RESUMO
Peri-urban vegetable field plays an essential role in providing vegetables for local residents. Because of its particularity, it is affected by both industrial and agricultural activities which have led to the accumulations of heavy metal in soil. So far, information on heavy metal pollution status, spatial features, and human health risks in peri-urban vegetable areas across China is still scarce. To fill this gap, we systematically compiled soil and vegetable data collected from 123 articles published between 2010 and 2022 at a national level. The pollution status of heavy metals (i.e., cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn)) in peri-urban vegetable soils and vegetables were investigated. To evaluate the levels of heavy metal pollution in soil and human health risks, the geoaccumulation index (Igeo) and target hazard quotient (HQ) were calculated. The results showed that mean concentrations of Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn in peri-urban vegetable soils were 0.50, 0.53, 12.03, 41.97, 55.56, 37.69, 28.55, and 75.38 mg kg-1, respectively. The main pollutants in peri-urban vegetable soil were Cd and Hg, and 85.25% and 92.86% of the soil samples had Igeo > 1, respectively. The mean Igeo values of this regions followed the order of northwest > central > south > north > east > southwest > northeast for Cd and northeast > northwest > north > southwest > east > central > south for Hg. The mean Cd, Hg, As, Pb, Cr, Cu, Ni, and Zn concentrations in vegetables were 0.30, 0.26, 0.37, 0.54, 1.17, 6.17, 1.96, and 18.56 mg kg-1, respectively. Approximately 87.01% (Cd), 71.43% (Hg), 20% (As), 65.15% (Pb), 27.08% (Cr) of the vegetable samples exceeded the safety requirement values. The vegetables grown in central, northwest, and northern China accumulated much more heavy metals than those grown in other regions. As the HQ values for adults, 53.25% (Cd), 71.43% (Hg), 84.00% (As), and 58.33% (Cr) of the sampled vegetables were higher than 1. For children, the HQ values were higher than 1 for 66.23% (Cd), 73.81% (Hg), 86.00% (As), and 87.50% (Cr) of the sampled vegetables. The findings of this study demonstrate that the situation of heavy metal pollution in peri-urban vegetable areas across China are not optimistic and residents who consume the vegetables are at high risk of health issues. To ensure soil quality and human health, strategies should be taken to guide vegetable production and remedy soil pollution in peri-urban areas with the rapidly urbanizing China.
RESUMO
BACKGROUND: Bacterial vaginosis (BV) is a highly prevalent disorder of the cervicovaginal microbiota. Molecular-BV may put women at increased risk for adverse reproductive and obstetric outcomes. We investigated the association of HIV and pregnancy on the vaginal microbiota and associations with molecular-BV in women of reproductive age from Pune, India. SETTING: We studied vaginal samples from N=170 women including N=44 non-pregnant HIV seronegative (SN), N=56 pregnant SN, N=47 non-pregnant women with HIV (WWH), and N=23 pregnant WWH, and collected data on clinical, behavioral, and demographic factors. METHODS: We used 16S rRNA gene amplicon sequencing to characterize the composition of the vaginal microbiota. We classified the vaginal microbiota of these women into community state types (CSTs) based on bacterial composition and relative abundance, and further categorized them into molecular-BV versus Lactobacillus-dominated states. To determine associations between pregnancy and HIV status with outcome of molecular-BV, logistic regression models were used. RESULTS: There was a high prevalence of molecular-BV (30%) in this cohort. We found that pregnancy was associated with decreased odds of molecular-BV (adjusted OR (aOR)=0.35, 95% CI: 0.14-0.87), while HIV was associated with increased odds of molecular-BV (aOR=2.76, 95% CI: 1.33-5.73), even when controlling for multiple relevant factors such as age, number of partners, condom use and douching. CONCLUSION: Larger and longitudinal studies are needed to further characterize molecular-BV and the vaginal microbiota in pregnant women and WWH, and relate these factors to infectious, reproductive, and obstetric outcomes. In the long term, these studies may lead to novel microbiota-based therapeutics to improve women's reproductive and obstetric health.
RESUMO
Background: Secondary hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disease of immune hyperactivation that arises in the context of infectious, inflammatory, or neoplastic triggers. The aim of this study was to establish a predictive model for the timely differential diagnosis of the original disease resulting in HLH by validating clinical and laboratory findings to further improve the efficacy of therapeutics for HLH. Methods: We retrospectively enrolled 175 secondary HLH patients in this study, including 92 patients with hematologic disease and 83 patients with rheumatic disease. The medical records of all identified patients were retrospectively reviewed and used to generate the predictive model. We also developed an early risk score using multivariate analysis weighted points proportional to the ß regression coefficient values and calculated its sensitivity and specificity for the diagnosis of the original disease resulting in HLH. Results: The multivariate logistic analysis revealed that lower levels of hemoglobin and platelets (PLT), lower levels of ferritin, splenomegaly and Epstein-Barr virus (EBV) positivity were associated with hematologic disease, but young age and female sex were associated with rheumatic disease. The risk factors for HLH secondary to rheumatic diseases were female sex [OR 4.434 (95% CI, 1.889-10.407), P =0.001], younger age [OR 6.773 (95% CI, 2.706-16.952), P<0.001], higher PLT level [OR 6.674 (95% CI, 2.838-15.694), P<0.001], higher ferritin level [OR 5.269 (95% CI, 1.995-13.920), P =0.001], and EBV negativity [OR 27.656 (95% CI, 4.499-169.996), P<0.001]. The risk score included assessments of female sex, age, PLT count, ferritin level and EBV negativity, which can be used to predict HLH secondary to rheumatic diseases with an AUC of 0.844 (95% CI, 0.836~0.932). Conclusion: The established predictive model was designed to help clinicians diagnose the original disease resulting in secondary HLH during routine practice, which might be improve prognosis by enabling the timely treatment of the underlying disease.
Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Doenças Reumáticas , Humanos , Feminino , Masculino , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4 , Estudos Retrospectivos , Doenças Reumáticas/complicaçõesRESUMO
The recruitment of trustworthy and high-quality workers is an important research issue for MCS. Previous studies either assume that the qualities of workers are known in advance, or assume that the platform knows the qualities of workers once it receives their collected data. In reality, to reduce costs and thus maximize revenue, many strategic workers do not perform their sensing tasks honestly and report fake data to the platform, which is called False data attacks. And it is very hard for the platform to evaluate the authenticity of the received data In this paper, an incentive mechanism named Semi-supervision based Combinatorial Multi-Armed Bandit reverse Auction (SCMABA) is proposed to solve the recruitment problem of multiple unknown and strategic workers in MCS. First, we model the worker recruitment as a multi-armed bandit reverse auction problem and design an UCB-based algorithm to separate the exploration and exploitation, regarding the Sensing Rates (SRs) of recruited workers as the gain of the bandit Next, a Semi-supervised Sensing Rate Learning (SSRL) approach is proposed to quickly and accurately obtain the workers' SRs, which consists of two phases, supervision and self-supervision. Last, SCMABA is designed organically combining the SRs acquisition mechanism with multi-armed bandit reverse auction, where supervised SR learning is used in the exploration, and the self-supervised one is used in the exploitation. We theoretically prove that our SCMABA achieves truthfulness and individual rationality and exhibits outstanding performances of the SCMABA mechanism through in-depth simulations of real-world data traces.
RESUMO
Treatment of infected wounds remains a challenge owing to antibiotic resistance; thus, developing smart biomaterials for the healing of infected wounds is urgently needed. In this study, a microneedle (MN) patch system with antimicrobial and immunomodulatory properties is developed to promote and accelerate infected wound healing. In the MN patch (termed PFG/M MNs), a nanoparticle with polydopamine (PDA)-loaded iron oxide is grafted with glucose oxidase (GOx) and hyaluronic acid (HA) and then integrated into the tips, and amine-modified mesoporous silica nanoparticles (AP-MSNs) are incorporated into the bases. Results show that PFG/M MNs eradicate bacterial infections and modulate the immune microenvironment, combining the advantages of chemodynamic therapy, photothermal therapy, and M2 macrophage polarization from Fe/PDA@GOx@HA in the tips as well as anti-inflammatory effect of AP-MSNs from the MN bases. Thus, the PFG/M MN system is a promising clinical candidate for promoting infected wound healing.
RESUMO
Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.
Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Células Endoteliais/química , Saponinas/química , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Biotransformação , DigestãoRESUMO
Wernekink commissure syndrome is a rare midbrain syndrome with bilateral cerebellar dysfunction,eye movement disorder,and palatal myoclonus.Few cases of this syndrome have been reported in China,let alone those combined with hallucinations and involuntary groping.This paper reports the diagnosis and treatment of a case of Wernekink commissure syndrome with hallucinations and involuntary groping,aiming to enrich the knowledge about this disease for clinicians.
Assuntos
Mesencéfalo , Transtornos da Motilidade Ocular , Humanos , Transtornos da Motilidade Ocular/diagnóstico , Medula Espinal , Síndrome , AlucinaçõesRESUMO
High-temperature scintillation detectors play a significant role in oil exploration. However, traditional scintillators have limited ability to meet the requirements of practical applications owing to their low thermal stability. In this study, we designed and developed a one-dimensional (1D) Cs5Cu3Cl6I2 scintillator with high thermal stability. In addition, by preparing Cs5Cu3Cl7I, we proved that the Cs5Cu3Cl6I2 scintillator exhibits high thermal stability because the bridges linking the structural units in the 1D chain structure are only formed by I- ions, which improve their structural rigidity. The scintillator has a high steady-state light yield (59,700 photons MeV-1) and exhibits the highest spatial resolution for powder-based scintillation screens (18 lp mm-1) after cyclic treatment within the temperature range of 298-423 K. The Cs5Cu3Cl6I2 scintillator allows the visualization of alloy melting, indicating that it has significant potential for application in high-temperature environments. This study provides a new perspective toward the design of scintillators with high thermal stability.
RESUMO
An attenuated SARS-CoV-2 virus with modified viral transcriptional regulatory sequences and deletion of open-reading frames 3, 6, 7 and 8 (∆3678) was previously reported to protect hamsters from SARS-CoV-2 infection and transmission. Here we report that a single-dose intranasal vaccination of ∆3678 protects K18-hACE2 mice from wild-type or variant SARS-CoV-2 challenge. Compared with wild-type virus infection, the ∆3678 vaccination induces equivalent or higher levels of lung and systemic T cell, B cell, IgA, and IgG responses. The results suggest ∆3678 as an attractive mucosal vaccine candidate to boost pulmonary immunity against SARS-CoV-2.
RESUMO
Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.
RESUMO
Interfacial electronic characteristics are crucial for the hydrogen evolution reaction (HER), especially in nanoscale heterogeneous catalysts. In this work, we found that the synergistic activation of CoS2 and MoS2 (2H-MoS2 and 1T-MoS2) greatly enhances the HER activity in a wide pH range compared to those of each component. The Gibbs free energies for hydrogen adsorption at interfacial Co sites are as low as -0.08 (-0.25) eV and -0.20 (0.01) eV for 2H-MoS2/CoS2 and 1T-MoS2/CoS2 heterostructures in acidic (alkaline) media, respectively, which are even superior to that of Pt(111) (-0.09 eV). Moreover, the theoretical exchange current density of MoS2/CoS2 can reach â¼1.98 × 10-18 A site-1 (â¼8.43 A mg-1). Experimentally, MoS2/CoS2 exhibits a greatly reduced overpotential of 54 (46) mV and a Tafel slope of 42 (50) mV dec-1 under acidic (alkaline) conditions. The improved performance mainly originates from the synergistically activated interfacial Co atoms with better electron localization and local bonding. The interfacial effect enhances the electron conductivity and improves the H adsorption characteristics, making MoS2/CoS2 highly valuable as efficient HER electrocatalysts.
RESUMO
As nano-zinc oxide (Nano-ZnO), a new type of nanomaterial, has antioxidant and intestinal protection effects, we hypothesized that dietary Nano-ZnO could modulate poor meat quality, oxidative stress and disturbed gut microbiota in the finishing pig model of naturally occurring intrauterine growth retardation (IUGR). A total of 6 normal-born weight (NBW) and 12 IUGR piglets were selected based on birth weight. The pigs in the NBW group received a basal diet, and IUGR pigs were randomly divided into two groups and treated with basal diet and 600 mg/kg Nano-ZnO-supplemented diet. Dietary Nano-ZnO ameliorated IUGR-associated declined meat quality by lowering the drip loss48h, cooking loss, shearing force and MyHc IIx mRNA expression, and raising the redness (a*), peak area ratio of immobilized water (P22), sarcomere length and MyHc Ia mRNA expression. Nano-ZnO activated the nuclear factor erythroid 2-related factor 2-glutamyl cysteine ligase (Nrf2-GCL) signaling pathway by promoting the nuclear translocation of Nrf2, increasing the GCL activities, and mRNA and protein expression of its catalytic/modify subunit (GCLC/GCLM), thereby attenuating the IUGR-associated muscle oxidative injury. Additionally, the composition of IUGR pigs' cecal microbiota was altered by Nano-ZnO, as seen by changes in Shannon and Simpson indexes, the enhanced UCG-005, hoa5-07d05 gut group and Rikenellaceae RC9 gut group abundance. The UCG-005 and hoa5-07d05 gut group abundance were correlated with indicators that reflected the meat quality traits and antioxidant properties. In conclusion, Nano-ZnO improved the IUGR-impaired meat quality by altering water holding capacity, water distribution and the ultrastructure of muscle, activating the Nrf2-GCL signaling pathway to alleviate oxidative status and regulating the cecal microbial composition.
RESUMO
Although endometriosis is primarily benign, it has been identified as a risk factor for endometriosis-associated ovarian cancer (EAOC). Genetic alterations in ARID1A, PTEN, and PIK3CA have been reported in EAOC; however, an appropriate EAOC animal model has yet to be established. Therefore, the present study aimed to create an EAOC mouse model by transplanting uterine pieces from donor mice, in which Arid1a and/or Pten was conditionally knocked out (KO) in Pax8-expressing endometrial cells by the administration of doxycycline (DOX), onto the ovarian surface or peritoneum of recipient mice. Two weeks after transplantation, gene KO was induced by DOX and endometriotic lesions were thereafter removed. The induction of only Arid1a KO did not cause any histological changes in the endometriotic cysts of recipients. In contrast, the induction of only Pten KO evoked a stratified architecture and nuclear atypia in the epithelial lining of all endometriotic cysts, histologically corresponding to atypical endometriosis. The induction of Arid1a; Pten double-KO evoked papillary and cribriform structures with nuclear atypia in the lining of 42 and 50% of peritoneal and ovarian endometriotic cysts, respectively, which were histologically similar to EAOC. These results indicate that this mouse model is useful for investigating the mechanisms underlying the development of EAOC and the related microenvironment.
Assuntos
Traumatismos Craniocerebrais , Endometriose , Neoplasias Ovarianas , Transplantes , Feminino , Humanos , Animais , Camundongos , Útero , Modelos Animais de Doenças , Doxiciclina , Camundongos Knockout , Microambiente Tumoral , Proteínas de Ligação a DNA , Fatores de Transcrição , PTEN Fosfo-HidrolaseRESUMO
BACKGROUND: Stress, herd transfer, and food changes experienced by nursery and fattening pigs can lead to reduced performance, reduced digestion and absorption, and impaired intestinal health. Given the role of essential oils in relieving stress and improving animal welfare, we hypothesized that essential oils may improve pig performance via promoting gut health and gut homeostasis laid by EOs supplementation during nursery continuously impacts performance in fattening pigs. RESULTS: A total of 100 piglets (Landrace × Large White; weighted 8.08 ± 0.34 kg, weaned at d 28) were randomly selected and divided into 2 treatments: (1) basal diet (Con); (2) basal diet supplement with 0.1% complex essential oils (CEO). The experiment period was 42 days. Then weaned piglets' growth performance and indications of intestinal health were assessed. Compared to the Con group, dietary supplemented CEO enhanced BW at 14 d (P < 0.05), and increased ADG during 1 ~ 14 d and 1 ~ 42 d (P < 0.05). Furthermore, CEO group had lower FCR during 1 ~ 42 d (P < 0.05). The CEO group also showed higher VH and VH:CD in duodenum and ileum (P < 0.05). Additionally, dietary CEO supplementation improved gut barrier function, as manifested by increased the mRNA expression of tight-junction protein and decreased serum DAO, ET and D-LA levels (P < 0.05). Finally, CEO supplementation alleviated gut inflammation, increased the activity of digestive enzymes. Importantly, piglets supplemented with CEOs during nursery also had better performance during fattening, suggesting that the establishment of intestinal health will also continuously affect subsequent digestion and absorption capacity. In short, dietary supplemented CEO improved performance and gut health via modulating increased intestine absorptive area, barrier integrity, digestive enzyme activity, and attenuating intestine inflammation. Meanwhile, essential oil supplementation during the nursery period also had a favorable effect on the performance of growing pigs. CONCLUSIONS: Therefore, the strategy of adding CEO to pig diets as a growth promoter and enhancing intestinal health is feasible.
RESUMO
Necrotizing fasciitis (NF) represents a rapidly progressive, life-threatening infection involving the fascia and subcutaneous tissue. Early diagnosis and intervention are crucial to treat, especially in diabetic patients. Case presentation: This case report presents on a patient with diabetes mellitus rapidly developed a NF of the upper extremities following a minor trauma in the palmar of greater thenar. In the initial stages of her hospital admission, severe hand soft tissue infection, and systemic toxicity is the most prominent clinical manifestation. During her hospitalization, efficacious multidisciplinary treatment was carried out to avoid severe consequences. Clinical discussion and conclusion: The objective of this case report is to present a successful individual strategy in a complex case to standardize the treatment process. Accurate and standardized management can improve the prognosis of patients affected from upper extremities NF of diabetic avoiding and severe complications and saving lives.
RESUMO
Breast cancer is a common malignant tumor in women. Increasing evidence has demonstrated that nuclear receptor coactivator 5 (NCOA5) and targeting protein for xenopus kinesin-like protein 2 (TPX2) serve vital roles in the progression of breast cancer. However, to the best of our knowledge, the molecular mechanisms underlying the involvement of TPX2/NCOA5 in the development of breast cancer are not fully understood at present. In the present study, the expression levels of NCOA5 and TPX2 were compared between paired non-tumor and tumor tissues of patients with breast cancer using the TNMplot tool. Expression differences of NCOA5 and TPX2 in human breast epithelial cell lines (MCF10A and MCF12A) and human breast cancer cell lines (MCF7 and T47D) were assessed via reverse transcription-quantitative PCR and western blotting. Additionally, proliferation, migration and invasion of breast cancer cells were determined via Cell Counting Kit-8, would healing and transwell assays. In vitro angiogenesis was determined using a tube formation assay. Furthermore, TPX2 was identified as a high-confidence NCOA5 interactor based on BioPlex network data sets. A co-immunoprecipitation assay was adopted to confirm the interaction between TPX2 and NCOA5. The present study revealed that TPX2 and NCOA5 were highly expressed in breast cancer cells. TPX2 interacted with NCOA5 and there was a positive association between TPX2 and NCOA5 expression. NOCA5 knockdown repressed the proliferation, migration, invasion and in vitro angiogenesis of breast cancer cells. In addition, TPX2 knockdown suppressed the proliferation, migration and invasion of breast cancer cells, and inhibited in vitro angiogenesis, and all of these effects were reversed following NCOA5 overexpression. In conclusion, NCOA5 was a downstream target of TPX2 in enhancing proliferation, migration, invasion and angiogenesis of breast cancer cells.
RESUMO
Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.
Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Fitosteróis , Camundongos , Animais , Fitosteróis/farmacologia , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Metabolismo dos Lipídeos , LDL-Colesterol , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BLRESUMO
Purpose: The aim is to investigate the effect of toludesvenlafaxine (Tdv), a reuptake inhibitor of serotonin, norepinephrine, and dopamine, on the neurological function in cerebral ischemic rats and the underlying mechanisms. Material and Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) model was induced in rats and the neuroprotective effects of Tdv were evaluated by infarct size, Garcia test, and beam walking test. Neuronal apoptosis in the peri-infarct area was observed by TUNEL staining. And the apoptosis-related proteins were evaluated with Western blotting. The role of CREB pathway in effect of Tdv was also investigated using Western blotting and immunofluorescence. Results: In the MCAO/R model, administration of Tdv reduced the infarct size, promoted neural functional recovery, decreased the expression of Bax and Caspase-3, and increased the expression of Bcl-2 and BDNF. In addition, Tdv reduced neuronal apoptosis in the peri-infarct area. Tdv increased the expression of phosphorylated CREB. The application of the specific CREB inhibitor, compound 666-15, could reverse the anti-ischemic cerebral injury of Tdv in MCAO/R rats. Conclusion: Tdv ameliorated cerebral ischemic injury through reducing neuronal apoptosis and increasing the expression of BDNF via the activation of CREB pathway.
RESUMO
BACKGROUND: Adenosine deaminase (ADA) is a key enzyme in the purine salvage pathway. Genetic defects of the ADA gene can cause a subtype of severe combined immunodeficiency. To date, few Chinese cases have been reported. METHODS: We retrospectively reviewed the medical records of patients diagnosed with ADA deficiency in Beijing Children's Hospital and summarized the previously published ADA deficiency cases from China in the literature. RESULTS: Nine patients were identified with two novel mutations (W272X and Q202 =). Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations of Chinese ADA-deficient patients. The ADA genotype has a major effect on the clinical phenotype. Notably, a novel synonymous mutation (c.606G>A, p.Q202=) was identified in a delayed-onset patient, which affected pre-mRNA splicing leading to a frameshift and premature truncation of the protein. Furthermore, the patient showed γδT cells expansion with an increased effect or phenotype, which may be associated with the delayed onset of disease. In addition, we reported cerebral aneurysm and intracranial artery stenosis for the first time in ADA deficiency. Five patients died with a median age of four months, while two patients received stem cell transplantation and are alive. CONCLUSIONS: This study described the first case series of Chinese ADA-deficient patients. Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations in our patients. We identified a synonymous mutation that affected pre-mRNA splicing in the ADA gene, which had never been reported in ADA deficiency. Furthermore, we reported cerebral aneurysm in a delayed-onset patient for the first time. Further study is warranted to investigate the underlying mechanisms.
RESUMO
Theta burst stimulation (TBS), a highly efficient repetitive transcranial magnetic stimulation (rTMS) paradigm, has been widely used to modulate the working memory (WM) ability in experimental and clinical study. However, the underly neuroelectrophysiological mechanism remains unclear. The aim of this study was to compare the effect of iTBS, cTBS and rTMS on WM and explore the neural oscillatory communication changes in PFC involved in spatial WM task. 18 rats were treated by iTBS, cTBS and rTMS respectively (n=6 each), while the rats in control group (n=6) received no stimulation. T-maze WM task was used to assess the rats' performance of WM after stimulation. Local field potentials (LFPs) were recorded from a microelectrode array implanted in the medial prefrontal cortex (mPFC) while the rats were performing the WM task. Functional connectivity (FC) strength was assessed by LFP-LFP coherence calculations. The results showed that the rats from the rTMS group and iTBS group are able to reach criteria in less time than the control group's duration of the T-maze task. The power and the coherence value of rTMS and iTBS groups show a significant increase in the theta-band and gamma-band activity, wheras there are no significant differences of the energy and the coherence value between the cTBS group and the control group in theta-band. Furthermore, significantly positive correlations were observed between changes of memory performance during the WM task and the changes of the coherence value of the LFPs. In conclusion, these results indicate that rTMS and iTBS may improve the ability of WM by modulating the neural activity and connectivity in PFC.