Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Comput Methods Programs Biomed ; 230: 107338, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36640605

RESUMO

BACKGROUND AND OBJECTIVE: The non-invasive assessment of microcirculatory resistance could improve the treatment of cerebrovascular stenosis. This study aimed to validate a novel computational strategy for determining the reference value of microcirculatory resistance in patients with cerebrovascular stenosis. METHODS: We reconstructed a patient-specific 3-dimensional model of the extracranial-intracranial arteries. A computational strategy incorporating patient-specific pressure-wire measurements was developed to estimate the blood flow rate and microcirculatory resistance. Throughout the computational fluid dynamics (CFD) simulation, the boundary conditions were adjusted according to the developed algorithm. Pearson correlation and Bland-Altman analyses were used to quantify the correlation and agreement between CFD calculations and transcranial Doppler (TCD) assessment. RESULTS: A strong correlation was found between the CFD-based and invasive distal pressure measurements (P<0.0001). Meanwhile, the CFD and TCD-based flow measurements were highly correlated (r = 0.853; P = 0.001). Furthermore, there was a correlation between the mean velocity measured by CFD and the mean velocity measured by TCD (r = 0.777; P<0.001). Good agreement was observed between the mass flow by CFD simulation and volumetric flow by TCD (P = 0.0266, mean difference: -0.7814 mmHg, limits of agreement, -4.0905 - 2.5276). However, the mean velocities from CFD simulation were in less agreement with those from the TCD assessment (P = 0.3992, mean difference, -0.0485; limits of agreement, -0.6141 - 0.5170). Results of the CFD simulation indicate that the flow resistance varies greatly between individuals. CONCLUSIONS: The computational strategy of incorporating patient-specific pressure-wire measurements may serve as an effective approach to evaluate the actual reference values of microcirculatory resistance. In addition, an individualized assessment of non-invasive flow resistance is necessary for the accurate determination of non-invasive cerebrovascular pressure.

2.
J Funct Biomater ; 14(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36662091

RESUMO

To explore the potential applicability of chitosan (CTS), we prepared aldehyde chitosan (CTS-CHO) with chitosan and sodium periodate via oxidation reaction and then a chitosan-based hydrophilic and antibacterial coating on the surface of poly (lactic acid) (PLA) film was developed and characterized. The oxidation degree was determined by Elemental analyser to be 12.53%, and a Fourier transform infrared spectroscopy was used to characterize the structure of CTS-CHO. It was evident that CTS-CHO is a biocompatible coating biomaterial with more than 80% cell viability obtained through the Live/Dead staining assay and the alamarBlue assay. The hydrophilic and antibacterial CTS-CHO coating on the PLA surface was prepared by ultrasonic atomization assisted LbL assembly technique due to Schiff's base reaction within and between layers. The CTS-CHO coating had better hydrophilicity and transparency, a more definite industrialization potential, and higher antibacterial activity at experimental concentrations than the CTS coating. All of the results demonstrated that the ultrasonic atomization-assisted LbL assembly CTS-CHO coating is a promising alternative for improving hydrophilicity and antibacterial activity on the PLA surface. The functional groups of CTS-CHO could react with active components with amino groups via dynamic Schiff's base reaction and provide the opportunity to create a drug releasing surface for biomedical applications.

3.
Food Chem ; 410: 135473, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36641910

RESUMO

The potential binding of cyanidin-3-O-glucoside (C3G) to bovine lactoferrin (BLF) and ovotransferrin (OTF) at pH 3, 5, and 7 was investigated for the first time. Multiple spectroscopic techniques demonstrated pH-dependent alterations in the conformational characteristics of BLF and OTF upon complexation with C3G. Fluorescence quenching assays showed that their highest binding affinity was at pH 7. Hydrophobic interactions and hydrogen bonds were found to be crucial in molecular dynamics simulations but with significantly lower probabilities of formation at pH 3 (p < 0.05). At pH 7, electrostatic attraction can occur for the negatively charged forms of C3G, and the well-maintained native structures of BLF and OTF may be favorable for stabilizing the C3G binding sites. This study sheds light on the stronger interaction of C3G with BLF/OTF at pH 7, which may have implications for future applications such as anthocyanin stabilization or the development of functional food ingredients.

4.
Nanoscale ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692239

RESUMO

Metal-support interaction plays an important role in the catalysis reaction, and an effective support is highly desired in the hybrid catalyst construction. Herein, we demonstrated an effective catalyst system by coupling Pt nanoparticles over the ZIF-67-derived CoP/NC support for methanol oxidation reaction (MOR) in acidic and alkaline solutions. The results indicated that the Pt-CoP/NC catalyst showed high catalytic activity and stability for MOR owing to the oxophilic properties of CoP and the strong metal-support interaction, as well supported by the electrochemical measurements and the spectroscopic analysis, which far exceeded that of the Pt-Co/NC and commercial Pt/C catalysts. Specifically, the forward peak current density of the Pt-CoP/NC catalyst was 74.2 mA cm-2 for MOR in an acidic electrolyte, which was 2.2 times higher than that of a commercial Pt/C catalyst. Further, in an alkaline electrolyte, the Pt-CoP/NC catalyst showed the highest forward peak current density of 118.6 mA cm-2, which was 4.5 times higher than that of a commercial Pt/C catalyst. High catalytic kinetics and stability for MOR were also carefully discussed. Moreover, the Pt-CoP/NC catalyst exhibited excellent anti-poisoning ability in comparison to the Pt-Co/NC and commercial Pt/C catalysts with the help of the CO-stripping technique. The current work would be instructive for high-performance catalyst system construction based on the ZIF-67-derived CoP/NC support.

5.
J Cardiothorac Surg ; 18(1): 31, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650548

RESUMO

BACKGROUND: The effect of gender on patients with mitral valve regurgitation (MR) undergoing transcatheter mitral valve repair (TMVR) remains to be defined. The aim of the present study is a comprehensive meta-analysis of studies that investigate differences between men and women after TMVR. METHODS: A systematic literature search was carried out on eight databases to collect all relevant studies on gender-related outcomes of TMVR before March 1, 2021. The main outcomes of interest were mortality, cardiac function, MR class and other complications. RESULTS: A total of eight literatures were included, all of which were retrospective observational studies. Compared to women patients, men had lower postoperative New York Heart Association (NYHA) class (OR = 1.53, 95%CI [1.23, 1.91], P = 0.0001) and higher incidence of postoperative acute kidney injury (AKI) (OR = 1.25, 95%CI [1.16, 1.34], P < 0.05). There were no significant difference on mortality in 30 days (OR = 0.95, 95%CI [0.81, 1.11], P = 0.53) and in 2 years (OR = 0.99, 95%CI [0.75, 1.30], P = 0.93), mitral valve regurgitation (MR) class (OR = 1.30, 95%CI [0.97, 1.75], P = 0.08) and incidence of myocardial infarction (MI) (OR = 0.88, 95%CI [0.65, 1.18], P = 0.38), stroke (OR = 0.80, 95%CI [0.63, 1.02], P = 0.08) and bleeding in hospital (OR = 0.84, 95%CI [0.59, 1.19], P = 0.32). CONCLUSIONS: Our meta-analysis demonstrates that men undergoing TMVR have worse preoperative diseases (diabetes mellitus, coronary artery disease, renal failure and myocardial infarction) while they have superior postoperative NYHA class at one-year. There are no significantly difference in other indexes between men and women.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Infarto do Miocárdio , Masculino , Humanos , Feminino , Valva Mitral/cirurgia , Resultado do Tratamento , Implante de Prótese de Valva Cardíaca/efeitos adversos , Estudos Retrospectivos , Cateterismo Cardíaco/efeitos adversos , Infarto do Miocárdio/etiologia
6.
Colloids Surf B Biointerfaces ; 222: 113032, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36463608

RESUMO

Recently, an extensive research effort has been directed toward the improvement of nonviral transfection vectors, such as polymeric materials. The macromolecular structure of polymers has a substantial effect on their transfection efficacy. In this context, the modern advances in polymer production techniques, such as the deactivation-enhanced radical atom transfer polymerization (DE-ATRP), have been fundamental for the synthesis of controlled architecture nanomaterials. In this study, hyperbranched poly(ß-pinene)-PDMAEMA-PEGDMA nanometric copolymers were synthesised at high conversion via DE-ATRP using different concentrations of ß-pinene for gene delivery applications. The structural characterization and the biological performance of the materials were investigated. The copolymers' molar mass (10,434-16,438 mol l-1), dispersity, and conversion (90-95%) varied significantly with ß-pinene proportion on the polymerizations. The polymer-gene complexes generated (280-110 nm) presented excellent solution stability due to the ß-pinene segment on the copolymers. Gene delivery and transfection were highly dependent on the copolymer composition. The copolymers containing the highest ß-pinene proportions exhibited the best results with high transfection effectivity. In conclusion, the incorporation of ß-pinene in DMAEMA-PEGMA copolymer formulations is a renewable option to improve the materials' branching ratio, polyplex stability, and gene delivery performance without causing cytotoxic effects.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36469267

RESUMO

The presented work analyzes the energy prices, climate shock, and health deprivation nexus in the BRICS economies for the period 1995-2020. Panel ARDL-PMG technique is used to reveal the underexplored linkages. The long-run estimates of energy prices are observed to be negatively significant to the health expenditure and life expectancy model, whereas, positively significant to the climate change model. These findings suggest that energy prices significantly reduce health expenditures and life expectancy and, thus, increase the death rate in the BRICS economies. The long-run country-wise estimate of energy prices is found negatively significant in case of Brazil, India, China, and South Africa. Alongside, the group-wise significance of CO2 emissions is discovered to be negatively, positively, and insignificant in the cases of life expectancy, death rate, and health expenditure models, respectively. Besides, country-wise long-run estimate of CO2 emissions witnesses negative significance for Russia, India, China, and South Africa.

8.
Front Microbiol ; 13: 1056884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532454

RESUMO

Objectives: To investigate the effect and its mechanisms of different antiviral agents on the immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with chronic hepatitis B (CHB). Methods: A total of 125 patients with CHB receiving nucleos(t)ide analogs (NAs) monotherapy or combined with Peg-interferon-alpha (Peg-IFNα) therapy and 29 healthy controls (HCs) were enrolled. Adverse reactions (ADRs) and levels of neutralizing antibody (NAb), immunoglobulin G (IgG), immunoglobulin M (IgM), and peripheral cytokines post-vaccination were analyzed. Results: All ADRs were tolerable in CHB patients. Overall, no significant difference was observed in the antibody levels between patients and HCs after two doses of vaccination. An inverse correlation between NAb, IgG titers and the days after two doses was found in non-IFN group but not in IFN group. Correspondingly, peripheral interferon-γ levels were significantly higher in IFN group than in non-IFN group. After a booster dose, NAb and IgG antibodies were maintained at high levels in NA-treated patients. Conclusion: Peg-interferon-alpha-based therapy may be beneficial for maintaining the immunogenicity of SARS-CoV-2 vaccines in CHB patients, which may be related to the high levels of IFN-γ induced by Peg-IFNα therapy. A booster dose can effectively recall the robust and long-lasting immunogenicity of SARS-CoV-2 vaccines.

9.
Nurs Open ; 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401838

RESUMO

AIMS: To systematically summarize the existing evidence regarding the effects of exercise interventions on physical and psychological outcomes in frail older adults and appraise the quality and strength of the evidence. DESIGN: An overview protocol. METHODS: A literature search of PubMed, Embase, Web of Science, CINAHL and Cochrane Database of Systematic Reviews will be conducted to identify relevant systematic reviews with or without meta-analysis on exercise interventions for frail older adults. Two independent reviewers will select articles, extract data and appraise the quality of included reviews. Physical and psychological outcomes will be synthesized using narrative summaries. The methodological quality of included reviews and the quality of evidence will also be assessed. RESULTS: This overview will present the evidence on the effects of exercise interventions on physical and psychological outcomes for frail older adults, contributing to the implementation of exercise interventions to improve health outcomes for this population.

10.
ACS Appl Mater Interfaces ; 14(48): 54304-54312, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416183

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) are appealing for light emitting applications because their high internal conversion efficiency facilitates the amplified spontaneous emission (ASE) under low pumping. In addition, the integration of photonic crystals and microcavities with optical quantum emitters provides a unique opportunity to manipulate their light emissions and generate coherent light sources for quantum photonics. Here, this work describes a two-dimensional (2D) plasmonic lattice of Al nanocone array (Al NCA), which can confine the light at the tip. Light confinement by the enhancement effect supports narrow linewidth resonances as optical feedback for the ASE of UCNPs doped with sensitizer Yb3+ ions/emitter Ho3+ ions/relaxator Ce3+ ions. An off-angle ASE with an enhancement of 19-fold from UCNPs is achieved by propagating lattice plasmons from the Al NCA. Moreover, this upconverting ASE can be switched on or off by adjusting the polarization state of the incident pump light, and photonic band engineering can be used to manipulate it intentionally. This composite plasmonic system opens prospective applications for the ASE as directional emission, real-time tunable wavelengths, controlled multimode lasing, and optical switches.

11.
ACS Appl Mater Interfaces ; 14(48): 54338-54348, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417300

RESUMO

Microbial transmissions via membrane surface and single-use plastic-induced pollution are two urgent societal problems. This research introduces a scalable fabrication strategy for fully biobased antibacterial and ultraviolet-B block polylactic acid (PLA) films integrating natural coatings and nanopatterns via ultrasonic atomization spray coating and thermal nanoimprinting lithography (TNIL) techniques, respectively. Tannic acid (TA) and gallic acid (GA) were formulated prior to TNIL using anode aluminum oxide template. Results reveal that TA and GA inks display intense adsorption in the UVB region. Plasma increases the hydrophilicity of PLA films for fast spreading of ink droplets. Micron-sized pillars observed on film confirm the successful structural replication. TA-coated PLA films display higher transparency than GA-coated ones. Nanopatterned PLA films have a modest antibacterial resistance of c. 45% against Escherichia coli. TA/GA coatings, however, impart PLA films with a bacterial reduction rate of over 80%. The integration of a TA or GA coating with nanopatterns further promotes the antibacterial rate up to 98%. The cytocompatibility of TA and GA demonstrates that the engineered film can potentially be applied as food packaging. Finally, a continuous mass production strategy is proposed along with an outline of the associated challenges and costs. This study provides a scalable strategy to the sustainable development of eco-benign and functional films.

12.
Bioorg Med Chem ; 75: 117096, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395681

RESUMO

Fibrosis, a chronic disease with high morbidity and mortality, is mainly characterized by excessive accumulation of extracellular matrix (ECM). At present, pathogenesis of fibrosis is incompletely understood, and there is an urgent need to develop safe and effective drugs. In this study, we designed and synthesized a series of novel small-molecule compounds through structural modification and fragment hybridization. Among them, a potential anti-fibrosis drug compd.1 was founded to be able to dose-dependently down-regulate ACTA2 and CTGF mRNA levels in human hepatic stellate cells (LX-2) treated with TGF-ß. In addition, compd.1 significantly improved the bridging fibrosis and collagen content in the CCl4-induced liver fibrosis mice model. Moreover, compd.1 reduced lung inflammation and fibrotic area in bleomycin-induced pulmonary fibrosis mice model. These findings suggested that compd.1 is a promising candidate for further anti-fibrosis researches, and extended chemical space might help us to explore better anti-fibrosis drug.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36413108

RESUMO

Radical polymerization (RP) of multivinyl monomers (MVMs) provides a facile solution for manipulating polymer topology and has received increasing attention due to their industrial and academic significance. Continuous efforts have been made to understand their mechanism, which is the key to regulating materials structure. Modelling techniques have become a powerful tool that can provide detailed information on polymerization kinetics which is inaccessible by experiments. Many publications have reported the combination of experiments and modelling for free radical polymerization (FRP) and reversible-deactivation radical polymerizations (RDRP) of MVMs. Herein, a minireview is presented for the most important modelling techniques and their applications in FRP/RDRP of MVMs. This review hopes to illustrate that the combination of modelling and wet experiments can be a great asset to polymer researchers and inspire new thinking for the future MVMs experiment optimization and product design.

14.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364669

RESUMO

Many polymeric gene delivery nano-vectors with hyperbranched structures have been demonstrated to be superior to their linear counterparts. The higher delivery efficacy is commonly attributed to the abundant terminal groups of branched polymers, which play critical roles in cargo entrapment, material-cell interaction, and endosome escape. Hyperbranched poly(ß-amino ester)s (HPAEs) have developed as a class of safe and efficient gene delivery vectors. Although numerous research has been conducted to optimise the HPAE structure for gene delivery, the effect of the secondary amine residue on its backbone monomer, which is considered the non-ideal termination, has never been optimised. In this work, the effect of the non-ideal termination was carefully evaluated. Moreover, a series of HPAEs with only ideal terminations were synthesised by adjusting the backbone synthesis strategy to further explore the merits of hyperbranched structures. The HPAE obtained from modified synthesis methods exhibited more than twice the amounts of the ideal terminal groups compared to the conventional ones, determined by NMR. Their transfection performance enhanced significantly, where the optimal HPAE candidates developed in this study outperformed leading commercial benchmarks for DNA delivery, including Lipofectamine 3000, jetPEI, and jetOPTIMUS.

15.
Bioorg Med Chem ; 75: 117073, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347120

RESUMO

With increased unhealthy dietary patterns and a sedentary lifestyle, the prevalence of hyperuricemia is growing rapidly, placing a tremendous burden on the public health system. Persistent hyperuricemia in extreme cases induces gout, gouty arthritis, and other metabolic diseases. Benzbromarone is a potent human urate transporter 1 (URAT1) inhibitor that is widely used as a uric acid-lowering drug. Recent studies indicated that benzbromarone can also activate farnesoid X receptor (FXR), whereas its agonistic activity on FXR is rather poor. Mounting evidence suggested that the etiology of gout is directly related to NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes, and FXR suppresses the expression of NLRP3 in various ways. Therefore, the dual URAT1 inhibitor and FXR agonist may exert synergistic effects on decreasing uric acid (UA) levels and inhibiting inflammation. To obtain a better dual URAT1 inhibitor and FXR agonist, we performed the structure-based drug design (SBDD) strategy to improve the FXR activation of benzbromarone by forming strong interactions with ARG331 in FXR binding pocket. All of these efforts lead to the identification of compound 4, which exerts better activity on FXR and uric acid-lowering effect than benzbromarone.

16.
Mar Drugs ; 20(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355015

RESUMO

Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.


Assuntos
Alteromonadaceae , Vibrio , Alteromonadaceae/genética , Alteromonadaceae/metabolismo , Sefarose/metabolismo , RNA Ribossômico 16S/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Vibrio/genética , Vibrio/metabolismo , DNA/metabolismo
17.
Front Cardiovasc Med ; 9: 941917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330016

RESUMO

Background: Rheumatic heart disease (RHD) remains the leading cause of preventable death and disability in children and young adults, killing an estimated 320,000 individuals worldwide yearly. Materials and methods: We utilized the Bayesian age-period cohort (BAPC) model to project the change in disease burden from 2020 to 2030 using the data from the Global Burden of Disease (GBD) Study 2019. Then we described the projected epidemiological characteristics of RHD by region, sex, and age. Results: The global age-standardized prevalence rate (ASPR) and age-standardized incidence rate (ASIR) of RHD increased from 1990 to 2019, and ASPR will increase to 559.88 per 100,000 population by 2030. The global age-standardized mortality rate (ASMR) of RHD will continue declining, while the projected death cases will increase. Furthermore, ASPR and cases of RHD-associated HF will continue rising, and there will be 2,922,840 heart failure (HF) cases in 2030 globally. Female subjects will still be the dominant population compared to male subjects, and the ASPR of RHD and the ASPR of RHD-associated HF in female subjects will continue to increase from 2020 to 2030. Young people will have the highest ASPR of RHD among all age groups globally, while the elderly will bear a greater death and HF burden. Conclusion: In the following decade, the RHD burden will remain severe. There are large variations in the trend of RHD burden by region, sex, and age. Targeted and effective strategies are needed for the management of RHD, particularly in female subjects and young people in developing regions.

18.
J Drug Target ; : 1-10, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36315421

RESUMO

Metabolic syndromes are a group of metabolic disorders for which the molecular mechanisms are still unclear. An increasing number of studies have implicated metabolic syndrome in the association with inflammation. Currently, lipsomes is known to improve nanoparticle hydrophobicity. Meanwhile, in drug delivery systems the application of cholesterol, which is commonly used to stabilise liposomal structures, has essentially no pharmacological effect on liposomes. Herein, we developed an 'anti-inflammatory liposome' (Phy-Lip) to effectively handle these challenges via employing Phytosterol instead of cholesterol. Different with the conventional liposomes, Phy-Lip is a much more brilliant nanoparticle with anti-inflammatory functions. In Phy-Lip, cholesterol was substituted by Phy, which works as membrane stabiliser, anti-inflammatory adjuvant at the same time. The experimental results show that Phy-Lip has a strong anti-inflammatory effect, and improves Metabolic syndromes. This study aims to provide a way to solve the challenge.

19.
Front Oncol ; 12: 944476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248984

RESUMO

Background: Many studies have shown that metabolism-related lncRNAs may play an important role in the pathogenesis of colon cancer. In this study, a prognostic model for colon cancer patients was constructed based on metabolism-related lncRNAs. Methods: Both transcriptome data and clinical data of colon cancer patients were downloaded from the TCGA database, and metabolism-related genes were downloaded from the GSEA database. Through differential expression analysis and Pearson correlation analysis, long non-coding RNAs (lncRNAs) related to colon cancer metabolism were obtained. CRC patients were divided into training set and verification set at the ratio of 2:1. Based on the training set, univariate Cox regression analysis was utilized to determine the prognostic differential expression of metabolic-related lncRNAs. The Optimal lncRNAs were obtain by Lasso regression analysis, and a risk model was built to predict the prognosis of CRC patients. Meanwhile, patients were divided into high-risk and low-risk groups and a survival curve was drawn accordingly to determine whether the survival rate differs between the two groups. At the same time, subgroup analysis evaluated the predictive performance of the model. We combined clinical indicators with independent prognostic significance and risk scores to construct a nomogram. C index and the calibration curve, DCA clinical decision curve and ROC curve were obtained as well. The above results were all verified using the validation set. Finally, based on the CIBERSORT analysis method, the correlation between lncRNAs and 22 tumor-infiltrated lymphocytes was explored. Results: By difference analysis, 2491 differential lncRNAs were obtained, of which 226 were metabolic-related lncRNAs. Based on Cox regression analysis and Lasso results, a multi-factor prognostic risk prediction model with 13 lncRNAs was constructed. Survival curve results suggested that patients with high scores and have a poorer prognosis than patients with low scores (P<0.05). The area under the ROC curve (AUC) for the 3-year survival and 5-year survival were 0.768 and 0.735, respectively. Cox regression analysis showed that age, distant metastasis and risk scores can be used as independent prognostic factors. Then, a nomogram including age, distant metastasis and risk scores was built. The C index was 0.743, and the ROC curve was drawn to obtain the AUC of the 3-year survival and the 5-year survival, which were 0.802 and 0.832, respectively. The above results indicated that the nomogram has a good predictive effect. Enrichment analysis of KEGG pathway revealed that differential lncRNAs may be related to chemokines, amino acid and sugar metabolism, NOD-like receptor and Toll-like receptor activation as well as other pathways. Finally, the analysis results based on the CIBERSORT algorithm showed that the lncRNAs used to construct the model had a strong polarized correlation with B cells, CD8+T cells and M0 macrophages. Conclusion: 13 metabolic-related lncRNAs affecting the prognosis of CRC were screened by bioinformatics methods, and a prognostic risk model was constructed, laying a solid foundation for the research of metabolic-related lncRNAs in CRC.

20.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36261028

RESUMO

Interface engineering of two-dimensional (2D) materials by conductive polymer modification is one of the valid methods to promote hydrogen evolution reaction (HER) performance. Herein, we report a simple and universal strategy for the synthesis of polypyrrole (PPy) modified Rh metallene (Rh@PPy metallene) towards an efficient pH-universal HER. Due to the unique ultrathin 2D metallene structure and the optimized electronic structure between the metallene-PPy surfaces, the as-prepared Rh@PPy metallene not only exhibits excellent HER activity with low overpotentials of 16, 39 and 42 mV in 0.5 M H2SO4, 1 M KOH, and 1 M phosphate buffer solution at current density of 10 mA cm-2, but also displays outstanding stability and durability. This work provides a well-founded pathway to constructe metallene-organic interfaces for various electrocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...