limitation and their interactions. In this study, machine learning models were used to simulate the concentrations of three pollutants during periods of different levels of lockdown, and compare them with observations during the same period. The results show that the difference between the simulated and observed values of NO2 concentrations varies at different stages of the lockdown. Variation between simulated and observed O3 and PM2.5 concentrations were less distinct at different stages of lockdowns. During the most severe period of the lockdowns, NO2 concentrations decreased significantly with a maximum decrease of 65.28 %, and O3 concentrations increased with a maximum increase of 75.69 %. During the first two weeks of the lockdown, the titration reaction in the atmosphere was disrupted due to the rapid decrease in NO2 concentrations, leading to the redistribution of Ox (NO2 + O3) in the atmosphere and eventually to the production of O3 and secondary PM2.5. The effect of traffic restrictions on the reduction of NO2 concentrations is significant. However, it is also important to consider the increase in O3 due to the constant volatile organic compounds (VOCs) and the decrease in NOx (NO+NO2). Traffic restrictions had a limited effect on improving PM2.5 pollution, so other beneficial measures were needed to sustainably reduce particulate matter pollution. Research on COVID-19 could provide new insights into future clean air action.

20.
Hum Genet ; 142(6): 759-772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062025

RESUMO

Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.


Assuntos
Surdez , Perda Auditiva , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Cisplatino/efeitos adversos , Estudo de Associação Genômica Ampla , Qualidade de Vida , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...