RESUMO
OBJECTIVE: Engaging in exercise not only encompasses its intrinsic attributes but also signifies its social dimensions. It reflects an underlying emotional tone and cumulative value attributed to exercise by individuals, forming a broad, macro-level socio-psychological relationship in alignment with the conceptual definition of societal mentality. The social mentality is an indicator of a nation's governance capacity and mirrors the overall socio-psychological profile and needs of its citizens. This study, therefore, aims to investigate the influence of exercise, specifically through the lens of sports, on the sociall mentality of the Chinese population, encompassing aspects of social trust and social equity. Additionally, we explore the distinct mechanisms underlying differences in social class, generation disparities, and spatial dimensions. This inquiry aims to contribute to enhancing governance capabilities and societal stability. METHOD: Data for this study was sourced from the 2023 China General Social Survey. We selected 20 variables and analyzed a sample of 6,746 individuals. We employed Ordinary Least Squares (OLS) multiple linear regression models to construct our analysis. RESULTS: The findings indicate that exercise has a positive influence on the social mentality of the Chinese population. A higher frequency of participation in sports correlates with a more advanced level of social mentality development. Notably, significant disparities exist between the macro-level and micro-level impacts of exercise, suggesting ample room for improvement. Social class, generational disparities, and spatial dimensions demonstrate substantial impact, each exhibiting unique characteristics depending on the specific research question. Furthermore, the weightings of social trust orientation and social equity orientation within the societal mentality dimensions exhibit variability and fluctuations. CONCLUSION: When exploring the topic of social mentality, it is recommended to separately discuss the various dimensions it encompasses, thus providing a comprehensive, detailed, and precise portrayal of specific issues. To bolster the influence of exercise on the social mentality, as well as to enhance governance capabilities and societal stability, the following recommendations are proposed: (1) In-depth exploration of differences within social strata to optimize the mechanisms through which exercise influences the social mentality; (2) Balancing generational disparities to establish a solid foundation for the influence of exercise on the social mentality; (3) Recognizing spatial dimensions to harness the spatial dynamism of exercise in shaping the social mentality.
Assuntos
Exercício Físico , Humanos , Masculino , China , Feminino , Adulto , Exercício Físico/psicologia , Pessoa de Meia-Idade , Classe Social , Adulto Jovem , Adolescente , Inquéritos e Questionários , Povo Asiático/psicologia , Idoso , População do Leste AsiáticoRESUMO
Metabolic dysregulation is emerging as a critical factor in tumorigenesis, and reprogramming of serine metabolism has been identified as an essential factor in the progression of hepatocellular carcinoma (HCC). Studies have shown that LKB1 deficiency can activate mTOR to upregulate the serine synthesis pathway (SSP) and promote tumor progression. Our team discovered that ubiquitin-specific protease 10 (USP10) can inhibit HCC proliferation through mTOR, but its relationship with SSP needs further investigation. The metabolite assays revealed a significant increase in serine content in HCC tissues. Through the LKB1/mTOR/activating transcription factor 4 (ATF4) axis, loss of USP10 may increase serine biosynthesis and promote the proliferation of HCC in vitro and in vivo. Furthermore, it was found that USP10 could activate LKB1 through deubiquitination. Analyzing clinical HCC tissues revealed a positive correlation between USP10 and LKB1. Additionally, those with high expression of USP10 in HCC tissues showed a better degree of tumor differentiation and longer overall survival time. Moreover, we found increased expression of both serine and its synthase in liver tumor tissues of USP10 liver-specific KO mice. Loss of USP10 inhibits the activity of LKB1, contributing to the stimulation of the mTOR/ATF4 axis and SSP and then promoting the proliferation of HCC. This work presents a novel approach for serine-targeted treatment in HCC.
RESUMO
BACKGROUND: Previous studies have demonstrated that the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) can promote tumor development. This study sought to investigate the specific role of PGK1 in bladder cancer (BLCA). METHODS: Public databases and immunohistochemistry assays were utilized to analyze the expression of PGK1 in BLCA and its prognostic significance. Cell proliferation was assessed through CCK-8 and colony formation assays, while the level of metastasis was evaluated using transwell migration experiments. Additionally, IC50 experiments were conducted to assess the impact of PGK1 on cisplatin sensitivity. RESULTS: The mRNA and protein expression levels of PGK1 were significantly upregulated in BLCA. Cox proportional hazards model analysis revealed that PGK1 and T stage were independent prognostic factors for BLCA patients. Both CCK-8 and colony assays demonstrated that PGK1 promotes proliferation. Furthermore, a positive correlation was observed between PGK1 and Ki67, a proliferation index. Transwell migration assays confirmed the ability of PGK1 to enhance metastasis. Finally, PGK1 increased the IC50 associated with cisplatin treatment in BLCA. CONCLUSION: Collectively, these findings suggest that PGK1 may hold clinical value in predicting BLCA prognosis and improving the outcomes of this patient population.
Assuntos
Movimento Celular , Proliferação de Células , Cisplatino , Fosfoglicerato Quinase , Neoplasias da Bexiga Urinária , Humanos , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/tratamento farmacológico , Prognóstico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Masculino , Linhagem Celular Tumoral , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , IdosoRESUMO
Purpose: Transcatheter aortic valve replacement (TAVR) induced coronary artery obstruction (CAO) is a rare but devastating complication. Current preventive strategies need additional procedures and may be associated with adverse events. This study aimed to evaluate the early safety and efficacy of stand-alone TAVR using the J-Valve (Jianshi JieCheng Medical Technology Co. Ltd, Shanghai, China) in patients at potential high risk for CAO. Patients and Methods: CAO was defined as coronary ostia obstruction requiring intervention. Patients at potential high risk for CAO were identified retrospectively from 673 consecutive patients who underwent TAVR from January 2015 to July 2021 at Zhongshan Hospital, Fudan University. Procedural results and early outcomes were evaluated according to Valve Academic Research Consortium-3 definitions. Results: A total of 20 consecutive patients (age 72 ± 9 years; 85% female;) were included. The Society of Thoracic Surgeons-Predicted Risk of Mortality was 5% (interquartile range, 4 to 10%). All patients (100%) had at least 2 classical risk factors for CAO by pre-procedural computed tomography analysis, and 90% patients had native aortic valve diseases. TAVR was successful in 95% of cases, with only 1 patient requiring second device implantation. Early safety at 30 days was achieved in all cases without death. All patients were free from CAO, stroke or emergency reintervention. Post-procedural mean aortic valve gradient was 7 (interquartile range, 4, 12) mmHg, and none/trace or mild aortic regurgitation was present in all patients. Conclusion: Stand-alone TAVR using the J-Valve may mitigate the risk of TAVR-induced CAO.
Assuntos
Estenose da Valva Aórtica , Oclusão Coronária , Complicações Pós-Operatórias , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Masculino , Feminino , Idoso , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Fatores de Risco , Estenose da Valva Aórtica/cirurgia , Oclusão Coronária/cirurgia , Complicações Pós-Operatórias/prevenção & controle , China , Resultado do Tratamento , Próteses Valvulares Cardíacas , Tomografia Computadorizada por Raios X , Pessoa de Meia-IdadeRESUMO
In this study, a high-precision counterweight self-calibrating surface thermometer is designed to reduce human and environmental influences on a thermocouple surface thermometer during measuring. A self-weighted spring structure based on a copper substrate is designed to ensure perfect contact between the surface thermometer and the temperature source. In conjunction, a wind guard is coupled with insulating materials to optimize the thermal exchange of the surface thermometer. Subsequently, the maximum error is reduced to ±1.5 °C by system hardware optimization. However, hardware calibration alone is insufficient. Furthermore, a back propagation neural network is employed to calibrate the surface thermometer. Temperature sensor data are collected under various surface source temperatures and airflow velocities to train the neural network. Hence, the effectiveness of the proposed Gaussian function in enhancing the measurement accuracy of the surface temperature sensor is demonstrated. The results show higher stability and repeatability in temperature measurement than thermocouple-based surface thermometers. The proposed thermometer exhibits robustness against environmental and operational variability with a maximum indication error of -0.2 °C. In contrast, the maximum error of the surface thermometer is between -2.8 and -6.8 °C. Regarding repeatability, the standard deviation with the proposed device is 0.2%, highlighting its accuracy and consistency of performance. These results can mostly be attributed to the synergistic effect of clever mechanical design and software optimization, resulting in a surface thermometer with outstanding accuracy and repeatability.
RESUMO
In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.
RESUMO
This study investigated the potential of immune checkpoint inhibitors (ICIs) combined with chemotherapy as a promising treatment approach for malignancies. This report focuses on a patient with drug-induced liver injury (DILI) following the administration of chemotherapy and ICIs. A 63-year-old patient with non-small cell lung adenocarcinoma (NSCLC) initially underwent γ-knife treatment and subsequently received a combination of chemotherapy comprising bevacizumab and camrelizumab. Due to liver abnormalities, both chemotherapy and ICIs were stopped on day 21. The patient's liver function improved within a month after methylprednisolone treatment. Subsequently, the patient received carboplatin, pemetrexed, and bevacizumab without complications. This finding supported the notion that DILI was likely triggered by the ICI. This case series details a complex instance of DILI resulting from the use of ICIs and pemetrexed/carboplatin. The alignment of the pathological findings and clinical presentation strongly suggested ICI-induced DILI, which was further supported by the definitive response to steroid treatment. This information is important for clinicians, as it emphasizes the importance of closely monitoring liver function and being aware of potential adverse effects associated with ICIs. Such insights contribute to more effective patient care.
RESUMO
BACKGROUND: The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS: We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS: The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS: Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioma , Imageamento por Ressonância Magnética , Humanos , Glioma/genética , Glioma/imunologia , Metilação de DNA/genética , Feminino , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Adulto , Aprendizado de Máquina , Fenótipo , Idoso , Biomarcadores Tumorais/genéticaRESUMO
Dietary energy is crucial for ruminants' performance and health. To determine optimal dietary energy levels for growing sheep, we evaluated their growth performance, nutrient digestibility, rumen fermentation, barrier function, and microbiota under varying metabolic energy (ME) diets. Forty-five growing Yunnan semi-fine wool sheep, aged 10 months and weighing 30.8 ± 1.9 kg, were randomly allocated to five treatments, each receiving diets with ME levels of 8.0, 8.6, 9.2, 9.8 or 10.4 MJ/kg. The results showed that with increasing dietary energy, the average daily gain (ADG) as well as the digestibility of dry matter (DM) and organic matter (OM) increased (p < 0.05), while the feed conversion ratio (FCR) decreased linearly (p = 0.01). The concentration of total VFA (p = 0.03) and propionate (p = 0.01) in the rumen increased linearly, while rumen pH (p < 0.01) and the acetate-propionate ratio (p = 0.01) decreased linearly. Meanwhile, the protein contents of Claudin-4, Claudin-7, Occludin and ZO-1 as well as the relative mRNA expression of Claudin-4 and Occludin also increased (p < 0.05). In addition, rumen bacterial diversity decreased with the increase of dietary energy, and the relative abundance of some bacteria (like Saccharofermentans, Prevotella and Succiniclasticum) changed. In conclusion, increasing dietary energy levels enhanced growth performance, nutrient digestibility, rumen fermentation, and barrier function, and altered the rumen bacterial community distribution. The optimal dietary ME for these parameters in sheep at this growth stage was between 9.8 and 10.4 MJ/kg.