Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
J Inflamm Res ; 14: 5187-5200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675597

RESUMO

Down syndrome (DS) is a unique genetic disease caused by the presence of an extra copy of chromosome 21, which carries four of the six interferon receptor (IFN-R) genes on its long arm. Recent studies reporting higher levels of interferon-stimulated gene (ISG) expression in primary immune cells studied ex vivo have suggested that the additional copies of the IFN-R genes in DS result in mild interferonopathy. In this review, we analyze the potential clinical and immunological impacts of this interferonopathy in DS. We performed a literature review to explore the epidemiology and risks of celiac disease, type 1 diabetes, thyroid dysfunction, mucocutaneous manifestations, infectious diseases (including COVID-19), and Alzheimer's disease in individuals with DS relative to the general population with or without iatrogenic exposure to interferons. We analyzed immunophenotyping data and the current experimental evidence concerning IFN-R expression, constitutive JAK-STAT activation, and ISG overexpression in DS. Despite the lack of direct evidence that implicating this mild interferonopathy directly in illnesses in individuals with DS, we highlight the challenges ahead and directions that could be taken to determine more clearly the biological impact of interferonopathy on various immune-related conditions in DS.

2.
Science ; 373(6561): eabj0486, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529467
3.
Artigo em Inglês | MEDLINE | ID: mdl-34383458

RESUMO

As metal-organic frameworks (MOFs) gain traction for applications, such as hydrogen storage, it is essential to form the as-synthesized powder materials into shaped bodies with high packing densities to maximize their volumetric performance. Mechanical compaction, which involves compressing the materials at high pressure, has been reported to yield high monolith density but often results in a significant loss in accessible porosity. Herein, we sought to systematically control (1) crystal size, (2) solvation, and (3) compacting pressure in the pelletization process to achieve high packing density without compromising the porosity that makes MOFs functional. It was determined that solvation is the most critical factor among the three factors examined. Solvation that exceeds the pore volume prevents the framework from collapsing, allowing for porosity to be maintained through pelletization. Higher pelletization pressure results in higher packing density, with extensive loss of porosity being observed at a higher pressure if the solvation is below the pore volume. Lastly, we observed that the morphology and size of the MOF particles result in variation in the highest achievable packing efficiency, but these numbers (75%) are still greater than many existing techniques used to form MOFs. We concluded that the application of pressure through pelletization is a suitable and widely applicable technique for forming high-density MOF-monoliths.

4.
Nat Cancer ; 1: 1027-1031, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34327335

RESUMO

Recent advances in cancer neuroscience necessitate the systematic analysis of neural influences in cancer as potential therapeutic targets in oncology. Here, we outline recommendations for future preclinical and translational research in this field.

5.
Cell Stem Cell ; 28(8): 1343-1361, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34129814

RESUMO

The esophagus and stomach, joined by a unique transitional zone, contain actively dividing epithelial stem cells required for organ homeostasis. Upon prolonged inflammation, epithelial cells in both organs can undergo a cell fate switch leading to intestinal metaplasia, predisposing to malignancy. Here we discuss the biology of gastroesophageal stem cells and their role as cells of origin in cancer. We summarize the interactions between the stromal niche and gastroesophageal stem cells in metaplasia and early expansion of mutated stem-cell-derived clones during carcinogenesis. Finally, we review new approaches under development to better study gastroesophageal stem cells and advance the field.


Assuntos
Esôfago de Barrett , Neoplasias , Humanos , Metaplasia , Células-Tronco
6.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G1-G10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950707

RESUMO

Recent advances in intestinal organoid research, along with encouraging preclinical proof-of-concept studies, have revealed significant therapeutic potential for induced pluripotent stem cell (iPSC)-derived organoids in the healing and replacement of severely injured or diseased bowel (Finkbeiner et al. Biol Open 4: 1462-1472, 2015; Kitano et al. Nat Commun 8: 765, 2017; Cruz-Acuna et al. Nat Cell Biol 19: 1326-1335, 2017). To fully realize the tremendous promise of stem cell organoid-based therapies, careful planning aligned with significant resources and efforts must be devoted demonstrating their safety and efficacy to meet critical regulatory requirements. Early recognition of the inherent preclinical and clinical obstacles that occur with the novel use of pluripotent stem cell-derived products will accelerate their bench-to-bedside translation (Neofytou et al. J Clin Invest 125: 2551-2557, 2015; O'Brien et al. Stem Cell Res Ther 6: 146, 2015; Ouseph et al. Cytotherapy 17: 339-343, 2015). To overcome many of these hurdles, a close and effective collaboration is needed between experts from various disciplines, including basic and clinical research, product development and manufacturing, quality assurance and control, and regulatory affairs. Therefore, the purpose of this article is to outline the critical areas and challenges that must be addressed when transitioning laboratory-based discovery, through an investigational new drug (IND) application to first-in-human clinical trial, and to encourage investigators to consider the required regulatory steps from the earliest stage of the translational process. The ultimate goal is to provide readers with a draft roadmap that they could use while navigating this exciting cell therapy space.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Desenvolvimento de Medicamentos , Intestinos/citologia , Organoides/transplante , Células-Tronco Pluripotentes/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Desenvolvimento de Medicamentos/métodos , Humanos , Intestinos/transplante , Organoides/citologia , Pesquisa
7.
Gastroenterology ; 161(2): 727-728, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33887218
8.
Carcinogenesis ; 42(8): 1068-1078, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-33878160

RESUMO

Barrett's esophagus (BE) is the main known precursor condition of esophageal adenocarcinoma (EAC). BE is defined by the presence of metaplasia above the normal squamous columnar junction and has mainly been attributed to gastroesophageal reflux disease and chronic reflux esophagitis. Thus, the rising incidence of EAC in the Western world is probably mediated by chronic esophageal inflammation, secondary to gastroesophageal reflux disease in combination with environmental risk factors such as a Western diet and obesity. However, (at present) risk prediction tools and endoscopic surveillance have shown limited effectiveness. Chemoprevention as an adjunctive approach remains an attractive option to reduce the incidence of neoplastic disease. Here, we investigate the feasibility of chemopreventive approaches in BE and EAC via inhibition of inflammatory signaling in a transgenic mouse model of BE and EAC (L2-IL1B mice), with accelerated tumor formation on a high-fat diet (HFD). L2-IL1B mice were treated with the IL-1 receptor antagonist Anakinra and the nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin or Sulindac. Interleukin-1b antagonism reduced tumor progression in L2-IL1B mice with or without a HFD, whereas both NSAIDs were effective chemoprevention agents in the accelerated HFD-fed L2-IL1B mouse model. Sulindac treatment also resulted in a marked change in the immune profile of L2-IL1B mice. In summary, anti-inflammatory treatment of HFD-treated L2-IL1B mice acted protectively on disease progression. These results from a mouse model of BE support results from clinical trials that suggest that anti-inflammatory medication may be effective in the chemoprevention of EAC.

9.
Cancer Prev Res (Phila) ; 14(6): 675-682, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33782049

RESUMO

Hypergastrinemia has been associated with high-grade dysplasia and adenocarcinoma in patients with Barrett's esophagus, and experimental studies suggest proinflammatory and proneoplastic effects of gastrin on Barrett's esophagus. This is of potential concern, as patients with Barrett's esophagus are treated with medications that suppress gastric acid production, resulting in increased physiologic levels of gastrin. We aimed to determine whether treatment with the novel gastrin/CCK2 receptor antagonist netazepide reduces expression of markers associated with inflammation and neoplasia in Barrett's esophagus. This was a randomized, double-blind, placebo-controlled trial of netazepide in patients with Barrett's esophagus without dysplasia. Subjects were treated for 12 weeks, with endoscopic assessment at baseline and at end of treatment. The primary outcome was within-individual change in cellular proliferation as assessed by Ki67. Secondary analyses included changes in gene expression, assessed by RNA-sequencing, and safety and tolerability. A total of 20 subjects completed the study and were included in the analyses. There was no difference between arms in mean change in cellular proliferation (netazepide: +35.6 Ki67+ cells/mm2, SD 620.7; placebo: +307.8 Ki67+ cells/mm2, SD 640.3; P = 0.35). Netazepide treatment resulted in increased expression of genes related to gastric phenotype (TFF2, MUC5B) and certain cancer-associated markers (REG3A, PAX9, MUC1), and decreased expression of intestinal markers MUC2, FABP1, FABP2, and CDX1 No serious adverse events related to study drug occurred. The gastrin/CCK2 receptor antagonist netazepide did not reduce cellular proliferation in patients with nondysplastic Barrett's esophagus. Further research should focus on the biological effects of gastrin in Barrett's esophagus.Prevention Relevance: Treatment of patients with Barrett's esophagus with a gastrin/CCK2 receptor antagonist did not have obvious chemopreventive effects.

11.
Sci Rep ; 11(1): 4509, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627749

RESUMO

Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC), but its cellular origin and mechanism of neoplastic progression remain unresolved. Notch signaling, which plays a key role in regulating intestinal stem cell maintenance, has been implicated in a number of cancers. The kinase Dclk1 labels epithelial post-mitotic tuft cells at the squamo-columnar junction (SCJ), and has also been proposed to contribute to epithelial tumor growth. Here, we find that genetic activation of intracellular Notch signaling in epithelial Dclk1-positive tuft cells resulted in the accelerated development of metaplasia and dysplasia in a mouse model of BE (pL2.Dclk1.N2IC mice). In contrast, genetic ablation of Notch receptor 2 in Dclk1-positive cells delayed BE progression (pL2.Dclk1.N2fl mice), and led to increased secretory cell differentiation. The accelerated BE progression in pL2.Dclk1.N2IC mice correlated with changes to the transcriptomic landscape, most notably for the activation of oncogenic, proliferative pathways in BE tissues, in contrast to upregulated Wnt signalling in pL2.Dclk1.N2fl mice. Collectively, our data show that Notch activation in Dclk1-positive tuft cells in the gastric cardia can contribute to BE development.

13.
Gastroenterology ; 160(5): 1900-1901, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453230
14.
Carcinogenesis ; 42(3): 405-413, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33068426

RESUMO

Chronic inflammation induces Barrett's Esophagus (BE) which can advance to esophageal adenocarcinoma. Elevated levels of interleukin (IL)-1b, IL-6 and IL-8 together with activated nuclear factor-kappaB (NF-κB), have been identified as important mediators of tumorigenesis. The inflammatory milieu apart from cancer cells and infiltrating immune cells contains myofibroblasts (MFs) that express aSMA and Vimentin. As we observed that increased NF-κB activation and inflammation correlates with increased MF recruitment and an accelerated phenotype we here analyze the role of NF-κB in MF during esophageal carcinogenesis in our L2-IL-1B mouse model. To analyze the effect of NF-κB signaling in MFs, we crossed L2-IL-1B mice to tamoxifen inducible Vim-Cre (Vim-CreTm) mice and floxed RelA (p65fl/fl) mice to specifically eliminate NF-κB signaling in MF (IL-1b.Vim-CreTm.p65fl/fl). The interaction of epithelial cells and stromal cells was further analyzed in mouse BE organoids and patient-derived human organoids. Histological scoring of IL-1b.Vim-CreTm.p65fl/fl mice showed a significantly attenuated phenotype compared with L2-IL-1B mice, with mild inflammation, decreased metaplasia and no dysplasia. This correlated with decreased proliferation and increased differentiation in cardia tissue of IL-1b.Vim-CreTm.p65fl/fl compared with L2-IL-1B mice. Distinct changes of cytokines and chemokines within the local microenvironment in IL-1b.Vim-CreTm.p65fl/fl mice reflected the histopathological abrogated phenotype. Co-cultured NF-κB inhibitor treated MF with mouse BE organoids demonstrated NF-κB-dependent growth and migration. MFs are essential to form an inflammatory and procarcinogenic microenvironment and NF-κB signaling in stromal cells emerges as an important driver of esophageal carcinogenesis. Our data suggest anti-inflammatory approaches as preventive strategies during surveillance of BE patients.


Assuntos
Adenocarcinoma/imunologia , Esôfago de Barrett/imunologia , Transformação Celular Neoplásica/imunologia , Neoplasias Esofágicas/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição RelA/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Animais , Anti-Inflamatórios/uso terapêutico , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/patologia , Biópsia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle , Esôfago/imunologia , Esôfago/patologia , Humanos , Camundongos , Camundongos Knockout , Miofibroblastos/imunologia , Miofibroblastos/patologia , Organoides , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Células Estromais/imunologia , Células Estromais/patologia , Fator de Transcrição RelA/genética , Microambiente Tumoral/imunologia , Vimentina/metabolismo
15.
Gastroenterology ; 160(3): 781-796, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129844

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors have limited efficacy in many tumors. We investigated mechanisms of tumor resistance to inhibitors of programmed cell death-1 (PDCD1, also called PD-1) in mice with gastric cancer, and the role of its ligand, PD-L1. METHODS: Gastrin-deficient mice were given N-methyl-N-nitrosourea (MNU) in drinking water along with Helicobacter felis to induce gastric tumor formation; we also performed studies with H/K-ATPase-hIL1B mice, which develop spontaneous gastric tumors at the antral-corpus junction and have parietal cells that constitutively secrete interleukin 1B. Mice were given injections of an antibody against PD-1 or an isotype control before tumors developed, or anti-PD-1 and 5-fluorouracil and oxaliplatin, or an antibody against lymphocyte antigen 6 complex locus G (also called Gr-1), which depletes myeloid-derived suppressor cells [MDSCs]), after tumors developed. We generated knock-in mice that express PD-L1 specifically in the gastric epithelium or myeloid lineage. RESULTS: When given to gastrin-deficient mice before tumors grew, anti-PD-1 significantly reduced tumor size and increased tumor infiltration by T cells. However, anti-PD-1 alone did not have significant effects on established tumors in these mice. Neither early nor late anti-PD-1 administration reduced tumor growth in the presence of MDSCs in H/K-ATPase-hIL-1ß mice. The combination of 5-fluorouracil and oxaliplatin reduced MDSCs, increased numbers of intra-tumor CD8+ T cells, and increased the response of tumors to anti-PD-1; however, this resulted in increased tumor expression of PD-L1. Expression of PD-L1 by tumor or immune cells increased gastric tumorigenesis in mice given MNU. Mice with gastric epithelial cells that expressed PD-L1 did not develop spontaneous tumors, but they developed more and larger tumors after administration of MNU and H felis, with accumulation of MDSCs. CONCLUSIONS: In mouse models of gastric cancer, 5-fluorouracil and oxaliplatin reduce numbers of MDSCs to increase the effects of anti-PD-1, which promotes tumor infiltration by CD8+ T cells. However, these chemotherapeutic agents also induce expression of PD-L1 by tumor cells. Expression of PD-L1 by gastric epithelial cells increases tumorigenesis in response to MNU and H felis, and accumulation of MDSCs, which promote tumor progression. The timing and site of PD-L1 expression is therefore important in gastric tumorigenesis and should be considered in design of therapeutic regimens.


Assuntos
Infecções por Helicobacter/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/imunologia , Administração Oral , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrinas/genética , Infecções por Helicobacter/induzido quimicamente , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter felis/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Metilnitrosoureia/administração & dosagem , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/microbiologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/microbiologia , Microambiente Tumoral/imunologia
16.
Gut ; 70(2): 330-341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32393543

RESUMO

OBJECTIVE: Long-standing chronic pancreatitis is an established risk factor for pancreatic ductal adenocarcinoma (PDAC). Interleukin-1ß (IL-1ß) has been associated in PDAC with shorter survival. We employed murine models to investigate the mechanisms by which IL-1ß and chronic pancreatitis might contribute to PDAC progression. DESIGN: We crossed LSL-Kras +/G12D;Pdx1-Cre (KC) mice with transgenic mice overexpressing IL-1ß to generate KC-IL1ß mice, and followed them longitudinally. We used pancreatic 3D in vitro culture to assess acinar-to-ductal metaplasia formation. Immune cells were analysed by flow cytometry and immunohistochemical staining. B lymphocytes were adoptively transferred or depleted in Kras-mutant mice. B-cell infiltration was analysed in human PDAC samples. RESULTS: KC-IL1ß mice developed PDAC with liver metastases. IL-1ß treatment increased Kras+/G12D pancreatic spheroid formation. CXCL13 expression and B lymphocyte infiltration were increased in KC-IL1ß pancreata. Adoptive transfer of B lymphocytes from KC-IL1ß mice promoted tumour formation, while depletion of B cells prevented tumour progression in KC-IL1ß mice. B cells isolated from KC-IL1ß mice had much higher expression of PD-L1, more regulatory B cells, impaired CD8+ T cell activity and promoted tumorigenesis. IL-35 was increased in the KC-IL1ß pancreata, and depletion of IL-35 decreased the number of PD-L1+ B cells. Finally, in human PDAC samples, patients with PDAC with higher B-cell infiltration within tumours showed significantly shorter survival. CONCLUSION: We show here that IL-1ß promotes tumorigenesis in part by inducing an expansion of immune-suppressive B cells. These findings point to the growing significance of B suppressor cells in pancreatic tumorigenesis.


Assuntos
Linfócitos B/imunologia , Carcinoma Ductal Pancreático/etiologia , Tolerância Imunológica/imunologia , Neoplasias Pancreáticas/etiologia , Pancreatite/complicações , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Citometria de Fluxo , Interleucina-1beta/efeitos adversos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Pancreatite/etiologia , Pancreatite/imunologia
17.
Gut ; 70(4): 654-665, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32709613

RESUMO

BACKGROUND AND AIMS: The gastric epithelium undergoes continuous turnover. Corpus epithelial stem cells located in the gastric isthmus serve as a source of tissue self-renewal. We recently identified the transcription factor Mist1 as a marker for this corpus stem cell population that can give rise to cancer. The aim here was to investigate the regulation of the Mist1+ stem cells in the response to gastric injury and inflammation. METHODS: We used Mist1CreERT;R26-Tdtomato mice in two models of injury and inflammation: the acetic acid-induced ulcer and infection with Helicobacter felis. We analysed lineage tracing at both early (7 to 30 days) and late (30 to 90 days) time points. Mist1CreERT;R26-Tdtomato;Lgr5DTR-eGFP mice were used to ablate the corpus basal Lgr5+ cell population. Constitutional and conditional Wnt5a knockout mice were used to investigate the role of Wnt5a in wound repair and lineage tracing from the Mist1+ stem cells. RESULTS: In both models of gastric injury, Mist1+ isthmus stem cells more rapidly proliferate and trace entire gastric glands compared with the normal state. In regenerating tissue, the number of traced gastric chief cells was significantly reduced, and ablation of Lgr5+ chief cells did not affect Mist1-derived lineage tracing and tissue regeneration. Genetic deletion of Wnt5a impaired proliferation in the gastric isthmus and lineage tracing from Mist1+ stem cells. Similarly, depletion of innate lymphoid cells, the main source of Wnt5a, also resulted in reduced proliferation and Mist1+ isthmus cell tracing. CONCLUSION: Gastric Mist1+ isthmus cells are the main supplier of regenerated glands and are activated in part through Wnt5a pathway.

18.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197448

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/patologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulinas/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Mol Gastroenterol Hepatol ; 11(4): 1119-1138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33249238

RESUMO

BACKGROUND & AIMS: Histidine decarboxylase (HDC), the histamine-synthesizing enzyme, is expressed in a subset of myeloid cells but also marks quiescent myeloid-biased hematopoietic stem cells (MB-HSCs) that are activated upon myeloid demand injury. However, the role of MB-HSCs in dextran sulfate sodium (DSS)-induced acute colitis has not been addressed. METHODS: We investigated HDC+ MB-HSCs and myeloid cells by flow cytometry in acute intestinal inflammation by treating HDC-green fluorescent protein (GFP) male mice with 5% DSS at various time points. HDC+ myeloid cells in the colon also were analyzed by flow cytometry and immunofluorescence staining. Knockout of the HDC gene by using HDC-/-; HDC-GFP and ablation of HDC+ myeloid cells by using HDC-GFP; HDC-tamoxifen-inducible recombinase Cre system; diphtheria toxin receptor (DTR) mice was performed. The role of H2-receptor signaling in acute colitis was addressed by treatment of DSS-treated mice with the H2 agonist dimaprit dihydrochloride. Kaplan-Meier survival analysis was performed to assess the effect on survival. RESULTS: In acute colitis, rapid activation and expansion of MB-HSC from bone marrow was evident early on, followed by a gradual depletion, resulting in profound HSC exhaustion, accompanied by infiltration of the colon by increased HDC+ myeloid cells. Knockout of the HDC gene and ablation of HDC+ myeloid cells enhance the early depletion of HDC+ MB-HSC, and treatment with H2-receptor agonist ameliorates the depletion of MB-HSCs and resulted in significantly increased survival of HDC-GFP mice with acute colitis. CONCLUSIONS: Exhaustion of bone marrow MB-HSCs contributes to the progression of DSS-induced acute colitis, and preservation of quiescence of MB-HSCs by the H2-receptor agonist significantly enhances survival, suggesting the potential for therapeutic utility.

20.
Onco Targets Ther ; 13: 10567-10580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116635

RESUMO

Background: Murine bone marrow-derived myofibroblasts (BMFs) have previously been shown to promote gastric cancer growth. However, whether BMFs promote gastric cancer cell metastasis remains largely unknown. Methods: Wound healing assay, Transwell invasion and migration assay and 3D organotypic co-culture systems were conducted to study the effects of BMFs on invasion and migration of gastric cancer cells and the invasion and migration ability of gastric cancer stem cell-like cells (CSC-LCs) induced by BMFs. We employed two animal model to study the role of BMFs on the in vivo metastasis of gastric cancer cells and the metastatic ability of gastric BMF-induced CSC-LCs. A human gastric cancer tissue microarray and TCGA gastric cancer database were analysed to study the relationship between the expression of IL-6 and TGF-ß1 and clinicopathological characteristics and survival in gastric cancer. Results: We found that BMFs promoted the in vitro migration and invasion of gastric cancer cells. BMFs promoted liver, lung, subcutaneous, and splenic metastases of MKN28 cells in the spleen injection liver metastasis model and co-injection of caudal vein (IOCV) mouse model. BMFs reprogrammed non-gastric cancer stem cell (CSC) to CSC-LCs and enhanced CSC-LC migration and metastasis. BMF-derived IL-6 and gastric cancer cell-secreted TGF-ß1 mediated the interaction between BMFs and gastric cancer cells, promoting tumour metastasis. BMFs enhanced the expressions of STAT3 and p-STAT3 in co-cultured gastric cancer cells. A combination of Napabucasin and Galunisertib exhibited the strongest inhibition of cell migration compared to when administered alone. Gastric cancer tissue array and TCGA database indicated that the overexpression of IL-6 and TGF-ß1 was associated with gastric cancer metastasis. Conclusion: Our results demonstrated that BMFs promote gastric cancer metastasis through the activation of the TGF-ß1 and IL-6/STAT3 signalling pathways. Targeting the inhibition of these interactions may be a potent therapeutic strategy for addressing gastric cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...