Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Biomaterials ; 266: 120457, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33096377

RESUMO

Current chemodynamic therapy (CDT) has been restricted by the requirement of strongly acidic conditions, insufficient endogenous H2O2 and upregulated cellular antioxidant defense. To overcome these obstacles, the carrier-free Fe(III)-ART nanoparticle is developed via coordination driven self-assembly of Fe3+ and hydrolyzed ART and evaluated as a redox-triggered C-centered free radicals nanogenerator for self-enhanced magnetic resonance imaging and chemodynamic therapy. The carrier-free Fe(III)-ART NPs can be triggered by intracellular GSH to release ART and Fe3+, which is further reduced to Fe2+ that catalyzed the endoperoxide of ART to generate C-centered free radicals. Notably, unlike current CDT, such a free radical generation process is without reliance on pH or endogenous H2O2. Meanwhile, the concurrent GSH depletion can diminish the antioxidation of tumors and enhance CDT. The C-centered free radicals-mediated apoptosis and GSH depletion-induced ferrotosis act in synergy, leading to potent tumor growth inhibition and superior anticancer efficacy in vitro and in vivo. Moreover, Fe(III)-ART NPs exhibit redox-triggered T2 relaxivity and contribute to activatable MRI-guided CDT. The development of biodegradable Fe(III)-ART NPs with superior anticancer efficacy, favorable pharmacokinetics and good biocompatibility provides a promising strategy to break through the bottlenecks of traditional CDT and greatly promotes the development of next-generation cancer theranostics.

2.
J Hazard Mater ; 402: 123497, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32707462

RESUMO

The excitation-emission matrix (EEM) fluorescence spectroscopy was used to characterize the fluorescence properties of water-soluble organic compounds (WSOCs) in PM2.5 coupled with parallel factor analysis (PARAFAC). Three main components of WSOCs were extracted from PM2.5, i.e., humic-like (fulvic acid-like and humic acid-like) substances (HULIS), and soluble microbial by-product-like or aromatic protein-like, respectively. A fluorescence quenching experiment was designed to systematically analyze the interaction laws of atmospheric heavy metal ions and WSOCs in PM2.5. Our study revealed HULIS, especially the humic acid-like substances, might be principal substances binding with metal ions and the strength of interactions was related to the types and concentrations of metal ions. Furthermore, EEM was a powerful tool to understand the interaction laws of atmospheric heavy metal ions and WSOCs in PM2.5. This work implied that the interactions of atmospheric heavy metal ions and WSOCs might directly or indirectly play a significant role in atmospheric environment and public health.

3.
Neuroscience ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212219

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease with movement disorders including resting tremor, bradykinesia, rigidity, and postural instability. The key pathological features of PD are selective loss of dopaminergic (DA) neurons in substantial nigra and the presence of Lewy bodies (LBs). Mutations in TMEM230 (transmembrane protein 230) have been recently reported to play a pathological role and contribute to PD pathogenesis. TMEM230 gene encodes two isoforms of TMEM230 proteins, isoform I (183 amino acids) and isoform II (120 amino acids). The function of TMEM230 is not clear, but it may be involved in vesicle trafficking and recycling, autophagy, protein aggregation, and cell toxicity. There are four reported PD-linked TMEM230 mutations (p.Y92C, p.R141L, p.*184Wext*5, p.*184PGext*5). TMEM230-linked PD cases exhibit late-onset, good-response to levodopa, and typical clinical features of sporadic PD with DA neuronal loss in substantial nigra and Lewy body pathology. In this mini review, we recap the current literature of TMEM230 in genetic, neurobiological, and pathological studies in order to further understand the potential roles of TMEM230 in PD pathogenesis.

4.
J Exp Bot ; 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130852

RESUMO

Malonyl-CoA:flavonoid acyltransferases (MaT) modify isoflavones, but only a few have been characterized for activity and assigned to specific physiological processes. Legume roots exude isoflavone malonates into the rhizosphere, where they are hydrolyzed into isoflavone aglycones. Soybean GmMaT2 was highly expressed in seeds, root hairs, and nodules. GmMaT2 and GmMaT4 recombinant enzymes used isoflavone 7-O-glucosides as acceptors and malonyl-CoA as an acyl donor to generate isoflavone glucoside malonates. GmMaT2 had higher activity towards isoflavone glucosides than GmMaT4. Overexpression (OE) in hairy roots of GmMaT2 and 4 produced more malonyldaidzin, malonylgenistin, and malonylglycitin, and resulted in more nodules than control. However, only GmMaT2 knockdown (KD) hairy roots showed reduced levels of malonyldaidzin, malonylgenistin, and malonylglycitin, and likewise, reduced nodule numbers. These were consistent with the up-regulation of only GmMaT2 by rhizobial infection, and higher expression levels of early nodulation genes in GmMaT2- and 4-OE, but lower only in GmMaT2-KD roots compared to control roots. Higher malonyl isoflavonoid levels in transgenic hairy roots were associated with higher levels of isoflavones in root exudates and more nodules, and vice versa. We posit that GmMaT2 participates in soybean nodulation by catalyzing isoflavone malonylation and affecting malonyl isoflavone secretion for activation of Nod factor and nodulation.

5.
Biomed Pharmacother ; 133: 110985, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33212373

RESUMO

Gallic acid (GA), also known as 3,4,5-trihydroxybenzoic acid, is a natural secondary metabolite and widely isolated from various fruits, plants and nuts. In recent years, GA has received increasing attention for its powerful anti-inflammatory properties. The purpose of this review is to clearly illuminate the pharmacological activities and related molecular mechanisms of GA in inflammatory diseases. After consulting a large number of literatures, we made a comprehensive exposition on the chemical characteristics, plant origins, pharmacokinetics and toxicity of GA, especially its pharmacological activities and mechanisms of action. Although the plant source of GA is very rich, its lower extraction rate limits the application of GA in development. It is worth mentioning that GA can not only be separated from many plants, but also be produced in large quantities through biological and chemical synthesis. According to pharmacokinetic studies, the absorption and elimination of GA after oral administration are fast, while the structural optimization or dosage form adjustment of GA is beneficial to increase its bioavailability. Promisingly, toxicity studies have shown that GA scarcely has obvious toxicity or side effects in a variety of animal experiments and clinical trials. The results show that the anti-inflammatory mechanisms of GA mainly involved MAPK and NF-κB signaling pathways. It thus weakens the inflammatory response by reducing the release of inflammatory cytokines, chemokines, adhesion molecule and cell infiltration. Due to its excellent pharmacological activities, GA is expected to be a potential candidate for the treatment of various inflammation-related diseases. This paper will provide theoretical basis for the clinical application of GA and guide the future research and medicinal development of GA.

6.
Nat Metab ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230295

RESUMO

Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We have previously identified a subset of cancers harbouring homozygous deletion of the glycolytic enzyme enolase (ENO1) that have exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small-molecule enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low-nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumours in mice at doses well-tolerated in non-human primates. Our data provide an in vivo proof of principle of the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential use across a range of therapeutic settings.

7.
Mol Med Rep ; 22(6): 5479, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174049

RESUMO

After the publication of the above paper, the authors have noticed that the affiliations were presented incorrectly; essentially, Drs Rong­qiang Yang, Peng­fei Guo, Qing­nan Meng, Ya Gao, Imran Khan, Xiao­bo Wang and Zheng­jun Cui are based at the Department of Burn and Repair Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University, whereas Drs Zhao Ma and Cheng Chang are located at The School of Basic Medical Science of Zhengzhou University. Therefore, the affiliations for this paper should have appeared as follows: Rong­Qiang Yang1, Peng­Fei Guo1, Zhao Ma2, Cheng Chang2, Qing­Nan Meng1, Ya Gao1, Imran Khan1, Xiao­Bo Wang1 and Zheng­Jun Cui1. 1Department of Burn and Repair Reconstruction Surgery, The First Affiliated Hospital of Zhengzhou University; 2The School of Basic Medical Science of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China. The authors regret that these errors with the author affiliations were not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [the original article was published in Molecular Medicine Reports 22: 3405-3417, 2020; DOI: 10.3892/mmr.2020.11413].

8.
Vet Microbiol ; 251: 108917, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181437

RESUMO

Porcine epidemic diarrhea virus (PEDV) has been prevalent for many years. The viral spike (S) protein is the major target of neutralizing antibodies. However, there is little understanding of the locations of the neutralizing antibody epitopes in the spike structure. Here, we used a polyclonal antibody (pAb) against PEDV and a neutralizing monoclonal antibody (mAb) to isolate escape mutants of PEDV strain LNCT2. Finally, we isolated an escape mutant strain of PEDV, mutant-1B9, but still neutralized by the pAb. Analysis showed two regions deleted in the S protein which allowed mutant-1B9 to escape neutralization by mAb 1B9. These results suggest the deleted amino acids participate in the formation of conformational epitope and provides valuable information for mapping conformational epitopes. Importantly, no PEDV escape mutants were generated by treatment with pAbs, which suggests the potential utility of pAbs or combination therapies based on several mAbs in controlling PEDV infections.

9.
Aging (Albany NY) ; 12(20): 19828-19829, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33125343
11.
Nat Commun ; 11(1): 5085, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033250

RESUMO

Tibetan wheat is grown under environmental constraints at high-altitude conditions, but its underlying adaptation mechanism remains unknown. Here, we present a draft genome sequence of a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) accession Zang1817 and re-sequence 245 wheat accessions, including world-wide wheat landraces, cultivars as well as Tibetan landraces. We demonstrate that high-altitude environments can trigger extensive reshaping of wheat genomes, and also uncover that Tibetan wheat accessions accumulate high-altitude adapted haplotypes of related genes in response to harsh environmental constraints. Moreover, we find that Tibetan semi-wild wheat is a feral form of Tibetan landrace, and identify two associated loci, including a 0.8-Mb deletion region containing Brt1/2 homologs and a genomic region with TaQ-5A gene, responsible for rachis brittleness during the de-domestication episode. Our study provides confident evidence to support the hypothesis that Tibetan semi-wild wheat is de-domesticated from local landraces, in response to high-altitude extremes.


Assuntos
Adaptação Fisiológica , Altitude , Triticum/fisiologia , Adaptação Fisiológica/genética , Domesticação , Ecótipo , Genoma de Planta , Geografia , Metagenômica , Fenótipo , Análise de Componente Principal , Tibet , Triticum/genética
12.
Theor Appl Genet ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030571

RESUMO

KEY MESSAGE: GWAS identified stable loci for TGW and stress tolerance in winter wheat based on two sowing conditions, which will provide opportunities for developing new cultivars with high yield and yield stability. Wheat is an important food crop widely cultivated in the world. Breeding new varieties with high yields and superior adaptability is the main goal of modern wheat breeding program. In order to determine the marker-trait associations (MATs), a set of 688 diverse winter wheat accessions were subjected to genome-wide association study (GWAS) using the wheat 90K array. Field trials under normal-sown (NS) and late-sown (LS) conditions were conducted for thousand grain weight (TGW) and stress susceptibility index (SSI) at three different sites across two consecutive years. A total of 179 (NS) and 158 (LS) MATs corresponded with TGW; of these, 16 and 6 stable MATs for TGWNS and TGWLS were identified on chromosomes 1B, 2B, 3A, 3B, 5A, 5B, 5D, 6B, and 7D across at least three environments. Notably, a QTL hot spot controlling TGW under NS and LS conditions was found on chromosome 5A (140-142 cM). Moreover, 8 of 228 stable MATs on chromosomes 4B, 5A, and 5D for SSI were detected. A haplotype block associated with TGW and SSI was located on chromosome 5A at 91 cM, nearby the vernalization gene VRN-A1. Additionally, analysis of wheat varieties from the different eras revealed that the grain weight and stress tolerance are not improved concurrently. Overall, our results provide promising alleles controlling grain weight and stress tolerance (particularly for thermotolerance) for wheat breeders, which can be used in marker-assisted selection for improving grain yield and yield stability in wheat.

13.
Biomed Pharmacother ; 132: 110822, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059264

RESUMO

The human blood-brain barrier (BBB) is a complex multi-dimensional reticular barrier system composed of cerebral microvascular endothelial cells, pericytes, astrocytes and a variety of neurons. The conventional in vitro cell culture model fails to truly present the dynamic hemodynamics of BBB and the interaction between neurons. And it is even more impossible to explore brain-related multi-organ diseases, which brings huge obstacles to explore diseases of the central nervous system and the interaction between brain-related multi-organs, and evaluate drug efficacy. Miniaturized microfluidics based BBB chips are being commonly used to co-culture a variety of cells on a small-sized chip to construct a three-dimensional (3D) BBB or BBB-related organ disease models. By combining with other electrophysiological, biochemical sensors or equipment and imaging systems, it can in real time and quickly screen disease-related markers and evaluate drug efficacy. This review systematically summarized the research progress of in vitro BBB and BBB-related organ chips, and analyzed the obstacles of BBB models in depth. Parallelly combined with the current research trends and hot spots, we give the further improvement measures of microfluidic BBB chips.

14.
Biomed Pharmacother ; 132: 110852, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065390

RESUMO

As a common ocular complication and microangiopathy of type 2 diabetic mellitus, diabetic retinopathy (DR) can lead to vision loss or even blindness in diabetic patients. At present, the treatment methods of DR mainly include laser and anti-VEGF therapies. Nevertheless, the higher cost and obvious side effects seriously disturb the normal life of DR patients. Promisingly, traditional Chinese medicine (TCM) has been demonstrated to be effective in treating DR by tonifying Qi and nourishing Yin, as well clearing heat and breeding body fluids, thus activating blood and removing blood stasis. Therefore, we screened the literatures on TCM treatment of DR through the web of science, ScienceDirect, PubMed, Google scholar and CNKI online databases. The representative prescriptions, herbs and extracts, and identified compounds for treatment of DR were further summarized and analyzed. Moreover, the detailed mechanisms and involved network pathways of herbs-compounds-targets were visualized by Cytoscape software. Meanwhile, we discussed the existing limitations and deficiencies of TCM on treatment of DR and gave corresponding measures. In conclusion, TCM could significantly ameliorate DR via anti-inflammation, anti-oxidative stress, anti-angiogenesis and anti-apoptosis.

15.
Aging (Albany NY) ; 12(20): 19832-19833, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33125345
16.
Mol Med Rep ; 22(4): 3405-3417, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945441

RESUMO

The overexpression of inducible nitric oxide synthase (iNOS) induces cell apoptosis through various signal transduction pathways and aggravates lung injury. Caspase­3 is an important protein in the apoptotic pathway and its activation can exacerbate apoptosis. Simvastatin, a hydroxymethyl glutaryl­A reductase inhibitor, protects against smoke inhalation injury by inhibiting the synthesis and release of inflammatory factors and decreasing cell apoptosis. Following the establishment of an animal model of smoke inhalation injury, lung tissue and serum were collected at different time points and the protein and mRNA expression of iNOS and caspase­3 in lung tissue by immunochemistry, western blot and reverse transcription­quantitative polymerase chain reaction, the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in lung tissue and serum were analyzed using thiobarbituric acid method and the WST­1 method. The results were statistically analyzed. The lung tissues of the rats in the saline group and the low­, middle­ and high­dose groups exhibited clear edema and hemorrhage, and had significantly higher pathological scores at the various time points compared with the rats in the control group (P<0.05). Furthermore, lung tissue and serum samples obtained from these four groups had significantly higher mRNA and protein expression levels of iNOS and caspase­3 (P<0.05), significantly lower SOD activity and higher MDA content (P<0.05). Compared with the saline group, the low­, middle­ and high­dose groups had significantly lower pathological scores (P<0.05), significantly lower mRNA and protein expression levels of iNOS, caspase­3 and MDA content in lung tissues (P<0.05) and significantly higher SOD activity in lung tissues and serum. The middle­ and high­dose groups had significantly lower pathological scores (P<0.05), significantly decreased iNOS and caspase­3 mRNA and protein expression in lung tissues, significantly higher SOD activity in lung tissues and serum and a significantly lower MDA content (P<0.05) compared with the low­dose group. With the exception of SOD activity in lung tissues at 24 and 72 h and MDA content in serum at 48 h, no significant differences were observed between the middle­ and high­dose groups. The present study demonstrated that there was an association between the therapeutic effect and dosage of simvastatin within a definitive range. In rats with smoke inhalation injury, simvastatin inhibited iNOS and caspase­3 expression in lung tissues and mitigated oxidative stress, thereby exerting a protective effect. In addition, the effect and dose were associated within a definitive range.

17.
J Proteomics ; 229: 103968, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32911126

RESUMO

High-temperature has severe impacts on the functionality and development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. In this study, a differential proteomic analysis was conducted between the anthers of heat-tolerant (JD21) and heat-sensitive (HD14) cultivars using an iTRAQ based approach. In total, 371, 479, and 417 differentially abundant proteins were identified between HD14 anthers treated with high-temperature stress vs HD14 anthers in the natural field conditions, JD21 anthers treated with high-temperature stress vs JD21 anthers in the natural field conditions, and HD14 vs JD21 anthers treated with high-temperature stress, respectively. The differentially abundant proteins associated with thermo-tolerance were predominantly involved in carbohydrate and energy metabolism, protein synthesis and degradation, nitrogen assimilation, and ROS detoxification. Sixteen common differentially abundant proteins were involved in known protein-protein interaction networks in three comparisons associated with heat, which may strongly influence anther growth and development. The qRT-PCR analysis validated the reliability of the iTRAQ results. In conclusion, the heat-tolerant cultivar performed better under stress than heat-sensitive cultivar through modulation of HSP family proteins, pectinesterase, profilin, S-adenosylmethionine synthase, peroxidase, GST, peptidylprolyl isomerase, and disulfide-isomerase. The results provide novel insight into the mechanism of high-temperature stress response of soybean. SIGNIFICANCE: In recent years, with the high temperature (HT) stress brought by climate change frequently occurs at anthesis and negatively affects soybean productivity. The molecular mechanism underlying the response of soybean anthers to HT is a relatively complex process and thus difficult to elucidate; however, it is possible to identify differentially expressed genes or proteins between heat-sensitive and heat-tolerant cultivars under HT stress. The potential candidate genes or proteins may then be utilized in elucidating the molecular mechanism underlying the response of soybean to HT stress, as well as provide genetic resource for the improvement of heat-tolerant characteristics in soybean. In present study, quantitative and qualitative proteomic changes occurring in anthers were compared between the heat-tolerant (JD21) and heat-sensitive (HD14) cultivars under HT stress using iTRAQ-based proteomics strategy. Our results provide new insight into translational alterations in HT-resistant and HT-sensitive soybean cultivars under HT stress, which helps to address the underlying molecular mechanism of soybean in response to HT stress.

18.
Pflugers Arch ; 472(11): 1619-1630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32940783

RESUMO

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.

19.
Vaccine ; 38(44): 6904-6913, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32907758

RESUMO

Streptococcus suis, a major zoonotic pathogen in swine, can be classified into 35 serotypes. However, no universal vaccine against the multiple serotypes of S. suis is available, though some studies have shown homologous protection. Hence, developing an effective universal vaccine to protect pigs against multiple S. suis serotypes is necessary, or at the very least, to protect pigs against diseases caused by the dominant pathogenic serotypes. Enolase, a highly conserved surface protein, is present in all of the described S. suis serotypes. rSC0016 is an improved recombinant attenuated S. Choleraesuis vaccine vector, combining a sopB mutation with regulated delayed systems, achieving an adequate balance between host safety and immunogenicity. In order to develop a universal vaccine against the multiple serotypes of S. suis, a novel recombinant vaccine strain rSC0016 that carries a heterologous antigen enolase was developed in this study. According, it was found that the recombinant vaccine strain rSC0016(pS-Enolase) exhibited better colonization compared to the vaccine control strain rSC0018(pYA3493). In addition, a mouse model immunized with the strain rSC0016(pS-Enolase) elicited significant IgG antibody responses against both enolase and Salmonella antigens, while inducing good mucosal, humoral, and cellular immune responses against enolase. Finally, immunization with rSC0016(pS-Enolase) was shown to confer 100%, 80%, and 100% protection against the serotypes of SS2, SS7, and SS9, respectively, and significantly reduced histopathological lesions in mice. Overall, this study provides a promising universal vaccine candidate for use against the multiple serotypes of S. suis.

20.
Nat Commun ; 11(1): 4447, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895382

RESUMO

Tea is an economically important plant characterized by a large genome, high heterozygosity, and high species diversity. In this study, we assemble a 3.26-Gb high-quality chromosome-scale genome for the 'Longjing 43' cultivar of Camellia sinensis var. sinensis. Genomic resequencing of 139 tea accessions from around the world is used to investigate the evolution and phylogenetic relationships of tea accessions. We find that hybridization has increased the heterozygosity and wide-ranging gene flow among tea populations with the spread of tea cultivation. Population genetic and transcriptomic analyses reveal that during domestication, selection for disease resistance and flavor in C. sinensis var. sinensis populations has been stronger than that in C. sinensis var. assamica populations. This study provides resources for marker-assisted breeding of tea and sets the foundation for further research on tea genetics and evolution.


Assuntos
Camellia sinensis/genética , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta/genética , Melhoramento Vegetal , Domesticação , Perfilação da Expressão Gênica , Genômica , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA