Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(5): 3139-3148, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31970902

RESUMO

Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1ß), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1ß, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3-/- ) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3-/- mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.

2.
J Cell Mol Med ; 24(3): 2319-2329, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880857

RESUMO

Cardiac fibrosis is a key factor to determine the prognosis in patient with myocardial infarction (MI). The aim of this study is to investigate whether the transcriptional factor paired-related homeobox 2 (Prrx2) regulates Wnt5a gene expression and the role in myocardial fibrosis following MI. The MI surgery was performed by ligation of left anterior descending coronary artery. Cardiac remodelling was assessed by measuring interstitial fibrosis performed with Masson staining. Cell differentiation was examined by analysis the expression of alpha-smooth muscle actin (α-SMA). Both Prrx2 and Wnt5a gene expressions were up-regulated in mice following MI, accompanied with increased mRNA and protein levels of α-SMA, collagen I and collagen III, compared to mice with sham surgery. Adenovirus-mediated gene knock down of Prrx2 increased survival rate, alleviated cardiac fibrosis, decreased infarction sizes and improved cardiac functions in mice with MI. Importantly, inhibition of Prrx2 suppressed ischaemia-induced Wnt5a gene expression and Wnt5a signalling. In cultured cardiac fibroblasts, TGF-ß increased gene expressions of Prrx2 and Wnt5a, and induced cell differentiations, which were abolished by gene silence of either Prrx2 or Wnt5a. Further, overexpression of Prrx2 or Wnt5a mirrored the effects of TGF-ß on cell differentiations of cardiac fibroblasts. Gene silence of Wnt5a also ablated cell differentiations induced by Prrx2 overexpression in cardiac fibroblasts. Mechanically, Prrx2 was able to bind with Wnt5a gene promoter to up-regulate Wnt5a gene expression. In conclusions, targeting Prrx2-Wnt5a signalling should be considered to improve cardiac remodelling in patients with ischaemic heart diseases.

3.
Clin Pharmacol Ther ; 105(1): 201-209, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29672839

RESUMO

Development of nitrate tolerance is a major drawback to nitrate therapy. Prostacyclin (PGI2) is a powerful vasodilator produced from prostaglandin (PGH2) by prostacyclin synthase (PGIS) in endothelial cells. This study aimed to determine the role of PGIS S-nitrosylation in nitrate tolerance induced by nitroglycerin (GTN). In endothelial cells, GTN increased PGIS S-nitrosylation and disturbed PGH2 metabolism, which were normalized by mutants of PGIS cysteine 231/441 to alanine (C231/441A). Clearance of nitric oxide by carboxy-PTIO or inhibition of S-nitrosylation by N-acetyl-cysteine decreased GTN-induced PGIS S-nitrosylation. Enforced expression of mutated PGIS with C231/441A markedly abolished GTN-induced PGIS S-nitrosylation and nitrate cross-tolerance in Apoe-/- mice. Inhibition of cyclooxygenase 1 by aspirin, supplementation of PGI2 by beraprost, and inhibition of PGIS S-nitrosylation by N-acetyl-cysteine improved GTN-induced nitrate cross-tolerance in rats. In patients, increased PGIS S-nitrosylation was associated with nitrate tolerance. In conclusion, GTN induces nitrate cross-tolerance through PGIS S-nitrosylation at cysteine 231/441.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Tolerância a Medicamentos/fisiologia , Oxirredutases Intramoleculares/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitroglicerina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Bovinos , Cricetinae , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxirredutases Intramoleculares/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia
4.
J Cell Biochem ; 120(4): 5713-5721, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30362602

RESUMO

BACKGROUNDS AND AIMS: Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS: The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS: In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION: Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.

5.
Int J Cardiol ; 277: 205-211, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30316647

RESUMO

AIMS: The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS: We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION: IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.


Assuntos
Acidose/metabolismo , Hiperglicemia/metabolismo , Isquemia/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Acidose/patologia , Animais , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperglicemia/patologia , Líquido Intracelular/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Transdução de Sinais/fisiologia
6.
J Mol Med (Berl) ; 96(5): 403-412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502204

RESUMO

Diabetes mellitus is one of risk factors of cardiovascular diseases including atherosclerosis. Whether and how diabetes promotes the formation of unstable atherosclerotic plaque is not fully understood. Here, we show that streptozotocin-induced type 1 diabetes reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout (Apoe-/-) mice. These detrimental effects of hyperglycemia on plaque stability were reversed by metformin in vivo without altering the levels of blood glucose and lipids. Mechanistically, we found that high glucose reduced the phosphorylated level of AMP-activated protein kinase alpha (AMPKα) and the transcriptional activity of activator protein 2 alpha (AP-2α), increased the expression of miR-124 expression, and downregulated prolyl-4-hydroxylase alpha 1 (P4Hα1) protein expression and collagen biosynthesis in cultured vascular smooth muscle cells. Importantly, these in vitro effects produced by high glucose were abolished by AMPKα pharmacological activation or adenovirus-mediated AMPKα overexpression. Further, adenovirus-mediated AMPKα gain of function remitted the process of diabetes-induced plaque destabilization in Apoe-/- mice injected with streptozotocin. Administration of metformin enhanced pAP-2α level, reduced miR-124 expression, and increased P4Hα1 and collagens in carotid atherosclerotic plaque in diabetic Apoe-/- mice. We conclude that streptozotocin-induced toxic diabetes promotes the formation of unstable atherosclerotic plaques based on the vulnerability index in Apoe-/- mice, which is related to the inactivation of AMPKα/AP-2α/miRNA-124/P4Hα1 axis. Clinically, targeting AMPKα/AP-2α/miRNA-124/P4Hα1 signaling should be considered to increase the plaque stability in patients with atherosclerosis. KEY MESSAGES: Hyperglycemia reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout mice. Hyperglycemia destabilizes atherosclerotic plaque in vivo through an AMPKα/AP-2α/miRNA-124/P4Hα1-dependent collagen synthesis. Metformin functions as a stabilizer of atherosclerotic plaque to reduce acute coronary accent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , MicroRNAs/metabolismo , Placa Aterosclerótica/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo
7.
Clin Exp Hypertens ; 40(2): 192-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28872356

RESUMO

BACKGROUND: We have previously reported that the long-term exposure of organophosphorus induces vascular dementia (VD) in rats. As a coenzyme, vitamin B6 is mainly involved in the regulation of metabolisms. Whether vitamin B6 improves VD remains unknown. METHODS: The model of VD was induced by feeding rats with isocarbophos (0.5 mg/kg per two day, 12 weeks). The blood flow of the posterior cerebral artery (PCA) in rat was assessed by transcranial Doppler (TCD). The learning and memory were evaluated by the Morris Water Maze (MWM) test. RESULTS: Administration of vitamin B6 increased the blood flow in the right and left posterior cerebral arteries and improved the functions of learning and memory in isocarbophos-treated rats. Vitamin B6 increased the protein levels of N-methyl-D-aspartate receptor (NMDAR) 2B, postsynaptic densities (PSDs) protein 95, and calmodulin-dependent protein kinase II (CaMK-II) in the hippocampus, which were decreased by isocarbophos in rats. Morphological analysis by light microscope and electronic microscope indicated disruptions of the hippocampus caused by isocarbophos were normalized by vitamin B6. Importantly, the antagonist of NMDAR signaling by eliprodil abolished these beneficial effects produced by vitamin B6 on PCA blood flow, learning, memory, and hippocampus structure in rats, as well as the protein expression of NMDAR 2B, PSDs protein 95, and CaMK-II in the hippocampus. CONCLUSION: Vitamin B6 activates NMDAR signaling to prevent isocarbophos-induced VD in rats.


Assuntos
Demência Vascular/metabolismo , Demência Vascular/prevenção & controle , Receptores de N-Metil-D-Aspartato/metabolismo , Vitamina B 6/farmacologia , Complexo Vitamínico B/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Demência Vascular/induzido quimicamente , Proteína 4 Homóloga a Disks-Large/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Hipertensão/fisiopatologia , Malation/análogos & derivados , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Piperidinas/farmacologia , Artéria Cerebral Posterior/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ultrassonografia Doppler
8.
Sci Rep ; 7: 43508, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252100

RESUMO

Endothelial dysfunction, which is caused by endothelial nitric oxide synthase (eNOS) uncoupling, is an initial step in atherosclerosis. This study was designed to explore whether Chinese medicine xin-mai-jia (XMJ) recouples eNOS to exert anti-atherosclerotic effects. Pretreatment of XMJ (25, 50, 100 µg/ml) for 30 minutes concentration-dependently activated eNOS, improved cell viabilities, increased NO generations, and reduced ROS productions in human umbilical vein endothelial cells incubated with H2O2 for 2 hours, accompanied with restoration of BH4. Importantly, these protective effects produced by XMJ were abolished by eNOS inhibitor L-NAME or specific eNOS siRNA in H2O2-treated cells. In ex vivo experiments, exposure of isolated aortic rings from rats to H2O2 for 6 hours dramatically impaired acetylcholine-induced vasorelaxation, reduced NO levels and increased ROS productions, which were ablated by XMJ in concentration-dependent manner. In vivo analysis indicated that administration of XMJ (0.6, 2.0, 6.0 g/kg/d) for 12 weeks remarkably recoupled eNOS and reduced the size of carotid atherosclerotic plaque in rats feeding with high fat diet plus balloon injury. In conclusion, XMJ recouples eNOS to prevent the growth of atherosclerosis in rats. Clinically, XMJ is potentially considered as a medicine to treat patients with atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/patologia , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Endotélio Vascular/patologia , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Medicina Tradicional Chinesa , Óxido Nítrico/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
9.
Oncotarget ; 8(9): 14294-14305, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28179583

RESUMO

We have previously reported that activation of AMP-activated kinase alpha 2 (AMPKα2) by nicotine or angiotensin II (AngII) instigates formation of abdominal aortic aneurysms (AAA) in Apoe-/- mice. Statins, used to treat hyperlipidemia widely, activate AMPK in vascular cells. We sought to examine the effects of pravastatin on AAA formation and uncover the molecular mechanism. The AAA model was induced by AngII and evaluated by incidence, elastin degradation, and maximal abdominal aortic diameter in Apoe-/- mice. The phosphorylated levels of AMPKα2 and activator protein 2 alpha (AP-2α) were examined in cultured vascular smooth muscle cells (VSMCs) or in mice. We observed that pravastatin (50 mg/kg/day, 8 weeks) remarkably increased the AngII-induced AAA incidence in mice. In VSMCs, pravastatin increased the levels of pAMPK, pAP-2α, and MMP2 in both basal and AngII-stressed conditions, which were abolished by tempol and compound C. Pravastatin-upregulated MMP2 was abrogated by AMPKα2 or AP-2α siRNA. Lentivirus-mediated gene silence of AMPKα2 or AP-2α abolished pravastatin-worsened AAA formations in AngII-infused Apoe-/- mice. Clinical investigations demonstrated that both AMPKα2 and AP-2α phosphorylations were increased in AAA patients or human subjects taking pravastatin. In conclusion, pravastatin promotes AAA formation through AMPKα2-dependent AP-2α activations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II/efeitos adversos , Aneurisma da Aorta Abdominal/etiologia , Apolipoproteínas E/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pravastatina/efeitos adversos , Fator de Transcrição AP-2/metabolismo , Animais , Anticolesterolemiantes/farmacologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosforilação , Transdução de Sinais
10.
Oncotarget ; 8(6): 9021-9034, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28061433

RESUMO

AIMS: Proteasome-linked oxidative stress is believed to cause endothelial dysfunction, an early event in cardiovascular diseases (CVD). Statin, as HMG-CoA reductase inhibitor, prevents endothelial dysfunction in CVD. However, the molecular mechanism of statin-mediated normalization of endothelial function is not completely elucidated. METHODS AND RESULTS: Lovastatin time/dose-dependently increased miR-29b expression and decreased proteasome activity in cultured human umbilical vein endothelial cells (HUVECs). Anti-miR-29b or overexpression of PA200 abolished lovastatin-induced inhibition of proteasome activity in HUVECs. In contrast, pre-miR-29b or PA200 siRNA mimics these effects of lovastatin on proteasome activity. Lovastatin inhibited oxidative stress induced by multiple oxidants including ox-LDL, H2O2, TNFα, homocysteine thiolactone (HTL), and high glucose (HG), which were reversed by inhibition of miR-29b in HUVECs. Ex vivo analysis indicated that lovastatin normalized the acetylcholine-induced endothelium-dependent relaxation and the redox status in isolated rat aortic arteries exposure to multiple cardiovascular risk factors. In vivo analysis revealed that administration of lovastatin remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats with hyperglycemia, dyslipidemia, and hyperhomocysteinemia, as well as increased miR-29b expressions, reduced PA200 protein levels, and suppression of proteasome activity in aortic tissues. CONCLUSION: Upregulation of miR-29b expression is a common mechanism contributing to endothelial dysfunction induced by multiple cardiovascular risk factors through PA200-dependent proteasome-mediated oxidative stress, which is prevented by lovastatin.


Assuntos
Antioxidantes/farmacologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Dislipidemias/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hiper-Homocisteinemia/tratamento farmacológico , Lovastatina/farmacologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Relação Dose-Resposta a Droga , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Regulação para Cima , Vasodilatação/efeitos dos fármacos
11.
Circulation ; 134(22): 1752-1765, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27765794

RESUMO

BACKGROUND: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation. METHODS: Endothelial function was assessed by measuring acetylcholine-induced vasorelaxation in the organ chamber. MiR-133a expression was assessed by quantitative reverse transcription polymerase chain reaction and fluorescence in situ hybridization. RESULTS: We first demonstrated that GCH1 mRNA is a target of miR-133a. In endothelial cells, miR-133a was robustly induced by cytokines/oxidants and inhibited by lovastatin. Furthermore, lovastatin upregulated GCH1 and tetrahydrobiopterin, and recoupled endothelial nitric oxide synthase in stressed endothelial cells. These actions of lovastatin were abolished by enforced miR-133a expression and were mirrored by a miR-133a antagomir. In mice, hyperlipidemia- or hyperglycemia-induced ectopic miR-133a expression in the vascular endothelium, reduced GCH1 protein and tetrahydrobiopterin levels, and impaired endothelial function, which were reversed by lovastatin or miR-133a antagomir. These beneficial effects of lovastatin in mice were abrogated by in vivo miR-133a overexpression or GCH1 knockdown. In rats, multiple cardiovascular risk factors including hyperglycemia, dyslipidemia, and hyperhomocysteinemia resulted in increased miR-133a vascular expression, reduced GCH1 expression, uncoupled endothelial nitric oxide synthase function, and induced endothelial dysfunction, which were prevented by lovastatin. CONCLUSIONS: Statin inhibits aberrant miR-133a expression in the vascular endothelium to prevent endothelial dysfunction by targeting GCH1. Therefore, miR-133a represents an important therapeutic target for preventing cardiovascular diseases.


Assuntos
Células Endoteliais/efeitos dos fármacos , GTP Cicloidrolase/deficiência , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , MicroRNAs/antagonistas & inibidores , Óxido Nítrico/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lovastatina/farmacologia , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , Ratos , Fatores de Risco , Regulação para Cima
12.
Oncotarget ; 7(33): 52729-52739, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27391154

RESUMO

AIMS: Aspirin has been used for the secondary prevention and treatment of cardiovascular disease for several decades. We investigated the roles of transcriptional factor activator protein 2α (AP-2α) in the beneficial effects of aspirin in the growth and vulnerability of atherosclerotic plaque. METHODS AND RESULTS: In mice deficient of apolipoprotein E (Apoe-/-), aspirin (20, 50 mg/kg/day) suppressed the progression of atherosclerosis in aortic roots and increased the plaque stability in carotid atherosclerotic plaques induced by collar-placement. In vivo lentivirus-mediated RNA interference of AP-2α reversed the inhibitory effects of aspirin on atherosclerosis in Apoe-/- mice. Mechanically, aspirin increased AP-2α phosphorylation and its activity, upregulated IkBα mRNA and protein levels, and reduced oxidative stress in cultured vascular smooth muscle cells. Furthermore, deficiency of AP-2α completely abolished aspirin-induced upregulation of IkBα levels and inhibition of oxidative stress in Apoe-/- mice. Clinically, conventional doses of aspirin increased AP-2α phosphorylation and IkBα protein expression in humans subjects. CONCLUSION: Aspirin activates AP-2α to upregulate IkBα gene expression, resulting in attenuations of plaque development and instability in atherosclerosis.


Assuntos
Aspirina/farmacologia , Aterosclerose/prevenção & controle , Placa Aterosclerótica/prevenção & controle , Fator de Transcrição AP-2/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação/efeitos dos fármacos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Interferência de RNA , Fator de Transcrição AP-2/genética
13.
J Diabetes Investig ; 7(6): 867-873, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27182056

RESUMO

AIMS/INTRODUCTION: Type 2 diabetes is a worldwide disease that is associated with increased rates of obesity and reduced physical activity. Obesity-associated insulin resistance in type 2 diabetes is a disorder in the balance between pro-inflammatory and anti-inflammatory signals. T cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3) has been reported as an important regulatory inflammation molecule, and plays a pivotal role in several inflammation-related diseases. MATERIALS AND METHODS: Peripheral blood mononuclear cells were obtained from type 2 diabetes patients (n = 31) and healthy donors (n = 18), and Tim-3 expression on peripheral blood mononuclear cells was evaluated by flow cytometry. RESULTS: We showed the downregulated expression of Tim-3 on CD14+ monocytes from type 2 diabetes patients. In addition, the upregulated expression of Tim-3 on peripheral CD4+ T cells and CD8+ T cells was observed in the present study. The correlation analysis between Tim-3 expression on CD14+ monocytes and diabetes duration showed the longer diabetes duration time, the lower Tim-3 expression on CD14 monocytes. CONCLUSIONS: The present results suggest that Tim-3 might participate in the progression of type 2 diabetes by its negative regulation on these immune cells, and Tim-3 on CD14+ monocytes serves as a novel biological marker for diabetes duration in type 2 diabetes patients.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Progressão da Doença , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Monócitos/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade
14.
J Diabetes Res ; 2016: 1748065, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881239

RESUMO

Backgrounds. VitB6 deficiency has been associated with a number of adverse health effects. However, the effects of VitB6 in metabolic syndrome are poorly understood. Methods. VitB6 (50 mg/kg/day) was given to Apoe (-/-) mice with hkdigh-fat diet (HFD) for 8 weeks. Endothelial dysfunction, insulin resistance, and hepatic lipid contents were determined. Results. VitB6 administration remarkably increased acetylcholine-induced endothelium-dependent relaxation and decreased random blood glucose level in Apoe (-/-) mice fed with HFD. In addition, VitB6 improved the tolerance of glucose and insulin, normalized the histopathology of liver, and reduced hepatic lipid accumulation but did not affect the liver functions. Clinical and biochemical analysis indicated that the levels of VitB6 were decreased in patients with fatty liver. Conclusions. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe (-/-) mice fed with HFD. Supplementation of VitB6 should be considered to prevent metabolic syndrome.


Assuntos
Apolipoproteínas E/fisiologia , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Vitamina B 6/farmacologia , Animais , Dieta Hiperlipídica , Endotélio Vascular/fisiologia , Proteína Forkhead Box O1 , Transportador de Glucose Tipo 4 , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Vitamina B 6/sangue
15.
J Cell Mol Med ; 20(4): 731-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26818681

RESUMO

Vascular dementia, being the most severe form of vascular cognitive impairment (VCI), is caused by cerebrovascular disease. Whether organophosphorus causes VCI remains unknown. Isocarbophos (0.5 mg/kg per 2 days) was intragastrically administrated to rats for 16 weeks. The structure and function of cerebral arteries were assayed. The learning and memory were evaluated by serial tests of step-down, step-through and morris water maze. Long-term administration of isocarbophos reduced the hippocampal acetylcholinesterase (AChE) activity and acetylcholine (ACh) content but did not alter the plasma AChE activity, and significantly damaged the functions of learning and memory. Moreover, isocarbophos remarkably induced endothelial dysfunction in the middle cerebral artery and the expressions of ICAM-1 and VCAM-1 in the posterior cerebral artery. Morphological analysis by light microscopy and electron microscopy indicated disruptions of the hippocampus and vascular wall in the cerebral arteries from isocarbophos-treated rats. Treatment of isocarbophos injured primary neuronal and astroglial cells isolated from rats. Correlation analysis demonstrated that there was a high correlation between vascular function of cerebral artery and hippocampal AChE activity or ACh content in rats. In conclusion, chronic administration of isocarbophos induces impairments of memory and learning, which is possibly related to cerebral vascular dysfunction.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Hipocampo/efeitos dos fármacos , Malation/análogos & derivados , Artéria Cerebral Média/efeitos dos fármacos , Praguicidas/toxicidade , Artéria Cerebral Posterior/efeitos dos fármacos , Acetilcolina/antagonistas & inibidores , Acetilcolina/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Circulação Cerebrovascular , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Expressão Gênica , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Malation/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Artéria Cerebral Posterior/metabolismo , Artéria Cerebral Posterior/patologia , Cultura Primária de Células , Ratos , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
J Diabetes Res ; 2016: 1802036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26697498

RESUMO

It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-ß1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-ß1.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Rim/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
17.
J Cell Mol Med ; 19(11): 2607-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26177349

RESUMO

Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic approaches abolished the berberine-induced reduction in intracellular Ca(2+) concentration in VSMCs and attenuated berberine-elicited vessel dilation in mice aortas. In deoxycorticosterone acetate (DOCA)-induced hypertensive model, treatment of mice with berberine or RN-1734, a pharmacological inhibitor of TRPV4, significantly decreased systemic blood pressure (BP) in control mice or mice infected with an adenovirus vector. However, berberine-induced effects of lowering BP were reversed by overexpressing TRPV4 in mice by infecting with adenovirus. Furthermore, long-term administration of berberine decreased mean BP and pulse BP, increased artery response to vasodilator and reduced vascular collagen content in aged mice deficient in apolipoprotein E (Apoe-KO), but not in Apoe-KO old mice with lentivirus-mediated overexpression of TRPV4 channel. In conclusion, berberine induces direct vasorelaxation to lower BP and reduces vascular stiffness in aged mice through suppression of TRPV4.


Assuntos
Berberina/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Berberina/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Camundongos , Técnicas de Cultura de Órgãos , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia
18.
J Cell Mol Med ; 19(4): 826-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25656735

RESUMO

To explore whether rosiglitazone (RSG), a selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, exerts beneficial effects on endothelial dysfunction induced by homocysteine thiolactone (HTL) and to investigate the potential mechanisms. Incubation of cultured human umbilical vein endothelial cells with HTL (1 mM) for 24 hrs significantly reduced cell viabilities assayed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, as well as enhanced productions of reactive oxygen species, activation of nuclear factor kappa B, and increased intercellular cell adhesion molecule-1 secretion. Pre-treatment of cells with RSG (0.001-0.1 mM), pyrollidine dithiocarbamate (PDTC, 0.1 mM) or apocynin (0.1 mM) for 1 hr reversed these effects induced by HTL. Furthermore, co-incubation with GW9662 (0.01 mM) abolished the protective effects of RSG on HTL-treated cells. In ex vivo experiments, exposure of isolated aortic rings from. rats to HTL (1 mM) for 1 hr dramatically impaired acetylcholine-induced endothelium-dependent relaxation, reduced release of nitric oxide and activity of superoxide dismutase, and increased malondialdehyde content in aortic tissues. Preincubation of aortic rings with RSG (0.1, 0.3, 1 mM), PDTC or apocynin normalized the disorders induced by HTL. In vivo analysis indicated that administration of RSG (20 mg/kg/d) remarkably suppressed oxidative stress and prevented endothelial dysfunction in rats fed HTL (50 mg/kg/d) for 8 weeks. RSG improves endothelial functions in rats fed HTL, which is related to PPARγ-dependent suppression of oxidative stress.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Homocisteína/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/fisiopatologia , Homocisteína/administração & dosagem , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Microscopia de Fluorescência , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Vasodilatação/efeitos dos fármacos
19.
PLoS One ; 9(3): e90096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594984

RESUMO

OBJECTIVES: MicroRNA-7 (miR-7) is highly connected to cancerous cell proliferation and metastasis. It is also involved in myocardial ischemia-reperfusion (I/R) injury and is upregulated in cardiomyocyte under simulated I/R (SI/R). We aimed to investigate the role of miR-7 during myocardial I/R injury in vitro and in vivo and a possible gene target. METHODS AND RESULTS: Real-time PCR revealed that miR-7a/b expression was upregulated in H9c2 cells after SI/R. Flow cytometry showed SI/R-induced cell apoptosis was decreased with miR-7a/b mimic transfection but increased with miR-7a/b inhibitor in H9c2 cells. In a rat cardiac I/R injury model, infarct size determination and TUNEL assay revealed that miR-7a/b mimic decreased but miR-7a/b inhibitor increased cardiac infarct size and cardiomyocyte apoptosis as compared with controls. We previously identified an important gene connected with cell apoptosis--poly(ADP-ribose) polymerase (PARP)--as a candidate target for miR-7a/b and verified the target by luciferase reporter activity assay and western blot analysis. CONCLUSIONS: miR-7a/b is sensitive to I/R injury and protects myocardial cells against I/R-induced apoptosis by negatively regulating PARP expression in vivo and in vitro. miR-7a/b may provide a new therapeutic approach for treatment of myocardial I/R injury. Poly(ADP-ribose) polymerase.


Assuntos
MicroRNAs/fisiologia , Miócitos Cardíacos/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Humanos , Marcação In Situ das Extremidades Cortadas , Miócitos Cardíacos/enzimologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Transl Med ; 6: 55, 2008 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-18834541

RESUMO

BACKGROUND: High resistance to drug is taken as a characteristic of human tumors, which is usually mediated by multidrug resistance-associated genes. ABCC2, an ATP-binding cassette multidrug resistance transporter, is found to be expressed in a variety of human cancers. In this study the effect of a RNAi construct targeting ABCC2 on the chemosensitivity of NPC cell line CNE2 against cisplatin was investigated. METHODS: Lentiviral vectors were constructed to allow an efficient expression of anti-ABCC2 siRNA. The effective target sequence comprised nucleotides 1707-1727 of the human ABCC2 mRNA. The cell clones expressing the construct were picked and expanded, followed by identification using qRT-PCR and western blot method. As control, lentiviral vector containing invalid RNAi sequence was transfected to CNE2 cells. In vitro, cellular accumulation of cisplatin was detected by HPLC. The capacity of cellular growth and sensitivity of cells against cisplatin were detected by MTT assay. In vivo, the sensitivity of the tumor tissues against cisplatin were evaluated by transplanted CNE2 nude mice model. RESULTS: Two CNE2 cell clones with reduced expression of targeted ABCC2 mRNA and protein for more than 70% by qRT-PCR and western blot were established, and no differences were shown in proliferation rates compared to control CNE2 cells by growth curves analysis. In vitro the accumulation of intracellular cisplatin in these CNE2 cell clones with reduced expression of ABCC2 increased markedly, accompanied by increased sensitivity against cisplatin. In vivo, the growth of CNE2 solid tumors with a stably transfected anti-ABCC2 siRNA construct was significantly inhibited by cisplatin in transplanted nude mice model. CONCLUSION: Our investigation demonstrated that lentivirus-mediated RNAi silencing targeting ABCC2 might reverse the ABCC2-related drug resistance of NPC cell line CNE2 against cisplatin.


Assuntos
Cisplatino/farmacologia , Lentivirus/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Neoplasias Nasofaríngeas/patologia , Interferência de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Neoplasias Nasofaríngeas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA