Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Inorg Chem ; 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410454

RESUMO

Good aqueous dispersibility of metal chalcogenide nanoclusters with an atomically precise structure is desirable to achieve tiny and uniform cluster-based "quantum dots". However, there are big challenges toward this goal, especially for the large-sized nanoclusters without covalently bonded organic ligands, because the strong electrostatic interactions between closely packed negatively charged nanoclusters and protonated organic amine templates in the crystal lattice impede the dispersion of cluster-based bulk crystalline samples. Here, we report two iso-structured crystalline metal chalcogenides composed of discrete supertetrahedral T4-MInS nanoclusters with the formulas of [M4In16S35]14- (denoted ISC-16-MInS, M = Zn and Fe), which adopt a sodalite-net loose-packing pattern in the crystal lattice and display superior dispersibility in water and some organic solvents as compared to other cases composed of the same type of nanoclusters with close-packing pattern. The dispersed T4-MInS nanoclusters were unexpectedly stabilized by adsorbing a certain number of H+ ions on surface S sites and simultaneously dropping partial surface S2- ions, instead of being surrounded by protonated organic amines, which was clearly verified by electrospray ionization mass spectrometry analysis. Notably, ISC-16-ZnInS behaves with superior performance on photodegradation of rhodamine B dye to ISC-16-FeInS. This is attributed to their difference in divalent-metal-directed separation efficiency of the photogenerated electrons and holes. This work holds great promise for the potential functional applications of uniformly dispersed semiconductor nanoclusters, such as cluster-based thin film devices, photoelectrodes, and photocatalysis.

2.
Sci Rep ; 10(1): 6395, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286381

RESUMO

Head and neck cancer is the sixth most common malignancy around the world, and 90% of cases are squamous cell carcinomas. In this study, we performed a systematic investigation of the immunogenomic landscape to identify prognostic biomarkers for head and neck squamous cell carcinoma (HNSCC). We analyzed the expression profiles of immune-related genes (IRGs) and clinical characteristics by interrogating RNA-seq data from 527 HNSCC patients in the cancer genome atlas (TCGA) dataset, including 41 HPV+ and 486 HPV- samples. We found that differentially expressed immune genes were closely associated with patient prognosis in HNSCC by comparing the differences in gene expression between cancer and normal samples and performing survival analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate the biological functions of the differentially expressed immunogenomic prognosis-related genes. Two additional cohorts from the Oncomine database were used for validation. 65, 56 differentially expressed IRGs was associated with clinical prognosis in total and HPV- samples, respectively. Furthermore, we extracted 10, 11 prognosis-related IRGs from 65, 56 differentially expressed IRGs, respectively. They were significantly correlated with clinical prognosis and used to construct the prognosis prediction models. The multivariable ROC curves (specifically, the AUC) were used to measure the accuracy of the prognostic models. These genes were mainly enriched in several gene ontology (GO) terms related to immunocyte migration and receptor and ligand activity. KEGG pathway analysis revealed enrichment of pathways related to cytokine-cytokine receptor interactions, which are primarily involved in biological processes. In addition, we identified 63 differentially expressed transcription factors (TFs) from 4784 differentially expressed genes, and 16 edges involving 18 nodes were formed in the regulatory network between differentially expressed TFs and the high-risk survival-associated IRGs. B cell and CD4 T cell infiltration levels were significantly negatively correlated with the expression of prognosis-related immune genes regardless of HPV status. In conclusion, this comprehensive analysis identified the prognostic IRGs as potential biomarkers, and the model generated in this study may enable an accurate prediction of survival.

3.
J Mol Cell Cardiol ; 140: 68-76, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32147517

RESUMO

The large conductance Ca2+-activated K+ (BK) channels, composed of the pore-forming α subunits (BK-α, encoded by KCNMA1 gene) and the regulatory ß1 subunits (BK-ß1, encoded by KCNMB1 gene), play a unique role in the regulation of coronary vascular tone and myocardial perfusion by linking intracellular Ca2+ homeostasis with excitation-contraction coupling in coronary arterial smooth muscle cells (SMCs). The nuclear factor erythroid 2-related factor 2 (Nrf2) belongs to a member of basic leucine zipper transcription factor family that regulates the expression of antioxidant and detoxification enzymes by binding to the antioxidant response elements (AREs) of these target genes. We have previously reported that vascular BK-ß1 protein expression was tightly regulated by Nrf2. However, the molecular mechanism underlying the regulation of BK channel expression by Nrf2, particularly at transcription level, is unknown. In this study, we hypothesized that KCNMA1 and KCNMB1 are the target genes of Nrf2 transcriptional regulation. We found that BK channel protein expression and current density were diminished in freshly isolated coronary arterial SMCs of Nrf2 knockout (KO) mice. However, BK-α mRNA expression was reduced, but not that of BK-ß1 mRNA expression, in the arteries of Nrf2 KO mice. Promoter-Nrf2 luciferase reporter assay confirmed that Nrf2 binds to the ARE of KCNMA1 promoter, but not that of KCNMB1. Adenoviral expression and pharmacological activation of Nrf2 increased BK-α and BK-ß1 protein levels and enhanced BK channel activity in coronary arterial SMCs. Hence, our results indicate that Nrf2 is a key determinant of BK channel expression and function in vascular SMCs. Nrf2 facilitates BK-α expression through a direct increase in gene transcription, whereas that on BK-ß1 is through a different mechanism.

4.
Biomolecules ; 10(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054132

RESUMO

Anthocyanin contributes to the coloration of pear fruit and enhances plant defenses. Members of the ethylene response factor (ERF) family play vital roles in hormone and stress signaling and are involved in anthocyanin biosynthesis. Here, PbERF22 was identified from the lanolin-induced red fruit of 'Zaosu' pear (Pyrus bretschneideri Rehd.) using a comparative transcriptome analysis. Its expression level was up- and down-regulated by methyl jasmonate and 1-methylcyclopropene plus lanolin treatments, respectively, which indicated that PbERF22 responded to the jasmonate- and ethylene-signaling pathways. In addition, transiently overexpressed PbERF22 induced anthocyanin biosynthesis in 'Zaosu' fruit, and a quantitative PCR analysis further confirmed that PbERF22 facilitated the expression of anthocyanin biosynthetic structural and regulatory genes. Moreover, a dual luciferase assay showed that PbERF22 enhanced the activation effects of PbMYB10 and PbMYB10b on the PbUFGT promoter. Therefore, PbERF22 responses to jasmonate and ethylene signals and regulates anthocyanin biosynthesis. This provides a new perspective on the correlation between jasmonate-ethylene crosstalk and anthocyanin biosynthesis.

5.
Biochim Biophys Acta Mol Cell Res ; 1867(4): 118646, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31926210

RESUMO

The large conductance voltage- and Ca2+-activated K+ (BK) channel is a major ionic determinant of vascular tone, vasodilation, and blood pressure. The activity of BK channels is regulated in part by membrane presentation. Rab GTPase (Rab) regulates important cellular processes, including ion channel membrane trafficking. We hypothesize that Rab4a participates in the regulation of BK channel α-subunit (BK-α) membrane trafficking. We found that vascular BK-α interacts physically with Rab4a. Co-expression of dominant-negative Rab4a reduced BK-α surface expression, whereas that of constitutively-active Rab4a augmented BK-α surface presentation. These novel findings suggest that vascular BK channel membrane expression is regulated by Rab4a through channel membrane trafficking.

6.
Artif Intell Med ; 102: 101756, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31980095

RESUMO

Early detection of skin cancer is very important and can prevent some skin cancers, such as focal cell carcinoma and melanoma. Although there are several reasons that have bad impacts on the detection precision. Recently, the utilization of image processing and machine vision in medical applications is increasing. In this paper, a new image processing based method has been proposed for the early detection of skin cancer. The method utilizes an optimal Convolutional neural network (CNN) for this purpose. In this paper, improved whale optimization algorithm is utilized for optimizing the CNN. For evaluation of the proposed method, it is compared with some different methods on two different datasets. Simulation results show that the proposed method has superiority toward the other compared methods.

7.
Biol Chem ; 401(3): 367-376, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31318684

RESUMO

The objective of this study was to reveal a novel mechanism underlying the progression of atherosclerosis (AS) associated with endothelial cells (ECs) and neutrophils. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to observe the morphology and particle size of isolated exosomes. Western blotting was applied to examine exosomal markers, while the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The production of inflammatory cytokines and reactive oxygen species (ROS) was determined by an enzyme-linked immunosorbent assay (ELISA) and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Circulating neutrophil extracellular traps (NETs) were represented by myeloperoxidase (MPO)-DNA complexes. NETs formation was assessed using immunofluorescence microscopy. Atherosclerotic lesion development was measured by Oil Red O (ORO) staining. In the results, MALAT1 expression was increased in exosomes extracted from oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). When co-cultured with human neutrophils, exosomes derived from ox-LDL-treated HUVECs were revealed to promote NETs formation, which was mediated by exosomal MALAT1. Furthermore, ox-LDL-treated HUVECs-derived exosomes were demonstrated to trigger hyperlipidemia, inflammatory response and NETs release in a mouse model of AS. In conclusion, exosomal MALAT1 derived from ox-LDL-treated ECs initiated NETs formation, which in turn deteriorated AS.

8.
Nanoscale ; 12(2): 772-784, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830183

RESUMO

The direct electroreduction of CO2 to ratio-tunable syngas (CO + H2) is an appealing solution to provide important feedstocks for many industrial processes. However, low-cost, Earth-abundant yet efficient and stable electrocatalysts for composition-adjustable syngas have still not been realized for practical applications. Herein, new hierarchical 0D/2D heterostructures of SnO2 nanoparticles (NPs) confined on CuS nanosheets (NSs) were designed to enable CO2 electroreduction to a wide-range syngas (CO/H2: 0.11-3.86) with high faradaic efficiency (>85%), remarkable turnover frequency (96.12 h-1) and excellent durability (over 24 h). Detailed experimental characterization studies together with theoretical calculations manifest that the ascendant catalytic performance is not only attributed to the heterostructure of ultrasmall SnO2 NPs homogeneously confined on ultrathin CuS NSs, which endows the maximum exposure of active sites and faster charge transfer, but is also accounted by the strong interaction between well-defined SnO2 and CuS interfaces, which modulated reaction free-energies of reaction intermediates and hence improved the activity of CO2 electroreduction to highly ratio-tunable syngas. This work provides a better understanding and a new strategy for intermediate regulation by interface engineering of hereostructures for CO2 reduction and beyond.

9.
J Anat ; 236(1): 50-71, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31498899

RESUMO

The holotypes of euharamiyidan Arboroharamiya allinhopsoni and Arboroharamiya jenkinsi preserve the auditory and hyoid bones, respectively. With additional structures revealed by micro-computerized tomography (CT) and X-ray micro-computed laminography (CL), we provide a detailed description of these minuscule bones. The stapes in the two species of Arboroharamiya are similar in having a strong process for insertion of the stapedius muscle. The incus is similar in having an almond-shaped body and a slim short process, in addition to a robust stapedial process with a short lenticular process preserved in A. allinhopsoni. The plate-like ectotympanic in the two species of Arboroharamiya is similar and comparable to that of Qishou jizantang. The surangular in the two species has a fan-shaped body and a needle-shaped anterior process. The malleus, ectotympanic, and surangular are fully detached from the dentary and should have functioned exclusively for hearing. All the auditory bones of Arboroharamiya display unique features unknown in other mammaliaforms. Moreover, hyoid elements are found in the two species of Arboroharamiya and co-exist with the five auditory bones in the holotype of A. allinhopsoni. The element interpreted as the stylohyal is similar to the bone identified as the ectotympanic in Vilevolodon. We reconstruct the auditory apparatus of Arboroharamiya and compare it with that of Vilevolodon as well as those in extant mammals and basal mammaliaforms. The comparison shows diverse morphological patterns of the auditory region in mammaliaforms. In particular, those of Vilevolodon and Arboroharamiya differ significantly: the former has a mandibular middle ear, whereas the latter possesses a definitive mammalian middle ear. It is puzzling that the two sympatric and dentally similar taxa have such different auditory apparatuses. In light of the available evidence, we argue that the mandibular middle ear reconstructed in Vilevolodon encounters many problems, and the so-called ectotympanic in Vilevolodon may be interpreted as a stylohyal; thus, the dilemma can be resolved.

10.
Plant Physiol Biochem ; 144: 312-323, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31606716

RESUMO

Plants are subjected to a variety of abiotic stresses during their lifetime, and drought and salt stress are some of the main causes of reduced crop yields. Previous studies have shown that AREB/ABFs within bZIP transcription factors are involved in plant drought and salt stress responses in an ABA-dependent manner. However, the properties and functions of AREB/ABFs in Fagopyrum tataricum, a cereal with good resistance to abiotic stresses, are poorly understood. In this study, a gene encoding an AREB/ABF, designated FtbZIP83, was first isolated from Tartary buckwheat. Expression analysis in Tartary buckwheat indicated that FtbZIP83 was significantly induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). The overexpression of FtbZIP83 in Arabidopsis resulted in increased drought/salt tolerance, which was attributed not only to higher proline (Pro) contents and antioxidant enzyme activity in transgenic lines compared with controls but also to the lower reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. In addition, we found that FtbZIP83 was able to respond to drought and salt stress by upregulating the transcript abundance of downstream ABA-inducible gene. Furthermore, promoter sequence analysis showed that ABREs were present, and the activity of the FtbZIP83 promoter in transgenic Arabidopsis after drought stress was significantly higher than that under normal conditions. Based on the potential signalling pathways involved in AREB/ABFs, we also screened for the interaction protein FtSnRK2.6/2.3, which may phosphorylate FtbZIP83. Collectively, these results provide evidence that FtbZIP83, as a positive regulator, responds to drought/salt stress via an ABA-dependent signalling pathway composed of SnRK2-AREB/ABF.


Assuntos
Secas , Fagopyrum/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
11.
Inorg Chem ; 58(18): 12415-12421, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483642

RESUMO

Many strategies to optimize molybdenum selenide based electrocatalysts for hydrogen evolution reaction (HER) have been explored; however, the modulation of molybdenum selenide on the molecular scale remains an ongoing challenge. Here, we synthesized a new molecular HER electrocatalyst based on a molybdenum-selenium cluster (Mo3Se13) and further realized its modulation by precise sulfur substitution at the molecular level to enhance the HER activity. The density functional theory (DFT) calculations demonstrated that the substituted sulfur could promote the hydrogen adsorption process and thus improve the HER performance. This work not only realizes the selective replacement of the bridging selenium atom with a sulfur atom in the molybdenum-selenium cluster for the first time but also provides a precise model for illustrating the structure-property relationship in electrocatalysis on the molecular level.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(8): 830-835, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31416511

RESUMO

OBJECTIVE: To study the effects of different melatonin treatment regimens on the proliferation of neural stem cells (NSCs) and long-term histopathology in neonatal rats with hypoxic-ischemic brain damage (HIBD), and to identify better melatonin treatment regimens. METHODS: A total of 96 Sprague-Dawley rats aged 7 days were randomly divided into normal control, HIBD, single-dose immediate melatonin treatment (SDIT), and 7-day continuous melatonin treatment (7DCT) groups, with 24 rats in each group. The rat model of HIBD was prepared by isolation and electrocoagulation of the right common carotid artery as well as hypoxic treatment in a hypoxic chamber (oxygen concentration 8.00% ±â€…0.01%) for 2 hours. On day 7 after modeling, proliferating cell nuclear antigen/Nestin double-labeling immunofluorescence was used to measure the proliferation of endogenous NSCs in the subventricular zone (SVZ) and the hippocampal dentate gyrus (DG) region in 8 rats in each group, and Western blot was used to measure the protein expression of Nestin in brain. On day 28 after modeling, hematoxylin-eosin (HE) staining and Nissl staining were used to observe the changes in the histopathology and the number of pyramidal cells in the hippocampal CA1 region in 8 rats in each group. RESULTS: Immunofluorescent staining showed that compared with the HIBD group, the SDIT and 7DCT groups had a significant increase in the number of PCNA+Nestin+DAPI+ cells, and the 7DCT group had a significantly higher number than the SDIT group (P<0.01). Western blot showed that the SDIT and 7DCT groups had significantly higher protein expression of Nestin than the HIBD group, and the 7DCT group had significantly higher expression than the SDIT group (P<0.05). HE staining showed that the SDIT and 7DCT groups had alleviated cell injury, and Nissl staining showed that compared with the HIBD group, the SDIT and 7DCT groups had a significant increase in the number of pyramidal cells, and the 7DCT group had a significantly higher number than the SDIT group (P<0.01). CONCLUSIONS: Both single-dose immediate melatonin treatment and 7-day continuous melatonin treatment can promote the proliferation of endogenous NSCs and alleviate long-term histological injury in the brain of neonatal rats with HIBD. A 7-day continuous melatonin treatment has a better effect than single-dose immediate melatonin treatment.


Assuntos
Hipóxia-Isquemia Encefálica , Células-Tronco Neurais , Animais , Animais Recém-Nascidos , Encéfalo , Proliferação de Células , Melatonina , Neurônios , Ratos , Ratos Sprague-Dawley
13.
Thromb Res ; 182: 56-63, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450009

RESUMO

INTRODUCTION: Endotoxemia often results in systemic inflammatory response syndrome (SIRS), coagulation disturbance and acute lung injury (ALI), and such a condition is associated with the activation of platelets, leukocytes and vascular endothelial cells (VECs). P-selectin glycoprotein ligand 1 (PSGL-1) is a key regulatory molecule in the activation of platelets, leukocytes and VECs. However, it still remains largely unexplored whether PSGL-1 plays an important role in SIRS, coagulation dysfunction and ALI of endotoxemia. In the present study, we aimed to study the role of PSGL-1 in above-mentioned situations using endotoxemic mice. MATERIALS AND METHODS: An endotoxemia model was established in BALB/c mice via lipopolysaccharide (LPS) administration. Moreover, the mice were simultaneously injected with PSGL-1 antibody for intervention. The survival rate, morphologic changes of lung tissues, platelet-leukocyte adhesion, tissue factor expression on leukocytes, fibrinogen deposition in lung tissues, serum levels of inflammatory factors and the activation of VECs were determined. RESULTS: The results showed that the aggregation and recruitment of platelets and leukocytes in lung tissues, the expression of tissue factor on leukocytes, the serum levels of inflammatory factors, the activation of VECs, and the fibrinogen deposition in lung tissues were increased in endotoxemic mice, which were significantly alleviated by administration of PSGL-1 antibody. Moreover, blockade of PSGL-1 markedly increased survival rate, and alleviated coagulation disturbance and lung injury in endotoxemic mice. CONCLUSIONS: Taken together, PSGL-1 played an important role in pathogenesis of SIRS and coagulation dysfunction and ALI in endotoxemic mice.

14.
Ecotoxicol Environ Saf ; 180: 483-490, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31121555

RESUMO

In this study, powdery aerobic activated sludge (PAAS) was first prepared, and the removal rate, sorption capacity and mechanism of sorption uranium on PAAS was investigated. Before and after sorption, the surface morphology and structure of PAAS were characterized systematically using the Fourier transform infrared spectrometer (FTIR), the X-ray photoelectron spectrometer (XPS), and the scanning electron microscope (SEM-EDX). In this work, the sorption mechanism and efficiency of uranium on the PAAS was study with static batch and ion exchange experiments, meanwhile, some influencing factors such as solution pH, contact temperature, adsorbent dose of PAAS and different initial uranium concentrations were studied. The batch sorption experiments illustrated that pH had a little effect in the process of sorption uranium on PAAS and it has a good removal capacity in a wide pH range (pH = 3-8). When the pH of solution was 7, the removal efficiency of about 93% for uranium when the initial concentration of uranium was 10 mg/L and the concentration of PAAS was 1  g/L. The XPS demonstrated that there are some active functional groups for instance carboxyl (-COOH), Hydroxyl (-OH), Amino (-NH2) and so on in the PAAS, and that all can combine with uranium. After sorption, there is an obviously U signal (marked in green) in the PAAS by charactering with the FE-SEM. In addition, kinetic parameters were fitted by the first-order kinetic (R2 = 0.9738) model and the second-order kinetic model (R2 = 0.9998), the pseudo-secondary kinetic model was better to illustrate the sorption process, so the chemical action was dominant, and existed physical sorption. The sorption isotherms date of PAAS was well-fitted to the Langmuir model (R2 = 0.9688). In the experiment of ion exchange, the concentration of Na+ in the solution hardly changed, the release of the other three ions was K+

Assuntos
Modelos Teóricos , Esgotos/química , Urânio/análise , Águas Residuárias/química , Poluentes Radioativos da Água/análise , Purificação da Água/métodos , Adsorção , Aerobiose , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Pós , Temperatura
15.
Inflammation ; 42(4): 1504-1510, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102123

RESUMO

In the present study, we aimed to investigate the effects of puerarin on the hyperpermeability of vascular endothelial cells induced by lipopolysaccharide (LPS) and its underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were pre-incubated with puerarin (25, 50, and 100 µM) for 1 h, and then exposed to LPS (1 µg/mL). The monolayer permeability of endothelial cells was assessed by measuring the paracellular flux of FITC-dextran 40,000 (FD40). The expression of vascular endothelial cadherin (VE-cadherin) in HUVECs was examined by Western blotting analysis. A total of 18 mice were randomly assigned into three groups as follows: control group, LPS group, and puerarin group. The pulmonary W/D ratio (wet-to-dry weight ratios) was calculated, and the lung morphology was examined. The levels of TNF-α and IL-1ß in cell supernatant and mouse serum were determined by ELISA. Compared with the control group, LPS obviously increased the flux of FD40 and the monolayer permeability, raised the levels of TNF-α and IL-1ß in cell supernatant, and reduced the VE-cadherin expression in HUVECs. However, puerarin (25, 50, and 100 µM) was able to relieve such LPS-induced increase in flux of FD40 and then reduce the hyperpermeability. Puerarin decreased the levels of TNF-α and IL-1ß in cell supernatant and increased the VE-cadherin expression in HUVECs (P < 0.05). Moreover, LPS obviously increased the levels of TNF-α and IL-1ß in mouse serum and elevated the pulmonary W/D ratios, resulting in lung injury. However, all of above-mentioned LPS-induced changes were improved by puerarin pre-treatment. Puerarin could alleviate LPS-induced hyperpermeability in endothelial cells via preventing downregulation of endothelial cadherin.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Isoflavonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-1beta/análise , Interleucina-1beta/metabolismo , Isoflavonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos , Substâncias Protetoras , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatadores
17.
Br J Nutr ; 121(11): 1279-1286, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30837009

RESUMO

Maternal one-carbon metabolism during pregnancy is crucial for fetal development and programming by DNA methylation. However, evidence on one-carbon biomarkers other than folate is lacking. We, therefore, investigated whether maternal plasma methyl donors, that is, choline, betaine and methionine, are associated with birth outcomes. Blood samples were obtained from 115 women during gestation (median 26·3 weeks, 90 % range 22·7-33·0 weeks). Plasma choline, betaine, methionine and dimethylglycine were measured using HPLC-tandem MS. Multivariate linear and logistic regression models were used to estimate the association between plasma biomarkers and birth weight, birth length, the risk of small-for-gestational-age and large-for-gestational-age (LGA). Higher level of maternal betaine was associated with lower birth weight (-130·3 (95 % CI -244·8, -15·9) per 1 sd increment for log-transformed betaine). Higher maternal methionine was associated with lower risk of LGA, and adjusted OR, with 95 % CI for 1 sd increase in methionine concentration was 0·44 (95 % CI 0·21, 0·89). Stratified analyses according to infant sex or maternal plasma homocysteine status showed that reduction in birth weight in relation to maternal betaine was only limited to male infants or to who had higher maternal homocysteine status (≥5·1 µmol/l). Higher maternal betaine status was associated with reduced birth weight. Maternal methionine was inversely associated with LGA risk. These findings are needed to be replicated in future larger studies.

18.
J Clin Neurosci ; 63: 27-31, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30837110

RESUMO

Narcolepsy is a life-long neurological disorder characterized by excessive daytime sleepiness (EDS) and cataplexy. At present, Sodium oxybate, modafinil, methylphenidate and other stimulants are recommended first-line therapies for narcolepsy but are difficult to obtain in China. One hundred forty-eight patients with narcolepsy were treated with antidepressants and administered the Epworth Sleepiness Scale (ESS) and the Maintenance of Wakefulness Test (MWT) before and after treatment from August 2012 to August 2017. The subjects were followed for 1-6 years after treatment. Improvement in sleepiness, cataplexy, cataplexy-like episodes, and antidepressant side effects were assessed. There were significant differences in the mean sleep latency (MSL) and sleep onset rapid eye movement periods (SOREMPs) in MWT and ESS scores, cataplexy and cataplexy-like episodes before and after treatment (p < 0.01). Venlafaxine demonstrated significantly greater improvements in MSL in the MWT (p < 0.01). Early awakenings and dry mouth were the most common adverse effects.


Assuntos
Antidepressivos/uso terapêutico , Modafinila/uso terapêutico , Narcolepsia/tratamento farmacológico , Cloridrato de Venlafaxina/uso terapêutico , Adulto , Antidepressivos/administração & dosagem , Antidepressivos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modafinila/administração & dosagem , Modafinila/efeitos adversos , Estudos Prospectivos , Cloridrato de Venlafaxina/administração & dosagem , Cloridrato de Venlafaxina/efeitos adversos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30834245

RESUMO

Waste cooking oil (WCO) is a sustainable alternative to raw vegetable oils and fats for biodiesel production considering both environmental and economic benefits. Raw glycerol from WCO-based biodiesel production (GWCO) is difficult to utilize via biological method, as multiple toxic impurities have inhibitory effects on microbial growth especially for pure cultures. In this work, four microbial consortia were selected from activated sludge by 30 serial transfers under different conditions. The obtained consortia exhibited lower diversity and species difference with the transfers. The consortium LS30 exhibited unique advantages for bioconversion of GWCO to 1,3-propanediol (1,3-PDO) and lactate (LA). Moreover, the fermentation could be performed economically under microaerobic and non-sterile conditions. The consortium consisted of 57.97% Enterobacter and 39.25% Escherichia could effectively convert 60 g/L GWCO to 1,3-PDO and LA in batch fermentation. In addition, this consortium exhibited better tolerance to fatty acid-derived crude glycerol (100 g/L), which demonstrated that specific toxic impurities in GWCO did pose a great challenge to microbial growth and metabolism. In fed batch fermentation, 27.77 g/L 1,3-PDO and 14.68 g/L LA were achieved. Compared with the consortium, a long lag phase in cell growth associated with a decreased glycerol consumption was observed in four single-strain fermentations. Furthermore, neither the consortium DL38 with excellent glycerol tolerance nor consortium C2-2M with high yield of 1,3-PDO could effectively transform GWCO into valuable products. The results demonstrated that the selected microbial consortium has the advanced adaptability to the toxic impurities in GWCO compared with other reported consortia and isolated single strain. This process can contribute to added-value use of GWCO.

20.
J Exp Clin Cancer Res ; 38(1): 102, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808397

RESUMO

BACKGROUNDS: Emerging evidence has demonstrated that WISP2 is critically involved in cell proliferation, migration, invasion and metastasis in cancers. However, the function of WISP2 in esophageal squamous cell carcinoma (ESCC) is largely unclear. Therefore, we aim to explore the effects and the potential mechanism of WISP2 on proliferation and motility and invasion of ESCC cells. METHODS: Cell proliferation was detected by MTT assay and apoptosis was measured by FACS in ESCC cells after WISP2 downregulation and overexpression. Cell migration and invasion were analyzed by wound healing assay and transwell migration assay, respectively. The expression of ERK-1/2, Slug and E-cadherin was measured by Western blot respectively. IHC was performed to measure the expression of WISP2 in ESCC tissues. RESULTS: WISP2 overexpression is associated with survival in ESCC patients. WISP2 overexpression inhibited cell growth and induced cell apoptosis, suppressed cell migration and invasion in ESCC cells. Moreover, WISP overexpression retarded tumor growth in mouse model. WISP2 downregulation enhanced cell growth, inhibited apoptosis, promoted cell migration and invasion in ESCC cells. Mechanistically, WISP2 exerts its tumor suppressive functions via regulation of ERK1/2, Slug, and E-cadherin in ESCC cells. CONCLUSIONS: Our findings suggest that activation of WISP2 could be a useful therapeutic strategy for the treatment of ESCC.


Assuntos
Antígenos CD/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Caderinas/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Repressoras/metabolismo , Adulto , Idoso , Animais , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Intervalo Livre de Doença , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA