Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 99(51): e23547, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33371079

RESUMO

ABSTRACT: This study aims to investigate the clinical characteristics and viral shedding kinetics of asymptomatic patients with coronavirus disease 2019 (COVID-19).The data of 38 asymptomatic patients positive for SARS-CoV-2 nucleic acid were collected from February to March 2020 in Tuanfeng County, Huanggang, Hubei, China. The epidemiology, laboratory examination, chest imaging, viral nucleic acid test results, clinical characteristics, and viral shedding time were summarized in this retrospective study.The study included 20 family members of patients with COVID-19, 10 medical personnel participating in COVID-19 treatment or working in a fever clinic, 6 personnel from quarantine places, 1 individual with a close contact history with confirmed patients, and 1 local epidemic prevention personnel. All were positive for SARS-CoV-2 nucleic acid. The white blood cell (WBC) count, the absolute value of lymphocytes, C-reactive protein (CRP), and D-dimer were normal. Pneumonia manifestations were not found in the chest computed tomography (CT) scan of 36 patients; the remaining 2 cases included a 1-year-old child and a pregnant woman, and they did not undergo chest CT. The viral shedding time was 6 days.All asymptomatic patients with COVID-19 had a history of close contact or exposure. Laboratory tests were normal. Chest imaging did not show any pneumonia manifestation. The viral shedding time was <10 days, which is shorter than that of patients with COVID-19. A timely discovery of such asymptomatic infections is crucial for blocking the spread of the virus and strengthening the prevention and control measures.


Assuntos
Infecções Assintomáticas/epidemiologia , Eliminação de Partículas Virais , Adolescente , Adulto , Infecções Assintomáticas/terapia , /diagnóstico por imagem , Criança , China/epidemiologia , Feminino , Humanos , Indóis/uso terapêutico , Lactente , Masculino , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Radiografia Torácica , Estudos Retrospectivos , Adulto Jovem
2.
Anal Chem ; 92(23): 15565-15572, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201673

RESUMO

Pyroptotic cell death is a phenomenon that runs through all life activities and plays an important role in physiological and pathological processes of the body's metabolism. It is of big biological significance to understand the phenomenon and nature of cell pyroptosis. In the process of cell pyroptosis, the pore-forming effector gasdermin D (GSDMD) is cleaved to form oligomers, which are inserted into the cell membrane, causing rapid cell death. However, the effective cell death induced by GSDMD complicates our ability to understand the behavior of pyroptosis. In this work, we performed molecular mutagenesis to develop a genetically encoded pyroptotic reporter, where a secreted Gaussia luciferase (Gluc) was strategically placed in the p30-p20 tolerated junction of GSDMD to support natural pyrophosphorylation and promote live imaging of cell pyroptosis. In addition, we demonstrated that this fused Gluc-GSDMD reporter executed inflammatory body-dependent pyroptosis in response to extracellular stimuli, and that the lysed p30-GSDMD can be secreted out of the cell and can be detected in the culture medium and animal blood. Therefore, our study provides a valuable tool that not only noninvasive and real-time monitoring of cell pyroptosis, but also affords a high-throughput functional screening of pyroptosis-targeted compounds in cultured cells and animal models.

3.
Exp Ther Med ; 20(5): 96, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32973945

RESUMO

Atherosclerosis is the leading cause of morbidity and mortality worldwide. The underlying pathogenesis involves multiple metabolic disorders, endothelial dysfunction and a maladaptive immune response, and leads to chronic arterial wall inflammation. Numerous normal physiological activities exhibit daily rhythmicity, including energy metabolism, vascular function and inflammatory immunoreactions, and disrupted or misaligned circadian rhythms may promote the progression of atherosclerosis. However, the association between the circadian rhythm and atherosclerosis remains to be fully elucidated. In the present review, the effects of the circadian rhythm on atherosclerosis progression are discussed.

4.
J Therm Biol ; 90: 102560, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32479378

RESUMO

The tumor suppressor protein, p53 plays a crucial role in protecting genetic integrity. Once activated by diverse cell stresses, p53 reversibly activates downstream target genes to regulate cell cycle and apoptosis. However, few studies have investigated the effects of thermal stress in turbot, specifically the p53 signaling pathway. In this study, the rapid amplification of cDNA ends was used to obtain a full-length cDNA of the turbot p53 gene (Sm-p53) and perform bioinformatics analysis. The results showed that the cDNA of the Sm-p53 gene was 2928 bp in length, encoded a 381 amino acid protein, with a theoretical isoelectric point of 6.73. It was composed of a DNA binding and a tetramerization domain. Expression of Sm-p53 in different tissues was detected and quantified by qRT-PCR, and was highest in the liver. We also investigated the expression profiles of Sm-p53 in different tissue and TK cells after thermal stress. These result suggested that Sm-p53 plays a key role, and provides a theoretical basis for Sm-p53 changes in environmental stress responses in the turbot.

5.
Fish Physiol Biochem ; 46(4): 1519-1536, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32383147

RESUMO

The turbot Scophthalmus maximus has evolved extensive physiological ability to adapt to multiple environmental salinities. The morphological changes of the kidney indicated the adaptability difference and similarity of turbot to salinity stress. Identify transcriptome-wide differences between low-salinity seawater (LSW, salinity 5)- and high-salinity seawater (HSW, salinity 50)-acclimated kidneys of turbot to decipher the osmotic regulation mechanism. We identified 688 differentially expressed genes (DEGs) in the LSW-acclimated kidneys and 2441 DEGs in the HSW-acclimated kidneys of turbot compared with seawater-acclimated kidneys, respectively. We investigated three patterns of gene regulation to salinity stress that involved in ion channels and transporters, functions of calcium regulation, organic osmolytes, energy demand, cell cycle regulation, and cell protection. Additionally, protein-protein interaction (PPI) analysis of DEGs suggested the presence of a frequent functional interaction pattern and that crucial genes in the PPI network are involved in hyper-osmotic regulation. Based on the analysis of comparative transcriptome data and related literature reports, we conclude that the mechanisms responsible for osmotic regulation and its divergence in turbot are related to various genes that are involved in canonical physiological functions. These findings provide insight into the divergence in osmoregulation of turbot and valuable information about osmoregulation mechanisms that will benefit other studies in this field.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32428567

RESUMO

To understand the role of 14-3-3 beta/alpha in hypoosmotic regulation of turbot (Scophthalmus maximus), we characterized the 14-3-3 beta/alpha gene and analyzed the tissue distribution and its gene transcriptional patterns in the main expressed tissues under low salt stress. The 14-3-3 beta/alpha cDNA is 892 bp in length, incorporating an ORF of 774 bp with a putative primary structure of 257 residues. The deduced amino acid sequences shared highly conserved structures with other eukaryotes. Quantitative real-time PCR results showed that the 14-3-3 beta/alpha transcripts were widely expressed in various tissues of turbot, with most abundant in the gill (P < .05), to a lesser extent in the kidney, intestine, brain and spleen, and at low levels in the pituitary and other tissues examined. And the expression of turbot 14-3-3 beta/alpha exhibited a trend of increasing first and then decreasing with the time of stress under low salt stress, and the highest value appeared in 12 h (P < .05). After injecting different concentrations of dsRNA, the mRNA expression of 14-3-3 gene decreased significantly during the monitoring period, and the best interference effect was achieved 12 h after injecting 4 µg/g dsRNA. For the first time, the gene was silenced in fish by intramuscular injection of dsRNA. It also provides a new and effective way to study gene function at the individual level. Moreover, the mRNA interference of 14-3-3 beta/alpha would cause changes in the expression of several ion channel proteins, for example, the decrease of Na+-K+-ATPase and Na+-H+-exchanger and the increase of CFTR. As a result, 14-3-3 beta/alpha appears to be an important molecular regulator for osmosensory signal transduction in gill of turbot.

7.
Biochem Biophys Res Commun ; 526(4): 913-919, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279992

RESUMO

Myo-inositol is a major intracellular osmolyte that can be accumulated to protect cells from a variety of stresses, including fluctuations in the osmolality of the environment, and cortisol is thought to be an osmotic hormone in teleost fish. In this study, dietary myo-inositol resulted in increased Na+-K+-ATPase activity and gene expression of partial ion channel genes and prolonged survival time of turbot (Scophthalmus maximus) under low salinity. The cortisol regulated by dietary myo-inositol also was correlated with these outcomes. The optimal concentrations of cortisol stimulated gill Na+-K+-ATPase activity and increased the expression of ion channel genes to enhance low salinity tolerance, as indicated by longer survival time under low salinity. When cortisol level was suppressed, myo-inositol failed to increase the survival time of turbot under low salinity, and strong correlations between cortisol concentration and Na+-K+-ATPase activity, expression of partial ion channel genes, and survival time of turbot were detected. These results showed that myo-inositol enhanced the low salinity tolerance of turbot by modulating cortisol synthesis.


Assuntos
Linguados/fisiologia , Hidrocortisona/biossíntese , Inositol/farmacologia , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Animais , Comportamento Alimentar/efeitos dos fármacos , Metirapona/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31715507

RESUMO

Turbot (Scophthalmus maximus) is an economically important marine fish cultured in China. In this study, we performed transcriptome gene expression profiling of kidney tissue in turbot exposed to heat stress (20, 23, 25 and 28 °C); control fish were maintained at 14 °C. We investigated gene relationships based on weighted gene co-expression network analysis (WGCNA). Accordingly, enrichment analyses of GO terms and KEGG pathways showed that several pathways (e.g., fat metabolism, cell apoptosis, immune system, and insulin signaling) may be involved in the response of turbot to heat stress. Moreover, via WGCNA, we identified 19 modules: the dark grey module was mainly enriched in pathways associated with fat metabolism and the FOXO and Jak-STAT signaling pathways. The ivory module was significantly enriched in the P53 signaling pathway. Furthermore, the key hub genes CBP, AKT3, CCND2, PIK3r2, SCOS3, mdm2, cyc-B, and p48 were enriched in the FOXO, Jak-STAT and P53 signaling pathways. This is the first study reporting co-expression patterns of a gene network after heat stress in marine fish. Our results may contribute to our understanding of the underlying molecular mechanism of thermal tolerance.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31846703

RESUMO

The induction of the myo-inositol biosynthesis (MIB) pathway in euryhaline fishes is an important component of the cellular response to osmotic challenge. The MIPS and IMPA1 genes were sequenced in turbot and found to be highly conserved in phylogenetic evolution, especially within the fish species tested. Under salinity stress in turbot, both MIPS and IMPA1 showed adaptive expression, a turning point in the level of expression occurred at 12 h in all tissues tested. We performed an RNAi assay mediated by long fragment dsRNA prepared by transcription in vitro. The findings demonstrated that knockdown of the MIB pathway weakened the function of gill osmotic regulation, and may induce a genetic compensation response in the kidney and gill to maintain physiological function. Even though the gill and kidney conducted stress reactions or compensatory responses to salinity stress, this inadequately addressed the consequences of MIB knockdown. Therefore, the survival time of turbot under salinity stress after knockdown was obviously less than that under seawater, especially under low salt stress. Pearson's correlation analysis between gene expression and dietary myo-inositol concentration indicated that the MIB pathway had a remarkable negative feedback control, and the dynamic equilibrium mediated by negative feedback on the MIB pathway played a crucial role in osmoregulation in turbot. An RNAi assay with c-Myc in vivo and the use of a c-Myc inhibitor (10058-F4) in vitro demonstrated that c-Myc was likely to positively regulate the MIB pathway in turbot.

10.
Zootaxa ; 4668(2): zootaxa.4668.2.9, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31716633

RESUMO

A new species of Cryptinae, Hylophasma luica Sheng, Li Wang, sp.n., collected from Shandong Province, in the southern border of the Eastern Palaearctic Region of China, is described and illustrated. The new species is placed within the existing key to species.


Assuntos
Himenópteros , Animais , China
11.
Arch Med Sci ; 15(6): 1375-1380, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31749864

RESUMO

Introduction: The aim of the current study was to evaluate the association between lipoprotein(a) [Lp(a)] and major adverse cardiovascular events (MACEs) in patients with percutaneous coronary intervention (PCI) treatment. Material and methods: This was a retrospective study. The demographics, prior medical histories, comorbidities and laboratory parameters were collected from the electronic health record. All participants were followed up for 1 year after the indexed PCI. Studied end points were a composite of MACEs including all-cause mortality, non-fatal myocardial infarction (MI), non-fatal ischemic stroke, transient ischemic attack and stent restenosis. Results: During 1-year follow-up, 87 MACEs occurred. Compared to patients who did not have MACEs, patients who had MACEs were older, more likely to have higher body mass index, diabetes mellitus and left main lesion, and also had higher baseline low density lipoprotein cholesterol (LDL-C) and Lp(a) levels. All patients in both groups were prescribed aspirin and clopidogrel at discharge. Nearly 97.4% and 95.4% of patients in both groups were treated with statins and a higher proportion of patients in the MACE group were treated with ezetimibe (11.5% vs. 3.5%, p < 0.05). In multivariate regression analysis, diabetes mellitus, LDL-C, Lp(a) and glomerular filtration rate were independent risk factors for MACEs; statin use appeared to be a protective factor for MACEs. Patients with increased Lp(a) level had significantly higher incidence of MACEs than the normal Lp(a) level group (p = 0.001). Conclusions: Baseline serum Lp(a) can be used to predict MACEs in patients after PCI treatment, which was independent of LDL-C.

12.
Anal Chem ; 91(19): 12392-12398, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476865

RESUMO

Pre-mRNA splicing in the information exchange from DNA to protein is a critical step in all eukaryotes. However, there is currently a lack of noninvasive approaches for monitoring mRNA splicing events in cells. In this study, we presented a genetically encoded bioluminescence reporter, Rluc-intron, for noninvasive real-time monitoring the pre-mRNA splicing process in living cells and animals. It was designed by inserting a renilla luciferase (Rluc) gene into an intron sequence manipulated by RNA splicing modulator. We demonstrated that the splicing reporter Rluc-intron could provide real-time and quantitative information on the splicing activity responded to extracellular stimuli in living cells. In addition, Rluc-intron reporter is able to successfully quantify and image the pre-mRNA splicing in living mice in a noninvasive and longitudinal manner. This bioluminescence reporter provides the advantageous properties of systematic discovery of splicing modulators, which give the advances in pharmacogenomics and would produce new approach in the therapy of human diseases caused by splicing disorder.


Assuntos
Íntrons/genética , Medições Luminescentes/métodos , Imagem Molecular/métodos , Precursores de RNA/genética , Processamento de RNA , Animais , Compostos de Epóxi/farmacologia , Células HEK293 , Humanos , Luciferases de Renilla/genética , Macrolídeos/farmacologia , Camundongos , Processamento de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Fatores de Tempo
13.
Zookeys ; 865: 21-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379441

RESUMO

A new species of Cryptinae, Hoplocryptusqingdaoensis Sheng, Wang & Schwarz, sp. nov. collected from Qingdao, Shandong Province, in the north border of oriental part of China, is described and illustrated. A key to species known from the Oriental and Eastern Palaearctic regions is provided.

14.
Cancer Lett ; 459: 50-58, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31163195

RESUMO

MicroRNAs (miRNAs) were involved in cancer progression, and the targeting of miRNAs by natural agents has opened avenues for cancer treatment and drug development. miR-16 functions as a tumor suppressor and is frequently deleted or downregulated in various human cancers, including hepatocellular carcinoma (HCC). In the present study, we employed a miR-16-responsive luciferase reporter to screen candidate compounds that modulate miR-16 expression from a natural product library. One compound, sanguinarine (SG), was capable of activating miR-16 in HCC cells with wildtype or mutated p53 expression but not in p53-deleted HCC cells. Mechanistic investigations revealed that SG increased p53 occupancy on the miR-16-2 promoter and decreased the expression of miR-16 target genes, including Bcl-2 and cyclin D1. Moreover, SG significantly inhibited HCC cell proliferation in a p53-dependent manner by inducing cell cycle arrest and reactive oxygen species (ROS)-associated apoptosis. Silencing miR-16 by treatment with anti-miR16 miRNA inhibitors rescued the cell viability repression effect caused by SG. Importantly, SG dramatically suppressed tumor growth in an HCC xenograft model, with little cytotoxicity. Taken together, our results provide a preclinical proof-of-concept for SG as a potential strategy for HCC treatment based on the restoration of miR-16 tumor suppressor function.


Assuntos
Benzofenantridinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Isoquinolinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Regiões Promotoras Genéticas , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Cell Biochem ; 120(9): 15455-15466, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081966

RESUMO

Uncoupling protein 2 (UCP2), located in the mitochondrial inner membrane, is a predominant isoform of UCP that expressed in the heart and other tissues of human and rodent tissues. Nevertheless, its functional role during myocardial ischemia/reperfusion (I/R) is not entirely understood. Ischemic preconditioning (IPC) remarkably improved postischemic functional recovery followed by reduced lactate dehydrogenase (LDH) release with simultaneous upregulation of UCP2 in perfused myocardium. We then investigated the role of UCP2 in IPC-afforded cardioprotective effects on myocardial I/R injury with adenovirus-mediated in vivo UCP2 overexpression (AdUCP2) and knockdown (AdshUCP2). IPC-induced protective effects were mimicked by UCP2 overexpression, while which were abolished with silencing UCP2. Mechanistically, UCP2 overexpression significantly reinforced I/R-induced mitochondrial autophagy (mitophagy), as measured by biochemical hallmarks of mitochondrial autophagy. Moreover, primary cardiomyocytes infected with AdUCP2 increased simulated ischemia/reperfusion (sI/R)-induced mitophagy and therefore reversed impaired mitochondrial function. Finally, suppression of mitophagy with mdivi-1 in cultured cardiomyocytes abolished UCP2-afforded protective effect on sI/R-induced mitochondrial dysfunction and cell death. Our data identify a critical role for UCP2 against myocardial I/R injury through preventing the mitochondrial dysfunction through reinforcing mitophagy. Our findings reveal novel mechanisms of UCP2 in the cardioprotective effects during myocardial I/R.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/citologia , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , L-Lactato Desidrogenase/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
16.
J Fish Dis ; 42(5): 713-720, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851001

RESUMO

Genetic parameters for resistance to Vibrio anguillarum in Scophthalmus maximus were estimated using three different statistical models. Data were recorded from an experimental infection performed on 2,400 individuals from 30 full-sib groups. Cross-sectional linear model and cross-sectional threshold probit model were used to analyse the test-period survival; the cross-sectional threshold logit models were used to analyse the test-day survival. The heritability values estimated by cross-sectional linear model (CSL), cross-sectional threshold (probit) model (THRp) and cross-sectional threshold (logit) model (THRl) were 0.202 ± 0.101, 0.296 ± 0.168 and 0.110 ± 0.023, respectively. The correlation coefficients between the full-sib families' estimated breeding values (EBVs) based on these three models were over 0.993. An almost identical ranking of families was generated using any of these models. Accuracy of selection using CSL, THRp and THRl models was 0.783, 0.789 and 0.801, respectively. Accuracy of selection based on the THRl model was higher than that based on CSL and THRp models.


Assuntos
Doenças dos Peixes/genética , Linguados , Vibrioses/veterinária , Vibrio/fisiologia , Animais , Aquicultura , Cruzamento , Estudos Transversais , Doenças dos Peixes/microbiologia , Linguados/genética , Modelos Biológicos , Vibrioses/genética , Vibrioses/microbiologia
17.
Int J Clin Exp Pathol ; 12(10): 3761-3771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31933764

RESUMO

AIM: Acute coronary syndrome (ACS), a leading cause of morbidity and mortality worldwide, is among the most serious cardiovascular diseases. Circadian rhythms are present in almost all organisms. In clinical practice, we have found that ACS is closely related to these circadian rhythms. However, the relationship between circadian rhythms and plaque instability in ACS patients is incompletely understood. The aim of this study is to provide new insights into the relationship between circadian rhythms and plaque instability in ACS patients. METHODS: We enrolled patients with ACS and individuals with normal coronary artery function in this study. The Athens Insomnia Scale (AIS), Pittsburgh Sleep Quality Index (PSQI), International Physical Activity Questionnaire (IPAQ) and Healthy Diet Score (HDS) were used to evaluate circadian rhythms. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the mRNA expression levels of muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), circadian locomotor output cycles kaput (Clock), Cryptochrome1 (Cry1), Period2 (Per2), nuclear receptor subfamily 1, group D, member 1 (Rev-erbα), and matrix metalloproteinases MMP2 and MMP9. RESULTS: AIS scores and PSQI scores were significantly higher in patients with ST segment elevation myocardial infarction (STEMI), non-ST segment elevation myocardial infarction (NSTEMI), and unstable angina pectoris (UA) than in the normal controls (NCs) (P < 0.05). The IPAQ scores of the NCs and patients with UA were significantly higher than in patients with STEMI and NSTEMI (P < 0.05). Notably higher HDS scores were recorded for the NCs compared to those of patients with UA, NSTEMI, and STEMI (P < 0.05). Consistent with these findings, compared with the NCs, the lowest levels of Bmal1, Clock, Cry1, Per2 and Rev-erbα mRNAs were detected in patients with STEMI, followed by patients with NSTEMI and then patients with UA (P < 0.05). Furthermore, the levels of MMP2 and MMP9 mRNA were significantly higher in the patients with STEMI, NSTEMI, and UA than those in the NCs (P < 0.05). In addition, we found that the levels of MMP mRNA negatively correlated with the levels of clock genes mRNAs (P < 0.05, respectively). CONCLUSIONS: Based on our data, the circadian rhythms and clock genes are correlatively with the occurrence of ACS, and the expression levels of clock genes are negatively correlated with plaque stability in ACS patients.

18.
ACS Chem Neurosci ; 10(3): 1696-1705, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30474964

RESUMO

The capability of monitoring the neuronal differentiation process in living cells is crucial to the understanding of neuronal development and the practical application of cell therapy for the treatment of neurodegenerative disorders. Current research methods, including Northern blot and real-time PCR analysis, have been extensively employed to quantify miRNA expression during cellular processes. However, these methods require cell destruction and could not provide dynamic information on miRNA expression and function in living organisms. In the present study, we developed a dual luciferase reporter to monitor the expression pattern of neuron-specific miRNA-9 and miRNA-124a during neuronal differentiation in vitro and in vivo. The miRNA-responsive reporter was designed to encode a firefly luciferase (Fluc) gene containing miRNA target sequences and a Renilla luciferase (Rluc) gene for normalization. These two genes were independent modules and transcribed by two different promoters, which enables precise sensing miRNA activity without mutual transcription interference. We demonstrated that the functional activation of miRNA-9 and miRNA-124a during neurogenesis was visualized by the reduction of Fluc bioluminescence signal in P19 cells and nude mice without Rluc signal change, suggesting that miRNA-9 and miRNA-124a specifically downregulated their targets in accordance with their expression. Our dual luciferase-based miRNA imaging system provides a useful tool to quantitatively and continuously monitor miRNA activity during various biological processes.


Assuntos
Diferenciação Celular/genética , Luciferases de Vaga-Lume/genética , MicroRNAs/genética , Neurônios/metabolismo , Animais , Genes Reporter/genética , Humanos , Camundongos , MicroRNAs/metabolismo , Microscopia de Fluorescência/métodos , Neurogênese/genética , Regiões Promotoras Genéticas/genética
19.
Acta Cardiol Sin ; 34(5): 399-408, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271090

RESUMO

Background: Atherosclerosis (AS) is defined as chronic inflammation of the vessel wall. The major objective of the this study was to explore the mechanism of Treg/Th17 imbalance and the role of high mobility group box-1 protein (HMGB1) on the balance in AS. Methods: We detected the apoptotic ratios of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects with AS and normal coronary arteries (NCA) by flow cytometry. The effects of recombinant HMGB1 (rHMGB1) on the proportion, apoptosis and differentiation of Treg and Th17 cells were analyzed using flow cytometry, qRT-PCR and ELISA. Results: The frequencies of apoptotic Treg cells in the PBMCs from the subjects with AS were significantly higher than in those with NCA (p < 0.01). Stimulation of rHMGB1 obviously increased the level of Th17 cells and acid- related orphan receptor C (RORC) mRNA, and markedly decreased Treg cell frequency and the mRNA expression of factor forkhead family protein 3 (Foxp3) in the PBMCs. rHMGB1 played an obvious role in elevating Treg cell apoptosis ratio (p < 0.01). rHMGB1 treatment significantly decreased Treg cell ratio and IL-10 level, and increased Th17 cell ratio and IL-17A level induced from naïve CD4+ T cells. Conclusions: HMGB1 may modulate Treg/Th17 balance in patients with AS through inducing Treg cell apoptosis and promoting cell differentiation of Th17.

20.
Zootaxa ; 4413(3): 541-550, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690101

RESUMO

A new genus, Verruca Sheng Sun gen. nov., of the ichneumonid tribe Atrophini, subfamily Banchinae is described for one new species, Verruca dentia Sheng Sun, sp. nov. The species was collected from Shandong and Jiangxi Provinces, situated near the northern border of the Oriental part of China. The new genus is placed within the existing key to genera. A key to the genera of Atrophini, with the apical portion of the ovipositor with ridges, is also provided.


Assuntos
Himenópteros , Animais , China , Thoracica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA