Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Chemosphere ; 287(Pt 4): 132395, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34597628

RESUMO

Glufosinate-ammonium (GLA) is a widely used herbicide with emerging concern over its neural and reproductive toxicity. To uncover potential effects of GLA on male reproductive health in mammals, adult male C57BL/6J mice were administered 0.2 mg/kg·d GLA for 5 weeks. After examination on fertility, testis histology and semen quality in the GLA group, we performed deep sequencing to identify repressive epigenetic marks including DNA methylation and histone modifications (H3K27me3 and H3K9me3), together with mRNA transcript levels in sperm. Then, we integrated multi-omics sequencing data to comprehensively explore GLA-induced epigenetic and transcriptomic alterations. We found no significant difference either on fertility, testis histology or semen quality-related indicators. As for epigenome, the protein level of H3K27me3 was significantly increased in GLA sperm. Next generation sequencing showed alterations of these epigenetic marks and extensive transcription inhibition in sperm. These differential repressive marks were mainly distributed at intergenic regions and introns. According to results by Gene Ontology enrichment analysis, both differentially methylated and expressed genes were mainly enriched in pathways related to synapse organization. Subtle differences in genomic imprinting were also observed between the two groups. These results suggested that GLA predominantly impaired sperm epigenome and transcriptome in mice, with little effect on fertility, testis histology or semen quality. Further studies on human sperm using similar strategies need to be conducted for a better understanding of the male reproductive toxicity of GLA.

2.
Sci Total Environ ; : 150771, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619216

RESUMO

The dissipation behavior of tolfenpyrad, a widely used pyrazole insecticide in tea plantations, was investigated during tea bushes growing, manufacturing and brewing. Tolfenpyrad dissipated fast on the tea bushes with the half-lives of 1.8-2.3 days. Manufacturing processes of green tea and black tea further reduced the tolfenpyrad residue by 3.5%-36.4%. The average processing factors (PFs) of tolfenpyrad ranged from 0.68 to 1.40 and 0.84 to 1.30 during the processing of green tea and black tea, respectively. Then a low infusion factor of 9.8%-19.9% was observed during the brewing of made tea, as the water solubility of tolfenpyrad was only 0.087 mg/L. Therefore, more than 96% of the initial deposition of tolfenpyrad was dissipated and not accessible for consuming. Results of the risk quotient (RQ) assessment also indicated a negligible health risk by tea consumption. Results from this study indicated that the residue of tolfenpyrad can be reduced by proper field management, manufacturing and brewing processes, where field dissipation and brewing were key steps to minimize its risks. Data of this study could also provide guidance for rational application of tolfenpyrad in tea plantations.

3.
Sci Total Environ ; 806(Pt 2): 150674, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34597539

RESUMO

BACKGROUND: With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. OBJECTIVES: To determine the utility of environmental chemical exposure in predicting diabetes mellitus. METHODS: A total of 8501 eligible participants from NHANES 2005-2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). RESULTS: The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. CONCLUSION: We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.

4.
Reprod Toxicol ; 106: 18-24, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34547414

RESUMO

2,2',4,4'-Tetrabromodiphenyl ether (BDE47) poses potential risks to reproduction and development, but the mechanism of its toxicity has not yet been elucidated. To explore the developmental toxicity of BDE47, mouse embryonic stem cells (mESCs), which are ideal models for testing the developmental toxicity of environmental contaminants in vitro, were exposed to BDE47 (0.04 µM, 1 µM, 25 µM, or 100 µM) for 24 h or 48 h in this study. Our results indicated that BDE47 treatment changed the morphology of mESCs, inhibited cell viability and increased apoptosis. In addition, alkaline phosphatase (AP) staining in mESCs was significantly decreased after BDE47 treatment (25 µM and 100 µM), indicating that BDE47 treatment affected the pluripotency of mESCs. Through a cell immunofluorescence assay, we found that the fluorescence intensities of Oct4, Sox2 and Nanog were all significantly lower in the group treated with the highest BDE47 concentration (100 µM) than in the control group, consistent with the qRT-PCR and Western blot results. The levels of miR-145 and miR-34a, which regulate genes related to cell differentiation, were significantly increased in BDE47-treated mESCs, further clarifying the potential mechanism. Overall, our findings demonstrate that BDE47 exposure upregulates the expression of miR-145 and miR-34a and in turn downregulates the expression of Oct4, Sox2 and Nanog, thereby affecting apoptosis and pluripotency and causing toxicity during embryonic development.

5.
Pharmacol Res ; 173: 105881, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509631

RESUMO

IBS-D is a functional bowel disease without clear diagnostic markers and exact pathogenesis. Studies have proved that non-coding RNAs participate in IBS-D. However, tRNA-derived small RNAs (tsRNAs), as a new type of non-coding RNAs that are more suitable as markers, remain to be clarified in IBS-D. Hence, we focused on the identification and potential functions of tsRNAs in IBS-D. Intestinal biopsies were obtained from IBS-D patients and healthy volunteers, and twenty-eight differential tsRNAs were screened by high-throughput sequencing. The changes of tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 by q-PCR in expanded samples were consistent with the sequencing results. Meanwhile, target gene prediction and bioinformatics showed that the three differential tsRNAs may be involved in some key signal pathways, such as GABAergic synapse, tumor necrosis factor-α (TNF-α), etc. Their regulation on target genes were demonstrated through cell experiments and luciferase reporter assays. In addition, the receiver-operating characteristic (ROC) analysis showed that the three tsRNAs all could be used as candidate markers of IBS-D. The correlation analysis indicated they were related to the degree of abdominal pain, abdominal distension, and stool morphology. So, we believe that the abnormal tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 are related to the clinical symptoms of IBS-D, and can target regulate the important molecules of the brain-gut axis, even could be expected as potential biomarkers for the diagnosis and treatment of IBS-D.

7.
Lipids Health Dis ; 20(1): 94, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454509

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasms (IPMNs) can potentially undergo malignant transformation. Studies have shown that high-density lipoprotein cholesterol (HDL-c) was associated with the risk of cancer. In this study, the association between HDL-c and the incidence of malignancy in IPMNs was investigated. MATERIALS AND METHODS: 226 patients with histologically proven IPMNs who underwent surgery were included in the present study. Patients were assigned to a training group (n = 151) and validation group (n = 75). Patients' demographic information, clinical data, and histopathological evaluation findings were obtained from medical records. Malignant IPMNs were defined as lesions that showed high grade dysplasia and invasive carcinoma. Logistic regression analyses were used to show the association between HDL-c and malignant IPMNs. Receiver operating characteristic (ROC) curves were generated to analyze predictive performance. RESULTS: The prevalence of low HDL-c levels was higher in patients with malignant IPMNs than in those with non-malignant IPMNs (P < 0.01) in both the training group and validation group. The prevalence of malignant IPMNs decreased with an increase in HDL-c levels both in patients with all types of IPMNs, as well as in those with branch-duct IPMNs (BD-IPMNs).Logistic analysis showed that low HDL-c levels were associated with malignant IPMNs (odds ratio (OR) = 20.56, 95 % confidence interval (CI): 2.58-163.64, P < 0.01) in all types of IPMNs and BD-IPMNs (OR = 17.6, 95 %CI: 1.16-268.46, P = 0.02 ).The predictive performance of mural nodules plus low HDL-c levels was higher than that of mural nodules alone or mural nodules plus cyst size for the identification of malignant BD-IPMNs. CONCLUSIONS: HDL-c levels may serve a potential biomarker for identifying malignant IPMNs and improve the predictive ability of malignancy in BD-IPMNs.

8.
Biol Res ; 54(1): 25, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362460

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor alpha (PPARα) is associated with diabetic retinopathy (DR), and the underlying mechanism is still unclear. Aim of this work was to investigate the mechanism of PPARα in DR. METHODS: Human retinal capillary pericytes (HRCPs) were treated with high glucose (HG) to induce DR cell model. DR mouse model was established by streptozotocin injection, and then received 5-Aza-2-deoxycytidine (DAC; DNA methyltransferase inhibitor) treatment. Hematoxylin-eosin staining was performed to assess retinal tissue damage. PPARα methylation was examined by Methylation-Specific PCR. Flow cytometry and DCFH-DA fluorescent probe was used to estimate apoptosis and reactive oxygen species (ROS). The interaction between DNA methyltransferase-1 (DNMT1) and PPARα promoter was examined by Chromatin Immunoprecipitation. Quantitative real-time PCR and western blot were performed to assess gene and protein expression. RESULTS: HG treatment enhanced the methylation levels of PPARα, and repressed PPARα expression in HRCPs. The levels of apoptotic cells and ROS were significantly increased in HRCPs in the presence of HG. Moreover, DNMT1 was highly expressed in HG-treated HRCPs, and DNMT1 interacted with PPARα promoter. PPARα overexpression suppressed apoptosis and ROS levels of HRCPs, which was rescued by DNMT1 up-regulation. In DR mice, DAC treatment inhibited PPARα methylation and reduced damage of retinal tissues. CONCLUSION: DNMT1-mediated PPARα methylation promotes apoptosis and ROS levels of HRCPs and aggravates damage of retinal tissues in DR mice. Thus, this study may highlight novel insights into DR pathogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Retinopatia Diabética , PPAR alfa/genética , Retina/patologia , Animais , Apoptose , Células Cultivadas , Metilação de DNA , Diabetes Mellitus , Modelos Animais de Doenças , Humanos , Metilação , Camundongos , Regiões Promotoras Genéticas , Retina/citologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-34383217

RESUMO

Phytoestrogens are naturally plant-derived compounds that could bind to estrogen receptors and mimic estrogenic effects. Previous studies showed a positive association between phytoestrogens and hypothyroidism; however, little is known on phytoestrogens and thyroid hormones. This study was designed to investigate the associations between urinary phytoestrogens and thyroid hormone levels. Based on the US National Health and Nutrition Examination Survey (NHANES) 2007-2010, 4103 participants were recruited in this cross-sectional study. Linear regression models and multiple linear regressions models were applied to examine the relationships between urinary phytoestrogens and thyroid hormone levels. Urinary O-desmethylangolensin (O-DMA) was found to be correlated with serum FT4 levels in the female 20-60-year-of-age group (ß=0.018, 95% CI: 0.006, 0.031). Higher enterolactone (ENT) levels were significantly positively associated with TSH levels in the 12-19-year-of-age female group (ß=0.196, 95% CI: 0.081, 0.311). In the male group, enterodiol (END) was significantly positively correlated with TSH and TT3 in the 12-19-year-of-age group, respectively (TT3: ß=3.444, 95% CI: 0.150, 6.737; TSH: ß=0.104, 95% CI: 0.005, 0.203). However, equol (EQU) levels were negatively associated with TT4 (12-19-year-of-age: ß=- 0.166, 95% CI: - 0.279, - 0.034; 20-60-year-of-age: ß=- 0.132, 95% CI: - 0.230, - 0.034). Our study provided epidemiological evidence that urinary phytoestrogens were powerfully associated with thyroid hormone levels. The results also supported that phytoestrogens acted as endocrine disruptors. It is imperative and important to pay attention to the intake of phytoestrogens.

10.
Ann Palliat Med ; 10(6): 6850-6858, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34237982

RESUMO

BACKGROUND: Salmonella enterica is a zoonotic pathogen of substantial concern to human and animal health and is a leading cause of morbidity and mortality in people worldwide. Loop-mediated isothermal amplification (LAMP) technology is a new type of nucleic acid amplification technology, which has the characteristics of high specificity, high sensitivity, simple operation, convenience, and low cost. This study aims to establish a rapid detection method for Salmonella based on LAMP technology. METHODS: Primers were designed for Salmonella's specific conservative invA gene. Through primer screening and optimization of reaction conditions, and a LAMP method for detecting Salmonella with real-time fluorescence and visual observation results was established. The sensitivity and specificity of the method were assessed, and the accuracy was evaluated through the testing of Salmonella-contaminated and non-contaminated clinical samples. RESULTS: The optimal reaction temperature of LAMP was 60-65 °C, and the optimal reaction time was 25-30 minutes. The detection limits of real-time fluorescence and visual observation were both 1.4 pg/µL. There was no cross-reactivity observed with 22 non-Salmonella species, and the specificity was 100%. Additionally, 30 samples contaminated with Salmonella, 30 samples not contaminated with Salmonella, and 8 clinical samples identified as positive by bacterial culture and microbial mass spectrometry were tested. The positive coincidence rate of the detection system was 97.4% by real-time fluorescence and 89.5% by visual observation, the negative coincidence rate was 100%, and the total coincidence rate was 98.5% and 94.1%, respectively. CONCLUSIONS: In the scene of infection, primary hospital, disaster area treatment and other scenarios, the conditions of environment, equipment and personnel was limited, therefore, the established real-time fluorescence and visual lamp method can provide a powerful means for the rapid detection of Salmonella.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Salmonella , Animais , Humanos , Técnicas de Diagnóstico Molecular , Salmonella/genética , Sensibilidade e Especificidade
11.
Toxicology ; 460: 152871, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34303733

RESUMO

Perfluorooctane sulfonate (PFOS) is a widespread persistent organic pollutant. Both epidemiological survey and our previous in vivo study have revealed the associations between PFOS exposure and spermatogenesis disorder, while the underlying mechanisms are far from clear. In the present study, GC-2 cells, a mouse spermatocyte-derived cell line, was used to investigate the toxic effects of PFOS and its hypothetical mechanism of action. GC-2 cells were treated with PFOS (0, 50, 100 and 150 µM) for 24 h or 48 h. Results demonstrated that PFOS dose-dependently inhibited cell viability, induced G0/G1 cell cycle arrest and triggered apoptosis, which might be partly explained by the decrease in cyclin D1, PCNA and Bcl-2 protein expression; increase in Bax protein expression; and activation of caspase-9, -3. In addition, PFOS did not directly transactivate or repress estrogen receptors (ERs) in gene reporter assays, whereas the protein levels of both ERα and ERß were significantly altered and the downstream ERK1/2 phosphorylation was inhibited by PFOS. Furthermore, pretreatment with specific ERα agonist PPT (1 µM) significantly attenuated the above PFOS-induced effects while specific ERß agonist DPN (1 µM) accelerated them. These results suggest that PFOS may induce growth inhibition and apoptosis via non-genomic estrogen receptor/ERK1/2 signaling pathway in GC-2 cells, which provides a novel insight regarding the potential role of ERs in mediating PFOS-triggered spermatocyte toxicity.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Apoptose/efeitos dos fármacos , Fluorcarbonetos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Estrogênio/antagonistas & inibidores , Espermatócitos/efeitos dos fármacos , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Espermatócitos/metabolismo
12.
Anal Chem ; 93(26): 9200-9208, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34152733

RESUMO

Mitophagy plays a critical role in regulating and maintaining cellular functions, particularly regulating the quantity and quality of mitochondria. In this research, a multifunctional two-photon fluorescent probe Mito-PV with improved mitochondria-anchored ability was designed. The proposed probe can track the fluctuation of polarity and viscosity in mitochondria simultaneously with two well-distinguished emissions. It can also precisely visualize the change in mitochondrial morphology (including mitochondrial form factor and length). The real-time and accurate monitoring of mitophagy under two-photon excitation was successfully achieved by utilizing probe Mito-PV through supervising the alterations of diverse mitophagy-related parameters (including colocalization coefficient, polarity, viscosity, and mitochondrial morphology). In addition, probe Mito-PV can be applied to evaluate drug bpV(phen) as an effective mitophagy inhibitor. Therefore, our work may provide a more efficient and reliable method for precisely monitoring mitophagy from multiple evaluations.


Assuntos
Corantes Fluorescentes , Mitofagia , Mitocôndrias , Fótons , Viscosidade
13.
Environ Sci Technol ; 55(13): 9087-9096, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106693

RESUMO

Bifenthrin (BF) is a widely used pyrethroid that has been frequently detected in surface waters. Previous studies indicated that BF had antiestrogenic activity in zebrafish embryos but estrogenic activity in posthatch fish. To determine whether age-related differences in metabolism contribute to the endocrine effects in developing fish, embryos from zebrafish and Japanese medaka were exposed to BF before and after liver development. Since the commercial mixture of BF is an isomer-enriched product containing two enantiomers (1R-cis-BF and 1S-cis-BF), enantioselective metabolism was also evaluated. The estrogenic metabolite, 4-hydroxybifenthrin (4-OH-BF) was identified in zebrafish embryos, and formation was higher in animals after liver development (>48 hpf). Treatments with ß-glucuronidase indicated that 4-OH-BF underwent conjugation in embryos. Formation was reduced by cotreatment of the cytochrome P450 (CYP450) inhibitor, ketoconazole. Formation of 4-OH-BF was greater when treated with 1R-cis-BF compared to the S-enantiomer. However, metabolites were not observed in medaka embryos. These data indicate enantioselective oxidation of BF to an estrogenic metabolite occurs in zebrafish embryos and, since it is increased after liver development, may partially explain estrogenic activity observed in older animals. The lack of activity in medaka suggests species-specific effects with BF metabolism and may influence risk assessment strategies in wildlife.


Assuntos
Inseticidas , Oryzias , Piretrinas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Piretrinas/toxicidade , Estereoisomerismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
14.
J Mater Chem B ; 9(27): 5514-5527, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34152355

RESUMO

Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.

15.
Int J Hyg Environ Health ; 235: 113774, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34052740

RESUMO

BACKGROUND: The associations between cadmium exposure and chronic kidney disease have rarely been reported in longitudinal studies. In this study, we investigated the associations between the estimated glomerular filtration rate and cadmium exposure in a cross-sectional study in a longitudinal cohort. MATERIALS AND METHODS: In total, 790 subjects (≥35 years of age) living in southeastern China were included at 1998. Cadmium in blood (BCd) and urine (UCd) as well as renal dysfunction biomarkers, urinary N-acetyl-ß d-glucosaminidase (UNAG) and albumin (UALB), were determined. 497 subjects were followed at 2006 and a total of 456 subjects were finally included after excluding subjects that did not have exposure or effects biomarkers. The BCd, UCd, UNAG and UALB were determined using baseline methods. At follow-up, the estimated glomerular filtration rate (eGFR) was computed using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Single nucleotide polymorphisms (SNPs) in metallothioneins 1A (MT1A) rs11076161 and MT2A rs28366003 in blood sample were detected using TaqMan allelic discrimination assays. RESULTS: The median of UCd and BCd at baseline was 5.38 µg/g cr and 4.69 µg/L, respectively, and the median UCd and BCd at follow-up was 4.88 µg/g cr and 2.20 µg/L at follow-up. The mean eGFR at follow-up was 88.0 mL/min/1.73 m2 and 15 subjects had new onset of eGFR <60 mL/min/1.73 m2. The eGFR at follow-up was associated with baseline age (ß = -0.66, 95% confidence interval (CI): 0.80 to -0.52), BCd (ß = -0.46, 95% CI: 0.68 to -0.25) and UALB (ß = -0.29, 95% CI: 0.41 to -0.16) after adjusting for confounders. Subgroup analysis in subjects who had low baseline UALB or subjects with or without hypertension showed similar results. A logistic regression model further showed that baseline BCd and UALB were independent risk factors for follow-up CKD. The odds ratios (ORs) were 1.09 (95% CI:1.03-1.16) for UALB, 1.16 (95% CI:1.01-1.33) for BCd, and 6.74 (0.87-29.63) for current hypertension. Baseline BCd, UALB and current hypertension were used to construct the nomogram. Linear discriminant analysis (LCA) showed that 87.6% of CKD was accurately predicted based on the three factors. CONCLUSION: Baseline age, BCd and UALB were associated with follow-up eGFR, and baseline BCd and UALB were predictive factors for incidence of CKD.

16.
Environ Sci Pollut Res Int ; 28(40): 56032-56042, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34046830

RESUMO

Triclosan (TCS) and perfluorooctane sulfonate (PFOS) are known to have both endocrine disrupting and developmental toxicity effects on zebrafish embryos. Currently, potential molecular mechanisms underlying these toxicological phenomena require further studies. To address this gap in the literature, we used whole transcriptome microarrays to being to address the potential molecular mechanisms underlying developmental toxicity of TCS and PFOS on zebrafish embryos. Zebrafish embryos were exposed to 300 µg/L TCS and 500 µg/L PFOS from 4 to 120 h post fertilization (hpf). Phenotypically, the hatching rate of zebrafish embryos was significantly reduced after TCS exposure at 72 hpf. Additionally, body length was significantly decreased in the TCS treatment group at 120 hpf. Gene ontology analysis of differentially expressed genes revealed that lipid metabolism, steroid metabolism, and organ development-related biological processes were significantly enriched in TCS- and PFOS-treated zebrafish embryos. Furthermore, signaling network analysis indicated that the steroid biosynthesis process was the most significant biological process disrupted by TCS in 120 hpf zebrafish embryos, while organ development was the most significant biological process disrupted by PFOS exposure. Our findings enhance the understanding of the specific types of embryotoxicity elicited by TCS and PFOS, and also provide information that can be used to inform future mechanistic studies.


Assuntos
Ácidos Alcanossulfônicos , Fluorcarbonetos , Triclosan , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/toxicidade , Animais , Embrião não Mamífero , Fluorcarbonetos/toxicidade , Transcriptoma , Peixe-Zebra/genética
17.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805320

RESUMO

Alkaline phosphatases (ALPs: EC 3.1.3.1) are ubiquitous enzymes and play crucial roles in the fundamental phosphate uptake and secretory processes. Although insects are regarded as the most diverse group of organisms, the current understanding of ALP roles in insects is limited. As one type of destructive agricultural pest, whitefly Bemisia tabaci, a phloem feeder and invasive species, can cause extensive crop damage through feeding and transmitting plant diseases. In this study, we retrieved five ALP genes in MEAM1 whitefly, nine ALP genes in MED whitefly via comparative genomics approaches. Compared with nine other insects, whiteflies' ALP gene family members did not undergo significant expansion during insect evolution, and whiteflies' ALP genes were dispersed. Moreover, whiteflies' ALP gene family was conserved among insects and emerged before speciation via phylogenetic analysis. Whiteflies' ALP gene expression profiles presented that most ALP genes have different expression patterns after feeding on cotton or tobacco plants. Female/male MED whiteflies possessed higher ALP activities on both cotton and tobacco plants irrespective of sex, relative to MEAM1 whiteflies. Meanwhile, adult MED whiteflies possessed higher ALP activity in both whole insect and salivary samples, relative to MEAM1 whiteflies. We also found that both MED and MEAM1 whiteflies could upregulate ALP activities after feeding on cotton compared with feeding on tobacco plants. These findings demonstrated the functions of whiteflies ALPs and will assist the further study of the genomic evolution of insect ALPs.


Assuntos
Fosfatase Alcalina/metabolismo , Gossypium/parasitologia , Hemípteros/fisiologia , Proteínas de Insetos/metabolismo , Doenças das Plantas/parasitologia , Tabaco/parasitologia , Fosfatase Alcalina/genética , Animais , Feminino , Perfilação da Expressão Gênica , Hemípteros/enzimologia , Proteínas de Insetos/genética , Masculino
18.
Environ Sci Process Impacts ; 23(5): 642-663, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33889885

RESUMO

Nowadays, PM2.5 concentrations greatly influence indoor air quality in subways and threaten passenger and staff health because PM2.5 not only contains heavy metal elements, but can also carry toxic and harmful substances due to its small size and large specific surface area. Exploring the physicochemical and distribution characteristics of PM2.5 in subways is necessary to limit its concentration and remove it. At present, there are numerous studies on PM2.5 in subways around the world, yet, there is no comprehensive and well-organized review available on this topic. This paper reviews the nearly twenty years of research and over 130 published studies on PM2.5 in subway stations, including aspects such as concentration levels and their influencing factors, physicochemical properties, sources, impacts on health, and mitigation measures. Although many determinants of station PM2.5 concentration have been reported in current studies, e.g., the season, outdoor environment, and station depth, their relative influence is uncertain. The sources of subway PM2.5 include those from the exterior (e.g., road traffic and fuel oil) and the interior (e.g., steel wheels and rails and metallic brake pads), but the proportion of these sources is also unknown. Control strategies of PM mainly include adequate ventilation and filtration, but these measures are often inefficient in removing PM2.5. The impacts of PM2.5 from subways on human health are still poorly understood. Further research should focus on long-term data collection, influencing factors, the mechanism of health impacts, and PM2.5 standards or regulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ferrovias , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise
19.
J Agric Food Chem ; 69(16): 4655-4662, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33858141

RESUMO

Perchlorate, emerging pollution with thyroid toxicity, has a high detection rate in fresh tea leaves. What needs attention is that the uptake characteristic is insufficiently understood. Herein, the uptake, accumulation, and translocation of perchlorate in a tea plant-hydroponic solution system were investigated, of which the mechanism was further lucubrated by subcellular distribution. The perchlorate concentration in tea tissues is ramped up along with the increase in the exposure level and time. The bioaccumulation factor of tea tissues followed the rank: mature leaves > tender leaves > roots. After the seedlings have been transplanted to a perchlorate-free solution, the perchlorate in mature leaves is reduced significantly, accompanied by a progressive increase in perchlorate in new shoots and solutions. The cell-soluble fractions are the major reservoir of perchlorate both for roots (>59%) and leaves (>76%), which precisely explained the translocation within the tea plant-hydroponic solution system. These results not only illuminate the uptake characteristic in tea plants but also improve the understanding of the behavior of perchlorate in higher plants.


Assuntos
Camellia sinensis , Percloratos , Folhas de Planta , Raízes de Plantas , Chá
20.
Pediatr Allergy Immunol ; 32(5): 880-891, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33709502

RESUMO

BACKGROUND: Existing knowledge suggests that gestational diabetes mellitus was inconsistently associated with offspring allergic diseases. The aim of this study was to identify the association between maternal diabetes mellitus and the risk of offspring allergic diseases by systematic review. METHODS: We searched and retrieved three databases (PubMed, Web of Science, and Cochrane Library) for articles on the association between maternal diabetes mellitus and offspring allergic diseases published before December 31, 2019. Stata software version 16.0 was used for statistical analysis. RESULTS: Eight published studies were included in this meta-analysis. The pooled effect estimates showed the association between maternal diabetes mellitus and allergic outcomes, including asthma (OR: 1.13, 95% CI: 1.01-1.27), wheezing (OR: 1.13, 95% CI: 1.07-1.21), and atopic dermatitis (OR: 1.43, 95% CI: 1.22-1.57). Maternal diabetes mellitus was not associated with the risk of allergic sensitization, with a pooled effect estimate of 1.07 (95% CI: 0.45, 2.58). CONCLUSION: Maternal diabetes mellitus may increase the risk of allergic diseases in their children. However, this finding should be validated with future large-sample epidemiological studies covering a wider spectrum of allergic diseases.


Assuntos
Asma , Dermatite Atópica , Diabetes Gestacional , Hipersensibilidade , Asma/epidemiologia , Criança , Dermatite Atópica/epidemiologia , Diabetes Gestacional/epidemiologia , Família , Feminino , Humanos , Hipersensibilidade/epidemiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...