Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 385: 121580, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31740310

RESUMO

Municipal solid waste incineration fly ash (MSWI-FA) is a kind of hazardous waste, and it is of great significance to treat it harmlessly and resourcefully. This study proposes the preparation of sulphoaluminate cementitious materials using water-washed MSWI-FA, flue-gas desulfurization gypsum, and aluminum ash. The changes in the composition and morphology of MSWI-FA before and after washing were investigated, and the effects of various washing conditions on the removal rate of chloride salt from MSWI-FA were analyzed. The effect of firing temperature on the mineral content of the sulphoaluminate cementitious material was also investigated. In addition, the strength and heavy metal leaching characteristics of the corresponding materials were tested. The results show that more than 90% of chloride salts were removed by water washing MSWI-FA two times. Using MSWI-FA as the main raw material, the sulphoaluminate cementitious material containing mostly calcium sulphoaluminate and dicalcium silicate could be prepared successfully at 1270 °C; the amount of MSWI-FA in the raw material can be as high as 35% (dry weight). Moreover, the sulphoaluminate cementitious material can effectively solidify heavy metals in the raw materials. The leaching concentrations of eight heavy metal ions, i.e., Cu, Zn, Cd, Pb, Cr, Ni, Ba, and As are far lower than the concentration limits set by national standards.

2.
Sci Total Environ ; 701: 134881, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31710900

RESUMO

During unplanned indirect potable reuse, treated wastewater that contains effluent organic matter (EOM) enters the drinking water source, resulting in different toxicity from natural organic matter (NOM) in surface water during chlorination. This study found that, during chlorination, EOM formed more total organic halogen (TOX) and highly toxic nitrogenous disinfection byproducts (DBPs) like dichloroacetonitrile and trichloronitromethane than NOM did. Oxidative stress including both reactive oxygen species (ROS) and reactive nitrogen species (RNS) in Chinese hamster ovary (CHO) cells substantially increased when exposed to chlorinated EOM and chlorinated NOM. The excessive ROS damaged biological macromolecules including DNA, RNA to form 8-hydroxy-(deoxy)guanosine and proteins to form protein carbonyls. Impaired macromolecule further triggered cell cycle arrest at the S and G2 phases, led to cell apoptosis and eventual necrosis. Cytotoxicity and genotoxicity of chlorinated EOM were both higher than those of chlorinated NOM. Adding the blocker L-buthionine-sulfoximine of intracellular antioxidant glutathione demonstrating that oxidative stress might be responsible for toxicity. ROS was further identified to be the main cause of toxicity induction. These findings highlight the risk from chlorinated EOM in the case of unplanned indirect potable reuse, because it showed higher level of cytotoxicity and genotoxicity than chlorinated NOM via inducing more ROS in mammalian cells.


Assuntos
Halogenação , Poluentes Químicos da Água/toxicidade , Purificação da Água , Animais , Células CHO , Cricetulus , Desinfecção , Testes de Toxicidade
3.
Environ Int ; 135: 105369, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841803

RESUMO

Effluents from wastewater treatment plants (WWTPs) may contain various pollutants with potential toxic effects. Ozonation is widely applied to purify wastewater, which may influence the toxicity and water quality indices simultaneously. The main goal of this study was to reveal influence of ozonation on toxicity of WWTP effluents and to find the surrogates for toxicity changes. Cytotoxicity and DNA double-strand break (DSB) effect of WWTP effluents were measured based on Chinese hamster ovary (CHO) cells. Changes of water quality parameters and molecular weight distribution of WWTP effluents were also measured. The organic extracts in WWTP effluents were shown to decrease the cell viability. Besides, an increased level of DNA DSBs was found in cells when exposed to the organic extracts. Ozonation significantly eliminated cytotoxicity and DNA DSB-based genotoxicity of WWTP effluents, with removal rates of 53-66% and 51-76% for cytotoxicity and genotoxicity, respectively, with 10 mg/L ozone dose. Although the DOC contents in WWTP effluents were hardly removed by ozonation, the chromophores and fluorophores were significantly eliminated. Organic matter in WWTP effluents mainly consists of fractions with molecular weight (MW) < 500 Da. Ozonation generally decreased the fluorescence intensity and UV254 values of all the MW fractions, but increased the DOC contents of the 100-500 Da fraction. During ozonation, the removal rates of UV254 and SUVA254 were significantly correlated to the removal rates of both cytotoxicity and genotoxicity. UV254 might be an ideal surrogate for cytotoxicity and genotoxicity reduction during wastewater ozonation.

4.
J Hazard Mater ; 386: 121959, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884360

RESUMO

Methylisothiazolinone (MIT) is a widely used non-oxidizing biocide for membrane biofouling control in reverse osmosis (RO) systems usually with high dosages. However, few investigations have focused on MIT removal through bio-processes, since it is highly bio-toxic. This study proposed a novel biotreatment approach for efficient MIT degradation by Scenedesmus sp. LX1, a microalga with strong resistance capability against extreme MIT toxicity. Results showed that MIT (3 mg/L) could be completely removed within 4 days' cultivation with a half-life of only 0.79 d. Biodegradation was the primary removal mechanism and this metabolic process did not rely on bacterial consortia, soluble algal products secretion or algal growth. The main pathway was proposed as ring cleavage followed by methylation and carboxylation through the identification of MIT transformation products. MIT biodegradation followed the pseudo-first-order kinetics under growth control. A new kinetic model was presented to depict the MIT removal considering algal growth, and this model could be used for generally describing non-nutritive contaminants biodegradation. The algal biodegradation capability was independent of the initial biocide concentration, and MIT removal could be enhanced by increasing the initial algal density. Our results highlight the potential application of algal cultivation for MIT-containing wastewater biotreatment, such as RO concentrate.

5.
Biosci Rep ; 40(1)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31854447

RESUMO

Rheumatoid arthritis (RA), a chronic systemic disease, is featured with inflammatory synovitis, which can lead to destruction on bone and cartilage and even cause disability. Emerging studies demonstrated that Fibroblast-like synoviocytes (FLS) is a vital cellular participant in RA progression. Long non-coding RNAs (lncRNAs) are also reported to participate in the pathogenesis of RA. In our present study, lncRNA microarray analysis was applied to screen out lncRNAs differentially expressed in RA FLS. Among which, cytoskeleton regulator RNA (LINC00152) presented biggest fold change. Gain- or loss-of function assays were further carried out in RA FLS, and the results revealed that LINC00152 promoted proliferation but induced apoptosis in RA FLS. Furthermore, up-regulation of LINC00152 may induce promotion of Wnt/ß-catenin signaling pathway in RA FLS. Mechanistically, we found that forkhead box M1 (FOXM1) transcriptionally activated LINC00152 in RA FLS. Additionally, LINC00152 positively regulated FOXM1 via sponging miR-1270. In conclusion, the present study focused on elucidating the function of FOXM1/LINC00152 positive feedback loop in RA FLS and its association with Wnt/ß-catenin signaling.

6.
Water Res ; 168: 115150, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606556

RESUMO

The disinfection performance of a flow-through electrode system (FES) was systematically evaluated using different carbonized (C1, C2, and C3) and corresponding graphitized (G1, G2, and G3) carbon fiber felt (CFF) electrodes. The physicochemical and electrochemical properties were characterized to identify the differences among CFFs. Graphitized CFFs (gCFFs) can achieve complete inactivation of Escherichia coli (>6 log) at the voltage of 3 V and flux of 120-3600 L/(m2 h) for high conductivity and chemical stability, while carbonized CFFs (cCFFs) only achieved around 1 log removal with obvious carbon corrosion. For the gCFFs, G1 (>6 log removal) with higher conductivity, better graphite structure, and larger surface area (related to fiber diameter and density) presented better disinfection performance at the flow rate of 30 mL/min than G2 (∼3 log) and G3(∼1 log). Furthermore, no regrowth and reactivation of bacteria occurred during the storage under visible light illumination after FES treatment. Three parallel FESs with G1 were operated continuously for one week (24 h per day, 7 days) treating the solution with an E. coli concentration ranging from 106 to 107 CFU/mL at the applied voltage of 3 V and the flow rate of 20 mL/min. No live bacteria were detected in the effluent of any of these three FESs. In-situ sampling experiments demonstrated that the inactivation of bacteria on anode was the dominant mechanism for FES treatment, which can be attributed to the sequential adsorption, direct-oxidation and desorption process on anode, instead of indirect oxidation by generating chemical oxidants. In addition, hydroxide ion generated from cathode reaction enhanced anode adsorption and inactivation of bacteria by providing alkaline environment. Combining the analysis results of material properties and disinfection performance, the gCFF-based FES was suggested to be a low-cost, high-efficiency, and safe alternative for future water disinfection.


Assuntos
Fibra de Carbono , Purificação da Água , Desinfecção , Eletrodos , Escherichia coli
7.
Sci Total Environ ; 702: 135006, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726351

RESUMO

Multi-walled carbon nanotubes (MWCNTs) modified nickel foams (MWCNTs-NF) were developed with an electrophoretic deposition methodology for microwave (MW) assisted catalysis and processing enhancement. A nickel foam (NF) was selected to serve the dual purpose both as the MW absorbing catalytic materials and the matrix for MWCNTs loading in order to maximize the recyclability of the catalysts. The effects of electrophoretic voltage and concentration of electrophoretic fluid on the morphology and deposition characteristics of MWCNTs on the NF matrix were investigated. It was found that the MWCNTs-NF composite material resulted in strong enhancement of MW absorptivity with synergistic heat-generating effects that were not observed when MWCNTs or NF was exposed to MW alone. The combination of NF and MWCNTs brought a catalytic total organic carbon removal efficiency of 97% in wastewater treatment, while that using bare MWCNTs and NF were only 65.2% and 79.3%, respectively. The coupling of NF with MWCNTs led to the formation of additional MW-absorbing channels and focal sites with strong MW absorptivity, which in turn gave rise to the synergistic MW heating effects. This research highlights the great prospect of the MW-assisted reaction enhancement using the MWCNTs-NF composite material as the catalyst in wastewater treatment and other similar engineering applications.

8.
J Hazard Mater ; : 121898, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31879104

RESUMO

Elimination of commercial Kathon biocide (methyl-isothiazolinone (MIT) and chloro-methyl-isothiazolinone (CMIT) mixture) by ozonation was investigated in real RO influent and concentrate. MIT and CMIT had different reactivities (second-order-rate-constants) with molecular ozone and OH. Ozonation of biocides followed an instantaneous phase (16.6 %-36.9 % contributions) and then a gradual phase (33.6 %-78.8 % contributions). Newly developed kinetics including both phases demonstrated that O3 oxidation contributed 25.6 %-39.8 % and <10 % of MIT and CMIT eliminations, respectively, and OH oxidation contributed 60.2 %-74.4 % and >90 % of MIT and CMIT eliminations, respectively. OH oxidation at the instantaneous phase accounted 15.7 %-37.9 % of total OH oxidation. Mass ratios of O3/DOC of 0.24 and 0.32 were needed for ∼80 % eliminations of MIT and CMIT in RO concentrate, respectively. The kinetics including both phases allowed a para-chlorobenzoic acid indicator model to predict MIT and CMIT elimination better than that including gradual ozonation only, with 58.9 %-96.0 % lower relative error. The attenuations of electron-donating-moiety indicated that O3 may preferentially react with chromophores through aromatic cleavage and electrophilic extraction, while •OH may non-selectively react with chromophores through predominant electrophilic addition. A surrogate model for biocide elimination by UVA254 loss was proposed to be nonlinear rather than linear, which reduced 31.8 %-71.3 % surrogating error.

9.
Sci China Life Sci ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705360

RESUMO

Free radical-induced oxidative stress contributes to the development of metabolic syndromes (Mets), including overweight, hyperglycemia, insulin resistance and pro-inflammatory state. Most free radicals are generated from the mitochondrial electron transport chain; under physiological conditions, their levels are maintained by efficient antioxidant systems. A variety of transcription factors have been identified and characterized that control gene expression in response to oxidative stress status. Natural antioxidant compounds have been largely studied for their strong antioxidant capacities. This review discusses the recent progress in oxidative stress and mitochondrial dysfunction in Mets and highlights the anti-Mets, anti-oxidative, and anti-inflammatory effect of polyphenols as potential nutritional therapy.

11.
Cancer Manag Res ; 11: 8135-8144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564973

RESUMO

Background: This study was designed to investigate the impact of serum magnesium (Mg) levels on hypocalcemia after thyroidectomy. Patients and methods: In total, 242 patients with differentiated thyroid cancer were retrospectively analyzed. Results: Multivariate regression analysis showed hypomagnesemia was an independent risk factor for hypocalcemia (P<0.001). While Mg in low levels (0.66 mmol/L ≤ Po-Mg ≤0.74 mmol/L) increased the risk of hypocalcemia, postoperative serum Ca (Po-Ca) levels were significantly lower in patients with hypomagnesemia than in patients with normomagnesemia (P=0.01), and the former patients suffered significant decreases in serum Ca (P=0.02). Compared to patients with a mild decline of serum Mg after surgery (ΔMg <0.17), serum Ca decline significantly increased (P<0.001) in patients with a severe decline of serum Mg (ΔMg ≥0.17), while the change in amounts of parathyroid hormone (PTH) after surgery was similar between the two groups (P>0.05). In patients with normal Po-Ca levels, hypomagnesemia increased the risk of symptoms related to hypocalcemia by 4.478 times (OR =5.478, 95% CI 1.724-17.403). Conclusion: Hypomagnesemia, or even a low serum Mg level within the normal range, can increase the risk of hypocalcemia. After excluding the potential effects of PTH on serum magnesium and calcium, serum Mg reduction is one of the most important factors that influences postoperative serum Ca reduction. What's more, hypomagnesemia is closely linked with symptoms.

12.
Environ Sci Pollut Res Int ; 26(31): 32345-32359, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605357

RESUMO

In this paper, we synthesized a polyglycerol(PG)-mediated superparamagnetic graphene oxide nanocomposite called MGON, consisting of PG-modified superparamagnetic iron oxide nanoparticles (SPION) covalently bonded to PG-functionalized graphene oxide (GO). MGON exhibits better dispersibility and colloidal stability in aqueous solution than the magnetic graphene oxide reported in the literature. The physicochemical properties of MGON were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and UV-vis spectroscopy. Applied to the adsorption of tetracycline (TC) in aqueous solution as an adsorbent, the MGON showed excellent adsorption performance with the maximum adsorption capacity of 684.93 mg/g at 298 K. Adsorption kinetics and isotherm results indicate that the adsorption process conforms to the pseudo-second-order kinetics and Langmuir isotherm models. Adsorption thermodynamics has confirmed that the adsorption process of TC on MGON is spontaneous and endothermic. With the increase of temperature, the adsorption capacity of MGON increases continuously, and the adsorption capacity of MGON is the largest when the pH value is 7. Furthermore, the π-π and cation-π interaction, amidation reaction, and hydrogen bonding can be used to explain the adsorption mechanism of TC on MGON. Desorption and regeneration experiments showed that MGON still had 67.65% regenerative performance after five cycles. Hence, MGON is a promising adsorbent in the removal of tetracycline from wastewater.

13.
Nanoscale ; 11(39): 17992-18008, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31560348

RESUMO

Flexible aqueous Zn battery has exhibited great potential as a power source for flexible and wearable electronic devices due to its unique features, such as high safety, low cost, and eco-friendliness. Numerous studies on flexible Zn batteries have been reported and exciting achievements have been obtained in the past few years. However, there are still many problems in the electrode design and the assembly process to acquire desirable flexibility without sacrificing the capacity. This review summarizes the up-to-date advances in flexible Zn batteries. We first introduce the recent progresses in anodes, cathodes and solid-state electrolytes. Special emphases are then put on the discussions of differences between various flexible current collectors or substrates. Electrode preparation techniques and flexible battery assembly technologies are also compared and discussed. Finally, challenges toward further developments of flexible Zn batteries with high capacity, excellent flexibility and cycling stability are proposed. Future research trends and highlights are suggested as well.

14.
ACS Appl Mater Interfaces ; 11(40): 36800-36806, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31539219

RESUMO

The oxygen vacancy profile in LaCoO3 exhibits rich phases with distinct structures, symmetries, and magnetic properties. Exploration of the lattice degree of freedom of LaCoO3 in the transition between these different structural phases may provide a route to enable new functionality in oxide materials with potential applications. To date, the oxygen vacancy profile transition in LaCoO3 has mainly been induced by transition-metal doping or thermal treatment. Epitaxial strain was proposed to compete with the lattice degree of freedom but has not yet been rationalized. Here, the experimental findings of strain-inhibited structural transition from perovskite to brownmillerite during the electromigration of oxygen vacancies in epitaxial LaCoO3 thin films are demonstrated. The results indicate that the oxygen vacancy ordering phase induced by the electric field is suppressed locally by both epitaxial strain field and external loads shown by in situ aberration-corrected (scanning)/ transmission electron microscopy. The demonstrated complex interplay between the electric and strain fields in the structural transitions of LaCoO3 opens up prospects for manipulating new physical properties by external excitations and/or strain engineering of a substrate.

15.
Anal Chem ; 91(20): 13191-13197, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31522496

RESUMO

Aflatoxin B1 (AFB1) contamination is one of the most critical global issues in food safety. The high carcinogenic nature necessitates rapid and specific methods for the determination of AFB1 in foodstuffs at ultratrace levels. Here, we report an enhanced bienzymatic chemiluminescence competitive immunoassay for ultrasensitive and high-throughput determination of AFB1. In this assay, protein G was first coated on the wells of a microplate for recognizing the Fc fragment of anti-AFB1 mAbs to reduce the antibody dosage and guarantee high immunological reaction efficiency. The target AFB1 competed with glucose oxidase labeled AFB1 for the limited anti-AFB1 mAbs in the wells of the microplate. p-Bromophenol was employed as an enhancer to obtain intense and long-lasting chemiluminescence. The utilization of an enhancer and bienzymatic catalysts effectively improved the detection sensitivity. The developed method offered a good linearity over 5 orders of magnitude, a detection limit of 5 pg L-1, and a relative standard deviation of 1.9% for AFB1. The application of the developed method to the analysis of grain samples gave quantitative recoveries from 94.0% to 97.0%. The developed method provides a universal platform for high-throughput, ultrasensitive, and high specific detection of pollutants or nutrients in foods.

16.
Materials (Basel) ; 12(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450812

RESUMO

Carbon nanotube-based conductive polymer composites (CPC) showed great potentials for self-sensing and in situ structural health monitoring systems. Prediction of the long-term performance for such materials would be a meaningful topic for engineering design. In this work, the changing behavior of the long-term resistance of a multi-walled carbon nanotubes/epoxy resin composite gasket was studied under different temperature and loading conditions. Glass transition strongly influenced the resistance behavior of the composite during the thermal creep process. Similar to classical Kelvin-Voigt creep model, a model considering both the destruction and recovery processes of the conductive network inside the CPC was established. The long-term resistance variation can be predicted based on the model, and the results provided here may serve as a useful guide for further design of smart engineering structural health monitoring systems.

17.
Genomics ; 2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31454518

RESUMO

BACKGROUND: Brucellosis is a bacterial disease caused by Brucella infection. Brucella abortus strain A19 is a spontaneously attenuated vaccine strain that has been used in vaccination of cattle against brucellosis. Until now, the physiological and molecular mechanisms of A19 are still unknown. RESULTS: In this paper, the whole-genome sequence of B. abortus A19 was performed using Illumina Hiseq 4000 and PacBio sequencing technology and comparative genomics analysis were carried out with the whole genome sequences of B. abortus strains S19. This analysis indicated that the two vaccine strains have a high degree of similarity in genomic structure. We further analysis of the difference in genomic structure between A19 and S19. And found some differential genes such as eryC, eryD and eryF. Of the other different proteins between A19 and S19, such as outer membrane protein, 2-isopropylmalate synthase, citramalate synthase, GntR family transcriptional regulator and ABC transporters, no clear effects related to bacterial virulence were found, pending further investigation. CONCLUSION: The data presented here provide a reasonable basis for designing Brucella vaccines that can be used in other strains.

18.
Talanta ; 205: 120094, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450466

RESUMO

An aptamer-based colorimetric-phosphorescent assay was developed for the detection of isocarbophos. The colorimetric assay relied on the aggregation of gold nanoparticles (AuNPs) caused by the competitive binding of aptamer between isocarbophos and AuNPs in the presence of a high salt concentration. The further addition of persistent luminescence nanorods (PLNRs) into the system showed the phosphorescence sensitively proportional to the concentration of isocarbophos, due to the inner filter effect between PLNRs and AuNPs. The assay showed good linearity within 50-500 µg/L and 5-160 µg/L, and limit of detection of 7.1 µg/L and 0.54 µg/L in colorimetry and phosphorescence mode, respectively. The feasibility of this approach for food analysis was demonstrated with the sensitive and selective determination of isocarbophos residues in vegetables.


Assuntos
Aptâmeros de Nucleotídeos/química , Malation/análogos & derivados , Resíduos de Praguicidas/análise , Verduras/química , Técnicas Biossensoriais/métodos , Brassica rapa/química , Colorimetria/métodos , DNA de Cadeia Simples/química , Germânio/química , Ouro/química , Alface/química , Limite de Detecção , Medições Luminescentes/métodos , Malation/análise , Malation/química , Nanopartículas Metálicas/química , Nanotubos/química , Óxidos/química , Resíduos de Praguicidas/química
19.
Nat Chem ; 11(8): 730-736, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31308494

RESUMO

Two-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2). When growing graphene by chemical vapour deposition on a copper foil, fluorine released from the decomposition of a metal fluoride placed near the copper foil greatly accelerates the growth of the graphene (up to a rate of ~200 µm s-1). Theoretical calculations show that it does so by promoting decomposition of the methane feedstock, which converts the endothermic growth process to an exothermic one. We further show that the presence of fluorine also accelerates the growth of two-dimensional hexagonal boron nitride and WS2.

20.
Opt Lett ; 44(13): 3290-3293, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259942

RESUMO

Broadband ∼2 µm amplified spontaneous emissions with a full width at half-maximum (FWHM) varying from ∼206 to ∼234 nm were obtained from the Ho/Cr/Tm:yttrium aluminum garnet (YAG) crystal derived fibers, which were drawn using a molten core method. The core-cladding structure of the as-drawn fibers was preserved completely, and the core was found to be amorphous. What is more, an all-fiber-integrated passively mode-locked laser based on an 8 cm long Ho/Cr/Tm:YAG crystal derived all-glass fiber was built which, to the best of our knowledge, is the first demonstration of a mode-locked fiber laser in a similar YAG derived fiber. The mode-locked pulses operate at 1.95 µm with duration of ∼118 ps, and the repetition rate is ∼9.5 MHz. Limited by the bandwidth of the fiber grating used in the laser cavity, the mode-locking spectrum has a relatively narrow FWHM of ∼0.09 nm. These results suggest that the broadband YAG crystal derived all-glass fibers are promising for ultrafast fiber lasers applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA