Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Biosens Bioelectron ; 197: 113779, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781176

RESUMO

Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.

2.
Crit Rev Food Sci Nutr ; : 1-18, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34847797

RESUMO

Starch is a major part of the human diet and an important material for industrial utilization. The structure of starch granules is the subject of intensive research because it determines functionality, and hence suitability for specific applications. Starch granules are made up of a hierarchy of complex structural elements, from lamellae and amorphous regions to blocklets, growth rings and granules, which increase in scale from nanometers to microns. The complexity of these native structures changes with the processing of starch-rich ingredients into foods and other products. This review aims to provide a comprehensive review of analytical methods developed to characterize structure of starch granules, and their applications in analyzing the changes in starch structure as a result of processing, with particular consideration of the poorly understood short-range ordered structures in amorphous regions of granules.

3.
J Clin Lab Anal ; : e24116, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811815

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have shown pivotal regulatory roles in the pathology of non-small cell lung cancer (NSCLC). However, the role of circ_0000463 in NSCLC progression and its associated molecular mechanism remain to be illustrated. METHODS: Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration and invasion abilities were assessed by scratch test and transwell invasion assay. Flow cytometry was employed to analyze cell apoptotic rate. The interaction between microRNA-924 (miR-924) and circ_0000463 or solute carrier family 1 member 5 (SLC1A5) was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The uptake of glutamine and the production of glutamate and α-ketoglutarate were analyzed using their corresponding kits. Xenograft model in vivo was established to analyze the role of circ_0000463 in tumor growth. RESULTS: Circ_0000463 expression was elevated in NSCLC tissues and cell lines. Circ_0000463 knockdown suppressed the proliferation, migration, and invasion and promoted the apoptosis of NSCLC cells. Circ_0000463 acted as a molecular sponge for miR-924, and circ_0000463 interference-mediated anti-tumor effects were largely reversed by the silence of miR-924 in NSCLC cells. miR-924 interacted with the 3' untranslated region (3'UTR) of SLC1A5, and SLC1A5 overexpression largely overturned miR-924 overexpression-mediated anti-tumor effects in NSCLC cells. Moreover, circ_0000463 absence suppressed the glutamine metabolism of NSCLC cells by targeting miR-924/SLC1A5 axis. Circ_0000463 knockdown suppressed xenograft tumor growth in vivo. CONCLUSION: Circ_0000463 absence suppressed the malignant behaviors and glutamine metabolism of NSCLC cells through mediating miR-924/SLC1A5 axis.

4.
J Agric Food Chem ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757729

RESUMO

The present study investigated the effect of octenyl succinic anhydride (OSA) modification of starch on the formation of starch-lipid complexes. The complexing index (CI) showed that native maize starch (NMS) formed more complexes with monopalmityl glycerol (MPG) than with palmitic acid (PA), whereas dipalmityl glycerol (DPG) was not effective in forming complexes with NMS. After OSA modification, the complexation between OSA-starch and lipids was greatly enhanced, especially for PA and DPG, and the CI values increased from 79.6 to 93.3% for OSA-starch-PA and from 80.3 to 93.2% for OSA-starch-DPG complexes with increasing DS of OSA-starch. Structural analyses showed that OSA-starch-lipid complexes had higher degrees of long- and short-range molecular orders than the corresponding NMS-lipid complexes. This study showed for the first time that DPG can form complexes with OSA-starch, which was attributed to the increased dispersion of DPG in water by the emulsifying ability of OSA-starch. The finding is of great significance for a better understanding of the formation of starch-lipid complexes.

5.
J Reprod Immunol ; 149: 103453, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34839179

RESUMO

Innate and adaptive immune factors play significant roles in the pathophysiology of endometriosis. T helper 17 (Th17) cells, a pro-inflammatory T cell subset, were considered to contribute to the progression of endometriosis lesions. However, the regulatory mechanisms of Th17 cells in endometriosis remain unidentified, partially due to the difficulty in recovering live Th17 cells from endometriosis patients. In this study, by flow cytometry analysis of a set of chemokine receptors including CXCR3, CCR4, CCR10, and CCR6, live RORγt-and-IL-17A-expressing Th17 cells were enriched from peritoneal fluid (PF) of patients with different stages of endometriosis for the first time, RNA-sequencing (RNA-Seq) of these PF Th17 cells revealed significantly up-regulated genes and down-regulated genes in stage I-II and stage III-IV endometriosis, compared with their counterparts in normal PF. In conclusion, this study provides a novel method to isolate live Th17 cells from endometriosis patients, unveils an array of differentially expressed genes in endometriosis Th17 cells, and offers valuable gene expression profile information for endometriosis clinical research.

6.
Foods ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681500

RESUMO

Helicobacter pylori is a cause of gastric cancer. We extracted the exopolysaccharide (EPS) of Lactobacillus plajomi PW-7 for antibacterial activity versus H. pylori, elucidating its biological activity and structural characteristics. The minimum inhibitory concentration (MIC) of EPS against H. pylori was 50 mg/mL. Disruption of the cell membranes of pathogenic bacteria by EPS was indicated via the antibacterial mechanism test and confirmed through electron microscopy. EPS also has antioxidant capacity. The IC50 of EPS for 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anions, and hydroxyl radicals were 300 µg/mL, 180 µg/mL, and 10 mg/mL, respectively. The reducing power of EPS was 2 mg/mL, equivalent to 20 µg/mL of ascorbic acid. EPS is a heteropolysaccharide comprising six monosaccharides, with an approximate molecular weight of 2.33 × 104 Da. Xylose had a significant effect on H. pylori. EPS from L. plajomi PW-7 showed potential as an antibacterial compound and antioxidant, laying a foundation for the development of EPS-based foods.

7.
ACS Omega ; 6(41): 27225-27232, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693142

RESUMO

The dissolution behavior of cellulose in the mixtures of dimethyl sulfoxide (DMSO) and different ionic liquids (ILs) at 25 °C was studied. High solubility of cellulose was reached in the mixtures of ILs and DMSO at mole fractions of 1:2, 1:2, and 1:1 for 1-butyl-3-methylimidazolium acetate, 1-propyl-3-methylimidazolium acetate, and 1-ethyl-3-methylimidazolium acetate, respectively. At high DMSO/IL molar ratios (10:1-2:1), a longer alkyl chain of the IL cation led to higher cellulose solubility. However, shorter cation alkyl chains favored cellulose dissolution at 1:1. Rheological, Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) measurements were used to understand cellulose dissolution. It was found out that the increase of the DMSO ratio in binary mixtures caused higher cellulose solubility by decreasing the viscosity of systems. For cations with longer alkyl chains, stronger interaction between the IL and cellulose and higher viscosity of DMSO/IL mixtures were observed. The new knowledge obtained here could be useful to the development of cost-effective solvent systems for biopolymers.

8.
Nanoscale Res Lett ; 16(1): 139, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478000

RESUMO

The application of cells as carriers to encapsulate chemotherapy drugs is of great significance in antitumor therapy. The advantages of reducing systemic toxicity, enhancing targeting and enhancing the penetrability of drugs to tumor cells make it have great potential for clinical application in the future. Many studies and advances have been made in the encapsulation of drugs by using erythrocytes, white blood cells, platelets, immune cells and even tumor cells. The results showed that the antitumor effect of cell encapsulation chemotherapy drugs was better than that of single chemotherapy drugs. In recent years, the application of cell-based vectors in cancer has become diversified. Both chemotherapeutic drugs and photosensitizers can be encapsulated, so as to achieve multiple antitumor effects of chemotherapy, photothermal therapy and photodynamic therapy. A variety of ways of coordinated treatment can produce ideal results even in the face of multidrug-resistant and metastatic tumors. However, it is regrettable that this technology is only used in vitro for the time being. Standard answers have not yet been obtained for the preservation of drug-loaded cells and the safe way of infusion into human body. Therefore, the successful application of drug delivery technology in clinical still faces many challenges in the future. In this paper, we discuss the latest development of different cell-derived drug delivery systems and the challenges it will face in the future.

9.
J Basic Microbiol ; 61(11): 1002-1015, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34528722

RESUMO

The enzyme dextranase is widely used in the sugar and food industries, as well as in the medical field. Most land-derived dextranases are produced by fungi and have the disadvantages of long production cycles, low tolerance to environmental conditions, and low safety. The use of marine bacteria to produce dextranases may overcome these problems. In this study, a dextranase-producing bacterium was isolated from the Rizhao seacoast of Shandong, China. The bacterium, denoted as PX02, was identified as Cellulosimicrobium sp. and its growing conditions and the production and properties of its dextranase were investigated. The dextranase had a molecular weight of approximately 40 kDa, maximum activity at 40°C and pH 7.5, with a stability range of up to 45°C and pH 7.0-9.0. High-performance liquid chromatography showed that the dextranase hydrolyzed dextranT20 to isomaltotriose, maltopentaose, and isomaltooligosaccharides. Hydrolysis by dextranase produced excellent antioxidant effects, suggesting its potential use in the health food industry. Investigation of the action of the dextranase on Streptococcus mutans biofilm and scanning electron microscopy showed that it to be effective both for removing and inhibiting the formation of biofilms, suggesting its potential application in the dental industry.

10.
Cell Immunol ; 368: 104420, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418679

RESUMO

CD40-CD40L and inducible co-stimulatory molecule (ICOS)-ICOSL ligations are demonstrated to play critical roles in CD4+T-B interaction for B cell activation and differentiation in mouse models. Herein, by using a micropipette adhesion assay and an in vitro CD4+T-B cell coculture system simultaneously, we intended to dissect their roles in human CD4+T-B adhesion and IgG/IgM production. With the upregulation of CD40L and ICOS expressions on CD4+ T cells upon TCR/CD28 stimulation in vitro, activated CD4+ T cells exhibited enhanced adhesion with autologous B cells at a single cell level when compared to the resting counterparts. Blockade of ICOS dramatically damped the adhesion between CD4+ T and B cells whereas less effect of CD40L blockade was observed. On the contrary, blockade of CD40L led to the dramatic decrease in IgG/IgM production when B cells were cocultured with activated CD4+ T cells together with the decrease in the induction of CD19hi B cells. However, ICOS blockade displayed less attenuation on IgG/IgM production. Distinct roles of CD40-CD40L and ICOS-ICOSL in cell adhesion and IgG/IgM production were also observed in CD4+T-B cell interaction in system lupus erythematosus patients. The blockade of CD40L, rather than ICOS, led to the dramatic decrease in the phosphorylation of Pyk2 in CD19hi B cells and total B cells. Our study thus provides the evidence that CD40L and ICOS on activated CD4+ T cells either upon in vitro activation or at the pathogenic state function diversely during CD4+T-B cell interactions. While ICOS-ICOSL ligation is more likely to be engaged in cell adhesion, CD40-CD40L provides indispensable signal for B cell differentiation and IgG/IgM production. Our results are thus indicative for the segregating costimulation of CD40-CD40L and ICOS-ICOSL on CD4+ T cells for B cell activation and differentiation, which might be helpful for the dissection of SLE pathogenesis.

11.
J Agric Food Chem ; 69(29): 8227-8235, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34251195

RESUMO

The effect of extracts from four types of tea made from Camelia sinensis (green, white, black, and oolong) on in vitro amylolysis of gelatinized starch and the underlying mechanisms were studied. Of the four extracts, black tea extract (BTE) gave the strongest inhibition of starch digestion and on α-amylase activity. Fluorescence quenching and surface plasmon resonance (SPR) showed compounds in BTE bound to α-amylase more strongly than those in the green, white, and oolong tea extracts. Individual testing of five phenolic compounds abundant in tea extracts showed that theaflavins had a greater inhibitory effect than catechins on α-amylase. SPR showed that theaflavins had much lower equilibrium dissociation constants and therefore bound more tightly to α-amylase than catechins. We conclude that BTE had a stronger inhibitory effect on in vitro enzymatic starch digestion than the other tea extracts, mainly due to the higher content of theaflavins causing stronger inhibition of α-amylase.


Assuntos
Camellia sinensis , Catequina , Digestão , Extratos Vegetais , Amido , Chá , Triticum
12.
Front Mol Biosci ; 8: 683519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277702

RESUMO

Over the past five years, oxygen-based nanocarriers (NCs) to boost anti-tumor therapy attracted tremendous attention from basic research and clinical practice. Indeed, tumor hypoxia, caused by elevated proliferative activity and dysfunctional vasculature, is directly responsible for the less effectiveness or ineffective of many conventional therapeutic modalities. Undeniably, oxygen-generating NCs and oxygen-carrying NCs can increase oxygen concentration in the hypoxic area of tumors and have also been shown to have the ability to decrease the expression of drug efflux pumps (e.g., P-gp); to increase uptake by tumor cells; to facilitate the generation of cytotoxic reactive oxide species (ROS); and to evoke systematic anti-tumor immune responses. However, there are still many challenges and limitations that need to be further improved. In this review, we first discussed the mechanisms of tumor hypoxia and how it severely restricts the therapeutic efficacy of clinical treatments. Then an up-to-date account of recent progress in the fabrications of oxygen-generating NCs and oxygen-carrying NCs are systematically introduced. The improved physicochemical and surface properties of hypoxia alleviating NCs for increasing the targeting ability to hypoxic cells are also elaborated with special attention to the latest nano-technologies. Finally, the future directions of these NCs, especially towards clinical translation, are proposed. Therefore, we expect to provide some valued enlightenments and proposals in engineering more effective oxygen-based NCs in this promising field in this comprehensive overview.

13.
Food Sci Nutr ; 9(7): 3873-3884, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262744

RESUMO

In the present study, a DNAzyme was screened in vitro through the use of a DNA library and crude extracellular mixture (CEM) of Pseudomonas aeruginosa. Following eight rounds of selection, a DNAzyme termed PAE-1 was obtained, which displayed high rates of cleavage with strong specificity. A fluorescent biosensor was designed for the detection of P. aeruginosa in combination with the DNAzyme. A detection limit as low as 1.2 cfu/ml was observed. Using proteases and filtration, it was determined that the target was a protein with a molecular weight of 10 kDa-50 kDa. The DNAzyme was combined with a polystyrene board to construct a simple indicator plate sensor which produced a color that identified the target within 10 min. The results were reliable when tap water and food samples were tested. The present study provides a novel experimental strategy for the development of sensors based on a DNAzyme to rapidly detect P. aeruginosa in the field.

14.
Foods ; 10(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070076

RESUMO

This work investigated the impact of three drying methods on structural and functional properties of potato flour (PF), as well as the quality characteristics of fresh noodles made from wheat-potato flours. The results indicated that ethanol drying (ED) and oven drying (OD) had small effects on the properties of starch in potato flour, however, freeze drying (FD) caused some pores and channels on the starch granules and disruption of the long- and short-range ordered structure of starch. The maximum addition of potato flour in fresh noodles was 40% for FD-PF and 50% for both ED-PF and OD-PF. With increasing addition of potato flour in noodles, the L* (lightness) values of noodles decreased gradually, while the a* (redness) and the b* (yellowness) values, as well as the hardness and springiness values of fresh potato noodles increased. This study clearly showed that drying methods have different effects on the properties of potato flour, and in turn the quality of fresh noodles made with potato flour.

15.
Front Plant Sci ; 12: 650432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135920

RESUMO

The effect of biochar application on photosynthetic traits and yield in peanut (Arachis hypogaea L.) is not well understood. A 2-year field experiment was conducted in Northwest Liaoning, China to evaluate the effect of biochar application [0, 10, 20, and 40 t ha-1 (B0, B10, B20, and B40)] on leaf gas exchange parameters, chlorophyll fluorescence parameters, and yield of peanut. B10 improved photochemical quenching at flowering and pod set and reduced non-photochemical quenching at pod set, relative to B0. B10 and B20 increased actual photochemical efficiency and decreased regulated energy dissipated at pod set, relative to B0. B10 significantly increased net photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency at flowering and pod set, relative to B0. Compared with B0, B10 significantly improved peanut yield (14.6 and 13.7%) and kernel yield (20.2 and 14.4%). Biochar application increased leaf nitrogen content. B10 and B20 significantly increased plant nitrogen accumulation, as compared to B0. The net photosynthetic rate of peanut leaves had a linear correlation with plant nitrogen accumulation and peanut yield. The application of 10 t ha-1 biochar produced the highest peanut yield by enhancing leaf photosynthetic capacity, and is thus a promising strategy for peanut production in Northwest Liaoning, China.

16.
Front Microbiol ; 12: 655845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149642

RESUMO

Vibrio vulnificus is an important pathogenic bacterium that is often associated with seafood-borne illnesses. Therefore, to detect this pathogen in aquatic products, a DNAzyme-based fluorescent sensor was developed for the in vitro detection of V. vulnificus. After screening and mutation, a DNAzyme that we denominated "RFD-VV-M2" exhibited the highest activity, specificity, and sensitivity. The limit of detection was 2.2 × 103 CFU/ml, and results could be obtained within 5-10 min. Our findings suggested that the target of DNAzyme RFD-VV-M2 was a protein with a molecular weight between 50 and 100 kDa. The proposed biosensor exhibited an excellent capacity to detect marine products contaminated with V. vulnificus. Therefore, our study established a rapid, simple, sensitive, and highly specific detection method for V. vulnificus in aquatic products.

17.
ACS Sens ; 6(7): 2757-2762, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191484

RESUMO

Electrochemical tracking of redox-inactive neurochemicals remain a challenge due to chemical inertness, almost no Faraday electron transfer for these species, and the complex brain atmosphere. In this work, we demonstrate a low-cost, simple-making liquid/liquid interface microsensor (LLIM) to monitor redox-inactive neurochemicals in the rat brain. Taking choline (Ch) as an example, based on the difference in solvation energies of Ch in cerebrospinal fluid (aqueous phase) and 1,2-dichloroethane (1,2-DCE; organic phase), Ch is recognized in the specific ion-transfer potential and distinctive ion-transfer current signals. The LLIM has an excellent response to Ch with good linearity and selectivity, and the detection limit is 0.37 µM. The LLIM can monitor the dynamics of Ch in the cortex of the rat brain by both local microinfusion and intraperitoneal injection of Ch. This work first demonstrates that the LLIM can be successfully applied in the brain and obtain electrochemical signals in such a sophisticated system, allowing one new perspective of sensing at the liquid/liquid interface for nonelectrically active substances in vivo to understand the physiological function of the brain.


Assuntos
Química Encefálica , Encéfalo , Animais , Oxirredução , Ratos
18.
Int J Rheum Dis ; 24(8): 1024-1031, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155816

RESUMO

AIM: The increased level of interleukin-6 (IL-6) plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Specific blockade of IL-6 or its receptor has been used successfully in treating RA. MicroRNAs can regulate gene expression and act as regulators of target genes. Manipulation of specific microRNAs provides a novel therapeutic strategy for treating/preventing diseases. This study explored the role of miR-98-5p in the regulation of IL-6 expression in rheumatoid fibroblast-like synoviocytes (RA-FLSs). METHODS: Real-time PCR was used to detect miR-98-5p expression in RA-FLSs and normal human fibroblast-like synovial cells (HFLSs). Site-directed gene mutagenesis and reporter gene assay were performed to identify the interaction between miR-98-5p and IL-6. Manipulation of miR-98-5p expression in RA-FLS used transfection with miR-98-5p mimic or inhibitor. Stimulation of FLSs with IL-1ß induced IL-6 production. Enzyme-linked immunosorbent assay was used to detect the level of IL-6 secreted into the RA-FLS culture supernatant. RESULTS: Compared with HFLSs, the expression of miR-98-5p in RA-FLSs was significantly downregulated, and was negatively correlated with DAS28 scores and rheumatoid factor. In patients with anti-keratin antibody-positive RA, the expression level of miR-98-5p was lower. miR-98-5p negatively regulated the expression of IL-6 in RA-FLSs. After IL-1ß stimulation, the expression of miR-98-5p decreased and the level of IL-6 protein was upregulated during IL-6 secretion. CONCLUSION: These data suggest that manipulation of miR-98-5p, which negatively modulates IL-6 expression, may be a potential clinical approach in RA.

19.
Immunol Lett ; 237: 17-26, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192561

RESUMO

OBJECTIVE: To understand the characteristics of DNA methyltransferase 3a (DNMT3a) in thymoma associated Myasthenia Gravis reveal its transcriptional regulator network as while as analyze the effect of DNMT3a on Rel/ nuclear factor-kappaB family (RelA/RelB) and its downstream autoimmune regulatory factor (Aire). METHODS: Tissues of 30 patients with thymoma, with or without myasthenia gravis (MG), were collected and the DNMT3a protein expression were evaluated through immunohistochemistry. We performed mRNA expression profiling microarray detection and analysis, and integrated the analysis by constructing protein-protein interaction networks and the integration with other database. We identified molecular difference between low and high DNMT3a in the thymoma by heatmap. We also performed PCR validation in thymoma tissues. The DNMT3a-shRNA plasmid was transfected into TEC cells, and these cells were treated with 5-aza-2-deoxycytidine, a blocker of DNMT3a. After the down-regulation of DNMT3a in TEC cells, the transcript and protein levels of RelA, RelB, Aire, and CHRNA3 were evaluated by western blotting. In addition, changes in gene expression profiles were screened through microarray technology. We performed differential gene analysis in the thymoma cohort by heatmap with R (v.4.3.0) software. RESULTS: In 30 matched tissue specimens, the expression of DNMT3a protein in thymoma with MG was lower than that in thymoma. Through mRNA expression profiling analysis, we constructed a co-expression network of DNMT3a and found direct interaction between IKZF1 and DNMT3a, and this co-expression relationship was overlappted with Cistrome DB database. We found up-regulation of 149 mRNAs and repression of 177 mRNAs in thymoma with MG compared with thymoma. Gene ontology and pathway analysis show the involvement of a multitude of genes in the mis-regulation of MG-related pathways. RNA interference significantly reduced the level of mRNA of DNMT3a, which proved that plasmid DNMT3a was effective. In comparison to the control group, the levels of DNMT3a, Aire, and CHRNA3 mRNA and protein in TEC cells transfected with DNMT3a-shRNA interference plasmid were significantly decreased, while the expression level of RelA and RelA/RelB was significantly increased. CONCLUSIONS: Our study reveals the DNMT3a-NF-κB pathway has a major effect on MG, and can be used as a marker for diagnosis as well as a target for MG treatment.

20.
Food Chem ; 364: 130390, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161911

RESUMO

The effect of interactions between beta-lactoglobulin (ßLG) and lauric acid (LA) on the formation of ternary maize starch-LA-protein complexes was investigated. Analysis of the secondary structure of ßLG by FTIR and changes in fluorescence λmax and intensity indicated that ßLG and LA interacted during heating and cooling in a Rapid Visco Analyser (RVA). Results from RVA, DSC and Raman spectroscopy analyses showed that increasing the concentration of ßLG from 25 to 200 mg increased the amount of ternary starch-LA-ßLG complexes formed. There was little difference in the amounts of the ternary complexes formed when the amount of ßLG was 25-150 mg, but a greater amount of starch-LA-ßLG complexes was formed when 200 mg of ßLG was pre-mixed with LA. From this study, we concluded that prior interaction between ßLG and LA had no significant effect on the formation of ternary starch-LA-ßLG complexes.


Assuntos
Ácidos Graxos , Amido , Lactoglobulinas , Lipídeos , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...