RESUMO
Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method. First, a pregel layer was formed on PP mesh by dip coating. Among them, polyurethane with polythioketal (PTK) is an excellent ROS scavenger, and dopamine methacrylamide (DMA) improves the stability of the coating and synergistically scavenges ROS. Then, a composite mesh (optimal PU50-PP) was obtained by photopolymerization. The results showed that the polyurethane gel layer was able to scavenge more than 90% of free radicals and about 75% of intracellular ROS. In vitro, PU50-PP mesh significantly scavenged ROS and resisted macrophage adhesion. After implantation in the posterior vaginal wall of rats, PU50-PP eliminated 53% of ROS, inhibited inflammation (decreased IL-6, increased IL-10), and dramatically reduced collagen deposition by about 64%, compared to PP mesh. Thus, the composite PP mesh with ROS scavenging and anti-inflammatory properties provides a promising approach for mitigating FBR.
RESUMO
BACKGROUND: Spread through air space (STAS) has been identified as a pathological pattern associated with lung cancer progression. Patients with STAS were related to a worse prognosis compared with patients without STAS. The objective of this study was to establish a radiomics model capable of forecasting STAS before surgery, which can assist surgeons in selecting the most appropriate operation type for patients with STAS. METHOD: There were 537 eligible patients retrospectively included in this study. ROI segmentation was performed manually on all CT images to identify the region of interest. From each segmented lesion, a total of 1688 features were extracted. The tumor size, maximum tumor diameters, and tumor type were also recorded. Using Spearman's correlation coefficient to calculate the correlation and redundancy of elements, and redundant features less than 0.80 were removed. In order to reduce the level of overfitting and avoid statistical biases, a dimension reduction process of the dataset was conducted to decrease the number of features. Finally, a radiomics model included 44 features was established to predict STAS. To evaluate the performance of the model, the receiver operating characteristic (ROC) curve was used, and the area under the curve (AUC) was calculated, and the accuracy of the model was verified by 10-fold cross-validation. RESULTS: The incidence of STAS was 38.2% (205/537). The tumor type, maximum tumor diameters, and consolidation tumor ratio were significantly different between STAS group and non-STAS group. The training group included 430 patients, while the test group was consisted with 107. The training group achieved an AUC of 0.825 (sensitivity, 0.875; specificity, 0.621; and accuracy, 0.749) and the test group had an AUC of 0.802 (sensitivity, 0.797; specificity,0.688; and accuracy, 0.748). The 10-fold cross-validation had an AUC of 0.834. CONCLUSION: CT-based radiomic model can predict STAS effectively, which is of great importance to guide the selection of operation types before surgery.
RESUMO
Fenton sludge (FS) with high iron contents that discharged from the Fenton process was rarely studied for soil remediation. Herein, a novel Fe(â ¡) activated-Fenton sludge (FS-FeSO4) was proposed to stabilize arsenic (As) and antimony (Sb) co-contaminated soil meanwhile disposing FS. Multiple characteristic analyses revealed that the porous structures and rich functional groups of FS-FeSO4 involved in As and Sb adsorption. Meanwhile, Fe (hydro)oxides played a key role in As and Sb stabilization. Under the optimal application parameters (stabilizers dosage: 5%, incubation time: 60 days), the available As and Sb content decreased by 88.6% and 83.3%, respectively, and the leachability of As and Sb was reduced by 100% and 72.6% for FS-FeSO4 stabilized soil. Moreover, the mobile As and Sb fractions (F1 and F2) were transformed into the most stable fraction (F5). The adsorption of As and Sb on FS-FeSO4 was well fitted by pseudo-second-order kinetic and Langmuir models, while FS-FeSO4 exhibited a better affinity for As than Sb under competition conditions. Poorly crystalline α-FeOOH and amorphous Fe (hydro)oxides provided sufficient active sites for As and Sb, and the generation of Fe-As/Sb and Ca-Sb chemical bonds promoted the stability of As and Sb. This study demonstrated that FS-FeSO4 was a potentially effective stabilizer for As and Sb co-contaminated soil remediation.
RESUMO
Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease (n = 6) and nonbrain prostate cancer metastases (n = 36). This first whole genome sequencing study of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches.
RESUMO
PURPOSE: The phase 3 CALGB 90203 (Alliance) trial evaluated neoadjuvant chemohormonal therapy (CHT) for high-risk localized PCa before radical prostatectomy (RP). We dissect the molecular features of post-treated PCa along with long-term clinical outcomes to explore mechanisms of response and resistance to CHT. PATIENTS AND METHODS: We evaluated 471 RP tumors, including 294 samples from 166 patients treated with 6 cycles of docetaxel plus androgen deprivation therapy prior to RP, and 177 samples from 97 patients in the control arm of RP alone. Targeted DNA sequencing and mRNA expression of tumor foci and adjacent non-cancer regions were analyzed in conjunction with pathologic changes and clinical outcomes. RESULTS: Tumor fraction estimated from DNA sequencing was significantly lower in CHT-exposed tissues compared to control. Higher tumor fraction after CHT was associated with aggressive pathologic features and poor outcomes including PSA progression-free survival. SPOP mutations were infrequently detected after CHT, while TP53 mutations were enriched and associated with shorter overall survival. Residual tumor fraction post-CHT was linked with higher expression of androgen receptor-regulated, cell cycle, and neuroendocrine genes, suggesting persistent populations of active PCa cells. Supervised clustering of post-CHT high tumor fraction tissues identified a group of patients with elevated cell cycle-related gene expression and poor clinical outcomes. CONCLUSIONS: Distinct recurrent PCa genomic and transcriptomic features are observed after CHT exposure. Tumor fraction assessed by DNA sequencing quantifies pathologic response and could be a useful trial endpoint or prognostic biomarker. TP53 mutations and high cell cycle transcriptomic activity are linked with aggressive residual disease despite potent CHT.
RESUMO
The reverse tricarboxylic acid cycle (rTCA) is a central anabolic network that uses carbon dioxide (CO2) and may have provided complex carbon substrates for life before the advent of RNA or enzymes. However, non-enzymatic promotion of the rTCA cycle, in particular carbon fixation, remains challenging, even with primordial metal catalysis. Here, we report that the fixation of CO2 by reductive carboxylation of succinate and α-ketoglutarate was achieved in aqueous microdroplets under ambient conditions without the use of catalysts. Under identical conditions, the aqueous microdroplets also facilitated the sequences in the rTCA cycle, including reduction, hydration, dehydration and retro-aldol cleavage and linked with the glyoxylate cycle. These reactions of the rTCA cycle were compatible with the aqueous microdroplets, as demonstrated with two-reaction and four-reaction sequences. A higher selectivity giving higher product yields was also observed. Our results suggest that the microdroplets provide an energetically favourable microenvironment and facilitate a non-enzymatic version of the rTCA cycle in prebiotic carbon anabolism.
RESUMO
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Assuntos
Éteres Difenil Halogenados , Rim , Animais , Feminino , Humanos , Éteres Difenil Halogenados/toxicidade , Adiposidade , Bioacumulação , Leite HumanoRESUMO
BACKGROUND: Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS: In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION: An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.
Assuntos
Alginatos , Laminaria , Análise Custo-Benefício , OligossacarídeosRESUMO
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
RESUMO
The epidermal growth factor receptor (EGFR) is one of the first and most prominent driver genes known to promote malignant lung cancer. Investigating regulatory mechanisms beyond ligand-receptor binding, phosphorylation, and receptor kinase activation as means of EGFR signaling activation is important for improving EGFR-targeted therapy. Here, we report that Laminin-5γ-2 (LAMC2) retained high oncogenic capacity in lung cancer, silencing LAMC2 inhibited EGFR-induced cell proliferation and tumor growth in vivo. Deletion mutation experiments showed that both the EGF-Lam and LamB regions of LAMC2 are necessary for EGFR receptor binding, and that LAMC2 and EGFR were found to co-localize at the endoplasmic reticulum (ER) membrane. In addition, LAMC2 overexpression enhanced EGFR membrane deposition and promoted EGFR transport from the ER. Moreover, LAMC2 was necessary for preventing EGFR protein degradation via ubiquitination. Lastly, our study showed that high LAMC2 expression is positively associated with response to gefitinib (EGFR tyrosine kinase inhibitor) treatment. Overall, our study revealed a new regulatory mechanism of LAMC2 in promoting EGFR protein expression and stability by facilitating ER transport and preventing protein degradation via ubiquitination. Moreover, LAMC2 may serve as a stratifying biomarker for patients suitable for EGFR-TKI treatment.
RESUMO
Research and development of gene therapies and cell- or tissue-based therapies has experienced exponential growth in recent decades and the potential for these products to treat diverse, often rare, clinical indications is promising. The Office of Therapeutic Products (OTP) in the Center for Biologics Evaluation and Research (CBER) at the United States Food and Drug Administration (US FDA) is responsible for the regulation of these products, among others, throughout the entire product lifecycle. This chapter provides an overview of the science- and data-driven approach to US FDA regulatory oversight of cell and gene therapy (CGT) products to ensure their safety and efficacy.
Assuntos
Aprovação de Drogas , Terapia Genética , Humanos , Estados Unidos , United States Food and Drug AdministrationRESUMO
BACKGROUND: Robots are being used in a wide range of surgical procedures. However, in clinical practice, the efficacy of orthopedic robotic-assisted treatment of femoral neck fractures is still poorly reported, particularly in terms of screw placement accuracy, femoral neck fracture healing rates and postoperative functional recovery. Moreover, there is a lack of comparative analysis between robot-assisted surgery and traditional surgical approaches. PURPOSE: The purpose of this study was to compare the clinical outcomes of patients with femoral neck fractures treated with TiRobot-assisted hollow screw fixation with those of patients with femoral neck fractures treated with traditional surgical approaches. METHODS: This study included 112 patients with femoral neck fracture who were treated from March 2017 to October 2021 with percutaneous hollow screw internal fixation. These included 56 cases in the TiRobot-assisted surgery group and 56 cases in the standard surgery group. After at least 1 year of follow-up, the treatment outcomes of the two groups were compared, including the amount of intraoperative bleeding, the duration of intraoperative fluoroscopy, the number of guide pin positioning adjustments, the length of hospital stay, the accuracy rate of screw placement, the final Harris Hip Score, the fracture healing rate, and the rate of femoral head necrosis. Statistical analysis software was used to process and analyze the result. RESULTS: The TiRobot-assisted group had a statistically significant improvement over the control group in terms of intraoperative bleeding, the duration of intraoperative fluoroscopy, the number of guide pin positioning adjustments, length of hospital stay, accuracy of screw placement and incidence of femoral head necrosis (P < 0.05). There was no statistically significant difference in time to surgery, final Harris hip score and fracture healing rate (P > 0.05). CONCLUSION: This study shows that TiRobot-assisted surgery has the advantages of short hospital stay, high safety, minimally invasive, high success rate of nail placement, and can reduce the amount of intraoperative radiation and the incidence of femoral head necrosis, thus achieving satisfactory clinical outcomes, and is worthy of clinical promotion.
Assuntos
Fraturas do Colo Femoral , Necrose da Cabeça do Fêmur , Procedimentos Cirúrgicos Robóticos , Humanos , Estudos Retrospectivos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Software , Fraturas do Colo Femoral/cirurgiaRESUMO
In this study, we analyzed the effects of treatments with titanium dioxide nanoparticles (NPs-TiO2) and ethylene on anthocyanin biosynthesis and reactive oxygen species (ROS) metabolism during light exposure in ripe 'red delicious' apples. Both treatments led to improved anthocyanins biosynthesis in detached mature apples, while the NPs-TiO2 had less impact on the fruit firmness, TSS, TA, and TSS/TA ratio. Furthermore, the effects of both treatments on the expression of anthocyanin-related enzymes and transcription factors in the apple peel were evaluated at the gene level. The differentially expressed genes induced by the two treatments were highly enriched in the photosynthesis and flavonoid biosynthesis pathways. The expression of structural genes involved in anthocyanin biosynthesis and ethylene biosynthesis was more significantly upregulated in the ethylene treatment group than in the NPs-TiO2 treatment group, and the opposite pattern was observed for the expression of genes encoding transcription factors involved in plant photomorphogenesis pathways. In addition, the ROS levels and antioxidant capacity were higher and the membrane lipid peroxidation level was lower in fruit in the NPs-TiO2 treatment group than in the ethylene treatment group. The results of this study reveal differences in the coloration mechanisms induced by NPs-TiO2 and ethylene in apples, providing new insights into improving the color and quality of fruits.
RESUMO
BACKGROUND: Observational studies have suggested an association between coronavirus disease 2019 (COVID-19) and myasthenia gravis (MG). Here, we aimed to estimate the genetic correlation and causal relationship between COVID-19 susceptibility, hospitalization, severity, and MG phenotypes using linkage disequilibrium score regression (LDSC) and Mendelian randomization (MR) approach. METHODS: Summary statistics of COVID-19 susceptibility, hospitalization, and severity were used as instrumental variables for exposure traits. Large-scale genome-wide association study (GWAS) data for MG were used as outcome traits. The inverse variance weighted approach was used for the main MR analysis, complemented by MR-Egger, weighted median, simple mode, and weighted mode methods. Sensitivity analysis was implemented using Cochran's Q test, MR-PRESSO method, and MR-Egger intercept test. RESULTS: LDSC analysis did not reveal any genetic correlation among COVID-19 susceptibility, hospitalization, severity, and MG phenotypes, including MG, early-onset MG, and late-onset MG (p > .05). Our MR analysis did not provide evidence supporting a causal effect of COVID-19 susceptibility, hospitalization, or severity on MG phenotypes (p > .05). Extensive sensitivity analysis strengthened the robustness and consistency of the MR estimates. CONCLUSION: Our study did not find evidence of a genetic correlation or causal relationship among COVID-19 susceptibility, hospitalization, severity, and MG. Future studies with more GWAS data are needed to evaluate the association between COVID-19 phenotypes and MG and its subgroups.
RESUMO
Hybrid rice breeding is an important strategy for enhancing grain yield. Breeding high-performance parental lines and identifying combining abilities is a top priority for hybrid breeding. Yuenongsimiao (YNSM) and its derivative variety Yuehesimiao (YHSM) are elite restorer lines with a high ability of fertility restoration, from which 67 derived hybrid combinations have been authorized to different degrees in more than 110 instances in China. In this study, we found that YNSM and YHSM contained three candidate restorer-of-fertility (Rf) genes, Rf3, Rf4, and Rf5/Rf1a, that might confer their restoration ability. Subsequently, we investigated heterosis and combining ability of YNSM and YHSM using 50 F1 hybrids from a 5 × 10 incomplete diallelic mating design. Our results indicated that hybrid combinations exhibited significant genetic differences, and the additive effects of the parental genes played a preponderant role in the inheritance of observed traits. The metrics of plant height (PH), 1000-grain weight (TGW), panicle length (PL), and the number of spikelets per panicle (NSP) were mainly affected by genetic inheritance with higher heritability. Notably, the general combining ability (GCA) of YHSM exhibited the largest positive effect on the number of grains per panicle (NGP), NSP, PL, and TGW. Thus, YHSM had the largest GCA effect on yield per plant (YPP). In addition, the GCA of YNSM exhibited a positive impact on YPP, mainly due to the critical contribution of seed setting percentage (SSP). Moreover, YNSM and YHSM exhibited negative GCA effects on PH, implying that YNSM and YHSM could effectively enhance plant lodging resistance by reducing the plant height of the derived hybrids. Remarkably, among the hybrids, Yuanxiang A/YNSM (YXA/YNSM), Shen 08S/Yuemeizhan (S08S/YMZ), and Quan 9311A/YHSM (Q9311A/YHSM) represent promising new combinations with a higher specific combining ability (SCA) effect value on YPP with a value more than 3.50. Our research thus highlights the promising application for the rational utilization of YNSM and YHSM in hybrid rice breeding.
Assuntos
Oryza , Grão Comestível/genética , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento VegetalRESUMO
Purpose: The purpose of this study was to assess optic nerve head (ONH) deformations following acute intraocular pressure (IOP) elevations and horizontal eye movements in control eyes, highly myopic (HM) eyes, HM eyes with glaucoma (HMG), and eyes with pathologic myopia (PM) alone or PM with staphyloma (PM + S). Methods: We studied 282 eyes, comprising of 99 controls (between +2.75 and -2.75 diopters), 51 HM (< -5 diopters), 35 HMG, 21 PM, and 75 PM + S eyes. For each eye, we imaged the ONH using spectral-domain optical coherence tomography (OCT) under the following conditions: (1) primary gaze, (2) 20 degrees adduction, (3) 20 degrees abduction, and (4) primary gaze with acute IOP elevation (to â¼35 mm Hg) achieved through ophthalmodynamometry. We then computed IOP- and gaze-induced ONH displacements and effective strains. Effective strains were compared across groups. Results: Under IOP elevation, we found that HM eyes exhibited significantly lower strains (3.9 ± 2.4%) than PM eyes (6.9 ± 5.0%, P < 0.001), HMG eyes (4.7 ± 1.8%, P = 0.04), and PM + S eyes (7.0 ± 5.2%, P < 0.001). Under adduction, we found that HM eyes exhibited significantly lower strains (4.8% ± 2.7%) than PM + S eyes (6.0 ± 3.1%, P = 0.02). We also found that eyes with higher axial length were associated with higher strains. Conclusions: Our study revealed that eyes with HMG experienced significantly greater strains under IOP compared to eyes with HM. Furthermore, eyes with PM + S had the highest strains on the ONH of all groups.
Assuntos
Glaucoma , Miopia , Disco Óptico , Humanos , Disco Óptico/patologia , Glaucoma/patologia , Pressão Intraocular , Miopia/patologia , Tonometria Ocular , Tomografia de Coerência Óptica/métodos , Transtornos da Visão/patologiaRESUMO
Hydrogels have been extensively used in the field of biomedical engineering. In order to achieve non-invasive and real-time visualization of the in vivo status of hydrogels, we designed a fluorescent polyurethane-oxidized dextran (PU-OD) hydrogel with good injectability and self-healing properties, which was cross-linked from a tetraphenyl ethylene (TPE)-containing fluorescent polyurethane emulsion with oxidized dextran by dynamic acylhydrazone bonds. The hydrogel can be used as a visual platform for drug delivery as well as monitoring its own degradation. The network structure of the hydrogel gave it drug-loading capability, and the acylhydrazone bond enabled its pH-responsive drug release. Meanwhile, the PU-OD hydrogel could undergo fluorescence resonance transfer with doxorubicin hydrochloride, showing its potential application in monitoring drug release. In addition, fluorometric and weighing methods were performed to monitor the degradation behavior of the hydrogels in vivo and in vitro, respectively, showing that the non-invasive fluorometric method can be consistent with the invasive weighing method. This work highlights that the introduction of aggregation-induced emission molecules into polyurethanes provides a visual platform that allows for non-invasive monitoring of the material without affecting its own function, which is convenient and less damaging to the body or animals. Consequently, it possesses excellent and promising potential in biomedical materials technologies.
Assuntos
Dextranos , Hidrogéis , Animais , Poliuretanos , Materiais Biocompatíveis , Bioengenharia , CorantesRESUMO
Neutral lipid-storage disease with myopathy (NLSDM) is an autosomal recessive neuromuscular disorder caused by mutations in PNPLA2, and the average age at onset is 30 years. To date, only eight patients with childhood-onset NLSDM have been reported in detail. We investigated 3 unreported patients with NLSDM detected in childhood and reviewed 8 childhood-onset and 82 adult-onset patients with NLSDM documented in the literature. In the childhood-onset cohort, NLSDM presented initially as asymptomatic or paucisymptomatic hyperCKemia in 6/11 patients, and follow-up data showed onset of muscle weakness in 6/11 childhood-onset patients. In the adult-onset cohort, 95.1% (78/82) of patients showed muscle weakness. Cardiac involvement developed in 6/11 childhood-onset patients. Hepatomegaly was observed in 3/11 childhood-onset patients. Serum creatine kinase levels were elevated greater than five-fold of the upper limit of normal (ULN) in most childhood-onset patients and were elevated to less than ten-fold of the ULN in most adult-onset patients. Peripheral blood smears and muscle biopsies showed cytoplasmic lipid droplets in leukocytes and myocytes. NLSDM can present in children with asymptomatic or paucisymptomatic hyperCKemia before the onset of muscle weakness. The presence of lipid droplets in leucocytes (Jordans' anomaly) aids in diagnosing and confirming the pathogenicity of PNPLA2 variants of uncertain significance. There were no clear genotype-phenotype correlations in patients with NLSDM.