RESUMO
Background Hsa_circ_0001535 is involved in biological processes in various tumors. However, the biological effects and related mechanism of hsa_circ_0001535 in ovarian cancer (OC) is unclear. This work is aimed to probe the biological function and underlying mechanism of hsa_circ_0001535 in OC, especially sponged with mi-RNA, require further elucidation. Methods Hsa_circ_0001535 expression in OC tissues and cell lines were examined by qRT-PCR. Hsa_circ_0001535 overexpression model was constructed by lentivirus-mediated transfection in two OC cell lines, and the biological functions of hsa_circ_0001535 were evaluated by CCK-8, transwell assay and Western blot. Dual luciferase reporter gene assay was respectively used to explore the relationship between hsa_circ_0001535 and miR-593-3p, as well as miR-593-3p and PTEN. The expression of miR-593-3p and PTEN were detected by qRT-PCR in two OC cell lines and OC tissues. Results Hsa_circ_0001535 was down-regulated in OC tissues and cell lines. Hsa_circ_0001535 overexpression inhibited proliferation, migration and EMT marker expression in OC cells. Of interest, hsa_circ_0001535 targeted miR-593-3p and reduced its RNA level in OC cells. PTEN was a target gene of miR-593-3p, which was up-regulated by inhibiting miR-593-3p in OC cells. Furthermore, miR-593-3p mimic treatment reversed the up-regulation of PTEN by hsa_circ_0001535 overexpression in OC cells. Conclusions The above results showed that hsa_circ_0001535 acted as a molecular sponge for miR-593-3p to repress miR-593-3p expression, and promoted the expression of PTEN, thus inhibited proliferation and migration of OC cells. Our research provides a potential therapeutic target for ovarian cancer patients (AU)
Assuntos
Humanos , Feminino , MicroRNAs/genética , Neoplasias Ovarianas/genética , PTEN Fosfo-Hidrolase/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Regulação para CimaRESUMO
Dark tea has great potential in regulating glycolipid metabolism, and theabrownin (TB) is considered to be the characteristic and bioactive constituent of dark tea. This study evaluated the ability of TB1 (fermented for 7 days) and TB2 (fermented for 14 days) isolated from dark tea to reverse insulin resistance (IR) in HepG2 cells. The results indicated that TB significantly ameliorated oxidative stress by improving mitochondrial function. In addition, TB improved glycogen synthesis and glucose consumption, and inhibited gluconeogenesis and fatty acid synthesis, by regulating GSK3ß (Glycogen synthase kinase 3ß), G6Pase (Glucose-6-phosphatase), GCK (Glucokinase), PEPCK1 (Phosphoenolpyruvate carboxy kinase 1), SREBP-1C (sterol regulatory element-binding protein 1C), FASN (fatty acid synthase), and ACC (Acetyl-CoA carboxylase). Additionally, the results of Western blot and real-time PCR experiments demonstrated that TB modulated glucolipid metabolism through the IRS-1 (Insulin receptor substrate 1)/PI3K (phosphatidylinositol-3 kinase)/Akt (protein kinase B) signaling pathway. Treatment with the PI3K inhibitor demonstrated a favorable correlation between PI3K activation and TB action on glycolipid metabolism. Notably, we observed that TB2 had a greater effect on improving insulin resistance compared with TB1, which, due to its prolonged fermentation time, increased the degree of oxidative polymerization of TB.
RESUMO
Aqueous polyurethane is an environmentally friendly, low-cost, high-performance resin with good abrasion resistance and strong adhesion. Cationic aqueous polyurethane is limited in cathodic electrophoretic coatings due to its complicated preparation process and its poor stability and single performance after emulsification and dispersion. The introduction of perfluoropolyether alcohol (PFPE-OH) and light curing technology can effectively improve the stability of aqueous polyurethane emulsions, and thus enhance the functionality of coating films. In this paper, a new UV-curable fluorinated polyurethane-based cathodic electrophoretic coating was prepared using cationic polyurethane as a precursor, introducing PFPE-OH capping, and grafting hydroxyethyl methacrylate (HEMA). The results showed that the presence of perfluoropolyether alcohol in the structure affected the variation of the moisture content of the paint film after flash evaporation. Based on the emulsion particle size and morphology tests, it can be assumed that the fluorinated cationic polyurethane emulsion is a core-shell structure with hydrophobic ends encapsulated in the polymer and hydrophilic ends on the outer surface. After abrasion testing and baking, the fluorine atoms of the coating were found to increase from 8.89% to 27.34%. The static contact angle of the coating to water was 104.6 ± 3°, and the water droplets rolled off without traces, indicating that the coating is hydrophobic. The coating has excellent thermal stability and tensile properties. The coating also passed the tests of impact resistance, flexibility, adhesion, and resistance to chemical corrosion in extreme environments. This study provides a new idea for the construction of a new and efficient cathodic electrophoretic coating system, and also provides more areas for the promotion of cationic polyurethane to practical applications.
RESUMO
Introduction: Despite representing only 3% of the US population, immunocompromised (IC) individuals account for nearly half of the COVID-19 breakthrough hospitalizations. IC individuals generate a lower immune response after vaccination in general, and the US CDC recommended a third dose of either mRNA-1273 or BNT162b2 COVID-19 vaccines as part of their primary series. Influenza vaccine trials have shown that increasing dosage could improve effectiveness in IC populations. The objective of this systematic literature review and pairwise meta-analysis was to evaluate the clinical effectiveness of mRNA-1273 (50 or 100 mcg/dose) vs BNT162b2 (30 mcg/dose) in IC populations using the GRADE framework. Methods: The systematic literature search was conducted in the World Health Organization COVID-19 Research Database. Studies were included in the pairwise meta-analysis if they reported comparisons of mRNA-1273 and BNT162b2 in IC individuals ≥18 years of age; outcomes of interest were symptomatic, laboratory-confirmed SARS-CoV-2 infection, SARS-CoV-2 infection, severe SARS-CoV-2 infection, hospitalization due to COVID-19, and mortality due to COVID-19. Risk ratios (RR) were pooled across studies using random-effects meta-analysis models. Outcomes were also analyzed in subgroups of patients with cancer, autoimmune disease, and solid organ transplant. Risk of bias was assessed using the Newcastle-Ottawa Scale for observational studies. Evidence was evaluated using the GRADE framework. Results: Overall, 17 studies were included in the pairwise meta-analysis. Compared with BNT162b2, mRNA-1273 was associated with significantly reduced risk of SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.75-0.97]; P=0.0151; I2 = 67.7%), severe SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.77-0.93]; P=0.0009; I2 = 0%), COVID-19-associated hospitalization (RR, 0.88 [95% CI, 0.79-0.97]; P<0.0001; I2 = 0%), and COVID-19-associated mortality (RR, 0.63 [95% CI, 0.44-0.90]; P=0.0119; I2 = 0%) in IC populations. Results were consistent across subgroups. Because of sample size limitations, relative effectiveness of COVID-19 mRNA vaccines in IC populations cannot be studied in randomized trials. Based on nonrandomized studies, evidence certainty among comparisons was type 3 (low) and 4 (very low), reflecting potential biases in observational studies. Conclusion: This GRADE meta-analysis based on a large number of consistent observational studies showed that the mRNA-1273 COVID-19 vaccine is associated with improved clinical effectiveness in IC populations compared with BNT162b2.
RESUMO
Background: Chimeric antigen receptor (CAR) T-cell therapy is practical in treating cancers of hematopoietic origin, but of that in solid tumors compromises efficacy for the loss of the antigen recognized by the CAR. However, dendritic cell (DC)/tumor fusion vaccines present a spectrum of known or unknown tumor antigens to stimulate T cell expansion and enhanced T cell response. Developing a new strategy of enhanced nanobody-based CAR-T (Nb-CAR-T) cells antitumor activity by DC/tumor fusion vaccines stimulation would provide guidance for more effective CAR-T cell therapies. Methods: Considering the therapeutic potential of nanobody (Nb), we first screened EGFRvIII Nb, then constructed and verified the function of EGFRvIII Nb-CAR-T cells in vitro and in vivo. We further combined DC/tumor fusion vaccines to boost EGFRvIII Nb-CAR-T cells antitumor effect, which was evaluated in vitro Nb-CAR-T cell function and in the tumor-bearing xenograft mouse models. Results: We had for the first time successfully selected EGFRvIII Nb for the generation of the novel EGFRvIII Nb-CAR-T cells. Importantly, our results suggested that DC/tumor fusion vaccines stimulate Nb-CAR-T cells response not only in improving T cell proliferation, T cell activation, cytokine secretion and tumor-specific cytotoxicity in vitro, but also significantly reducing tumor burden, prolonging survival and improving Nb-CAR-T cells infiltration. Conclusions: We have innovatively shown that DC/tumor fusion vaccines significantly enhance the efficacy of Nb-CAR-T cells against solid tumors. This new strategy has provided a promising therapeutic platform for promoting the clinical treatment of CAR-T cells therapy.
RESUMO
Fleas (Order Siphonaptera) are common blood-feeding ectoparasites, which have important economic significance. Limited mitochondrial genome information has impeded the study of flea biology, population genetics and phylogenetics. The Ctenophthalmus quadratus and Stenischia humilis complete mt genomes are described in this study. The samples were collected from Jianchuan, Yunnan plague foci, China. The mt genomes of C. quadratus and S. humilis were 15,938 bp and 15,617 bp, respectively. The gene arrangement of mt genome was consistent with that of other fleas, which include 22 tRNA genes, 13 protein-coding genes, and two rRNA genes, with a total of 37 genes. The relationship between C. quadratus and S. humilis in fleas was inferred by phylogenetic analysis of mt genome sequence datasets. Phylogenetic analyzes showed that the C. quadratus and S. humilis belonged to different species in the same family, and were closely related to Hystrichopsylla weida qinlingensis in the same family; and revealed that the family Hystrichopsyllidae is paraphyletic, supporting the monophyly of the order Siphonaptera. This study decodes the complete mt genomes of the C. quadratus and S. humilis for the first time. The results demonstrate that the C. quadratus and S. humilis are distinct species, and fleas are monophyletic. Analysis of mt genome provides novel molecular data for further studying the phylogeny and evolution of fleas.
RESUMO
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is a vital component of many inflammatory responses. Here, we intended to investigate the involvement of NLRP3 in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (S-AKI) and explore its mechanisms. For the first time, we validated elevated NLRP3 expression in the renal tissues of S-AKI patients by immunohistochemistry analysis. Through LPS injection in both wild-type and Nlrp3-/- mice, a S-AKI model was developed. It was found that LPS-induced kidney injury, including an abnormal morphology in a histological examination, abnormal renal function in a laboratory examination, and an increase in the expression of AKI biomarkers, was dramatically reversed in Nlrp3-deficient mice. Nlrp3 deletion alleviated renal inflammation, as evidenced by the suppression of the expression of pro-inflammatory cytokines and chemokines. A combinative analysis of RNA sequencing and the FerrDb V2 database showed that Nlrp3 knockout regulated multiple metabolism pathways and ferroptosis in LPS-induced S-AKI. Further qPCR coupled with Prussian blue staining demonstrated that Nlrp3 knockout inhibited murine renal ferroptosis, indicating a novel mechanism involving S-AKI pathogenesis by NLRP3. Altogether, the aforementioned findings suggest that Nlrp3 deficiency alleviates LPS-induced S-AKI by reducing renal inflammation and ferroptosis. Our data highlight that NLRP3 is a potential therapeutic target for S-AKI.
RESUMO
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
RESUMO
Autophagy is a conserved cellular self-digestion process and is essential for individual growth, cellular metabolism and inflammatory responses. It was responsive to starvation, pathogens infection and environmental stress. However, the information on the regulation of autophagy in fish hepatic intermediary metabolism, antioxidant system, and immune responses were limited. In the present study, turbot with inhibited autophagy flux was built by dietary chloroquine. The hepatic metabolic response, antioxidant enzymes and immune responses were explored. Results showed that dietary chloroquine induced the expression of Beclin 1, SQSTM and LC-3II, and effectively inhibited autophagy flux. Autophagy dysfunction depressed fish growth and feed utilization, while it induced clusters of liver lipid droplets. The genes involved in lipolysis and fatty acid ß-oxidation, as well as the lipogenesis-related genes in chloroquine group were depressed. The phosphorylation of AMPK was activated in chloroquine group, and the genes involved in glycolysis were induced. The hepatic content of malonyldialdehyde and the activities of SOD and CAT were induced when autophagy was inhibited. The content of Complement 3, Complement 4 and Immunoglobulin M, as well as the activity of lysozyme in plasma were depressed in chloroquine group. Dietary chloroquine induced the expression of toll-like receptors and stimulated the expression of myd88 and nf-κb p65, as well as the pro-inflammatory cytokines, such as tnf-α and il-1ß. The expression of anti-inflammatory cytokine tgf-ß was depressed in the chloroquine group. Our results would extend the knowledge on the role of autophagy in teleost and assist in improving fishery production.
Assuntos
Antioxidantes , Linguados , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Imunidade Inata , Proteínas de Peixes/metabolismo , Dieta/veterinária , Citocinas/metabolismo , Ração Animal/análiseRESUMO
Self-powered solar-blind photodetectors (PDs) are promising for military and civilian applications owing to convenient operation, easy preparation, and weak-light sensitivity. In the present study, the solar-blind deep-ultraviolet (DUV) photodetector based on amorphous Ga2O3 (a-Ga2O3) and with a simple vertical stack structure is proposed by applying the low-cost magnetron sputtering technology. By tuning the thickness of the amorphous Ga2O3 layer, the device exhibits excellent detection performance. Under 3â V reverse bias, the photodetector achieves a high responsivity of 671A/W, a high detectivity of 2.21 × 1015 Jones, and a fast response time of 27/11â ms. More extraordinary, with the help of the built-in electric field at the interface, the device achieves an excellent performance in detection when self-powered, with an ultrahigh responsivity of 3.69 A/W and a fast response time of 2.6/6.6â ms under 254â nm light illumination. These results demonstrate its superior performance to most of the self-powered Schottky junction UV photodetectors reported to date. Finally, the Pt/a-Ga2O3/ITO Schottky junction photodiode detector is verified as a good performer in imaging, indicating its applicability in such fields as artificial intelligence, machine vision, and solar-blind imaging.
RESUMO
BACKGROUND: Lysophosphatidic acid (LPA) is implicated in bronchopulmonary dysplasia (BPD) pathogenesis, but clinical evidence is lacking. This study aimed to investigate LPA levels in preterm infants with and without BPD and explore LPA as a biomarker for predicting BPD occurrence. METHODS: Premature infants with a gestational age of <28 weeks or a birth weight of <1000 g were enrolled. Blood samples were collected at postnatal day (PD) 7, 28, and postmenstrual age (PMA) 36 weeks, and plasma LPA levels were measured using a commercial ELISA kit. Receiver operating characteristic curve (ROC) curve analysis determined the PD 28 cutoff for LPA, and multivariable regression analyzed LPA's independent contribution to BPD and exploratory outcomes. RESULT: Among the 91 infants enrolled in this study, 35 were classified into the non-BPD group and 56 into the BPD group. Infants with BPD had higher plasma LPA levels at PD 28 (6.467 vs. 4.226 µg/mL, p = 0.034) and PMA 36 weeks (2.330 vs. 1.636 µg/mL, p = 0.001). PD 28 LPA level of 6.132 µg/mL was the cutoff for predicting BPD development. Higher PD 28 LPA levels (≥6.132 µg/mL) independently associated with BPD occurrence (OR 3.307, 95% CI 1.032-10.597, p = 0.044). Higher LPA levels correlated with longer oxygen therapy durations [regression coefficients (ß) 0.147, 95% CI 0.643-16.133, p = .034]. CONCLUSIONS: Infants with BPD had higher plasma LPA levels at PD 28 and PMA 36 weeks. Higher PD 28 LPA levels independently associated with an increased BPD risk.
RESUMO
Many efforts have been made to enrich the variety of BF2 complexes because of their excellent optical properties. However, the investigation on seven-membered ring N, O-chelated BF2 complexes is rare due to their instability with the removal of BF2 unit. Herein, a novel seven-membered ring N, O-chelated BF2 complexes (BOPYOs) with dual-state emission has been synthesized via a facile method. The results of optical properties showed that the fluorescence quantum yield of BOPYO-2 with donor group on 1 and 2-position of 1-indanone unit is much higher than that of BOPYO-1, 3-5 in toluene. The emission spectra of BOPYO-6 or 7 have redshift phenomenon compared with BOPYO-1-5 with weak fluorescence intensity due to their highly distorted structure or intramolecular charge transfer (ICT) effect. BOPYOs show relatively moderate solid emission from orange to deep red color with 596 nm to 686 nm. On the contrary, fluorescence quantum yield of BOPYO-2 in solid is the lowest. The optical properties in solution and solid states are further supported by the single-crystal structure and DFT calculation. Furthermore, the investigation on optimization of BF2 removal shows that the corresponding precursors of BOPYOs could be obtained in protic solvents without adding other catalysts.
RESUMO
Background/objective: Research suggests that perceiving parental depression elicits internalizing problems in adolescents, but certain studies have indicated that adolescents internalizing problems also increase their perception of parental emotion. To further investigate the inconsistent findings about the nature of this relationship, the current study used longitudinal data to examine the causal association between adolescents internalizing problems and the parental depression they perceived, as well as the role of intrusive rumination in the relationship. Method: In this longitudinal study, 392 adolescents who experienced the catastrophic Jiuzhaigou earthquake in 2017 were surveyed at three time points after the earthquake: 12 months (T1), 21 months (T2) and 27 months (T3). A cross-lagged panel model was used to carry out the data analysis. Results: Mutual cause-and-effect relationships were found between intrusive rumination and both perceived parental depression and internalizing problems, respectively; a unilateral causal relationship in which internalizing problems positively predicted perceived parental depression was also found. In addition, internalizing problems predicted perceived parental depression via the mediating role of intrusive rumination; similarly, intrusive rumination predicted perceived parental depression via internalizing problems. Conclusions: Internalizing problems were a risk factor for perceived parental depression, and intrusive rumination played an important role in the relationship between internalizing problems and perceived parental depression. (AU)
Assuntos
Humanos , Masculino , Feminino , Adolescente , Depressão , Saúde Mental , Estudos Longitudinais , China , Terremotos , Poder Familiar/psicologiaRESUMO
Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES -1.18 years [95% CI -2.05, -0.32]), had fewer respiratory symptoms (RD -0.15 [95% CI -0.33, -0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD -0.35 [95% CI -0.64, -0.07]), lower lymphocyte count (ES -0.16 × 109/uL [95% CI -0.30, -0.01]), lower C-reactive protein (ES -28.5 mg/L [95% CI -46.3, -10.7]), and lower troponin (ES -0.14 ng/mL [95% CI -0.26, -0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES -1.6 years [95% CI -2.5, -0.8]), had less frequent SIRS (RD -0.18 [95% CI -0.30, -0.05]), lower lymphocyte count (ES -0.39 × 109/uL [95% CI -0.52, -0.25]), lower troponin (ES -0.16 ng/mL [95% CI -0.30, -0.01]) and less frequently received anticoagulation therapy (RD -0.19 [95% CI -0.37, -0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (-1.3 days [95% CI -2.3, -0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None.
RESUMO
Fleas represent a group of paramount medical significance, subsisting on blood and acting as vectors for an array of naturally occurring diseases. These pathogens constitute essential elements within the plague biome, exerting deleterious effects on both human and livestock health. In this study, we successfully assembled and sequenced the whole mitochondrial genome of Frontopsylla spadix and Neopsylla specialis using long-range PCR and next-generation sequencing technologies. The mitogenomes of F. spadix and N. specialis both have 37 genes with full lengths of 15,085 bp and 16,820 bp, respectively. The topology of the phylogenetic tree elucidates that species F. spadix is clustered in a branch alongside other members of the family Leptopsyllidae, whereas species N. specialis is a sister taxon to Dorcadia ioffi and Hystrichopsylla weida qinlingensis. It also suggests that Pulicidae form a monophyletic clade, Ctenopthalmidae, Hystrichopsyllidae, Vermipsyllidae form a sister group to Ceratophyllidae/Leptopsyllidae group. The mitochondrial genomes of F. spadix and N. specialis were sequenced for the first time, which will contribute to a more comprehensive phylogenetic analysis of the Siphonaptera order. The foundation for subsequent systematic studies, and molecular biology of fleas was established.
RESUMO
Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1ß, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-ß, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.
RESUMO
Ultracold atoms in optical lattices form a competitive candidate for quantum computation owing to the excellent coherence properties, the highly parallel operations over spins, and the ultralow entropy achieved in qubit arrays. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale up and detect multipartite entanglement, the basic resource for quantum computation, due to the lack of manipulations over local atomic spins in retroreflected bichromatic superlattices. In this Letter, we realize the functional building blocks in quantum-gate-based architecture by developing a cross-angle spin-dependent optical superlattice for implementing layers of quantum gates over moderately separated atoms incorporated with a quantum gas microscope for single-atom manipulation and detection. Bell states with a fidelity of 95.6(5)% and a lifetime of 2.20±0.13 s are prepared in parallel, and then connected to multipartite entangled states of one-dimensional ten-atom chains and two-dimensional plaquettes of 2×4 atoms. The multipartite entanglement is further verified with full bipartite nonseparability criteria. This offers a new platform toward scalable quantum computation and simulation.
RESUMO
BACKGROUND: Identifying past temporal trends in non-alcoholic steatohepatitis (NASH)-associated liver cancer (NALC) can increase public awareness of the disease and facilitate future policy development. METHODS: Annual deaths and age-standardized death rates (ASDR) for NALC from 1990 to 2019 were collected from the Global Burden of Disease (GBD) 2019 study. The long-term trend and the critical inflection of mortality of NALC were detected by Joinpoint analysis. Age-period-cohort analysis was employed to evaluate the effects of age, period, and cohort. Last, decomposition analysis was used to reveal the aging and population growth effects for NALC burden. RESULTS: Between 1990 and 2019, the ASDR of NALC witnessed an overall declining trend on a global scale, with a decrease in females and a stable trend in males. However, the global ASDR demonstrated a significant upward trend from 2010 to 2019. Southern sub-Saharan Africa and Southeast Asia have the highest NALC burdens, while high socio-demographic index (SDI) region experienced the fastest escalation of NALC burdens over 30 years. The decomposition analysis revealed that population growth and aging were the primary catalysts behind the increase in global NALC deaths. Age-period-cohort analyses showed that NALC mortality declined the fastest among females aged 40-45 years in high SDI region, accompanied by a deteriorating period effect trend during the period of 2010-2019. CONCLUSION: The global absolute deaths and ASDR of NALC have witnessed a rise in the past decade, with populations exhibiting considerable disparities based on sex, age, and region. Population growth, aging, and metabolism-related factors were the main factors behind the increase in global NALC deaths.
RESUMO
BACKGROUND: Lymph node staging of prostate cancer (PCa) is important for planning and monitoring of treatment. 18F-prostate specific membrane antigen positron emission tomography/computerized tomography (18F-PSMA PET/CT) has several advantages over 68Ga-PSMA PET/CT, but its diagnostic value requires further investigation. This meta-analysis focused on establishing the diagnostic utility of 18F-PSMA PET/CT for lymph node staging in medium/high-risk PCa. METHODS: We searched the EMBASE, PubMed, Cochrane library, and Web of Science databases from inception to October 1, 2022. Prostate cancer, 18F, lymph node, PSMA, and PET/CT were used as search terms and the language was limited to English. We additionally performed a manual search using the reference lists of key articles. Patients and study characteristics were extracted and the QUADAS-2 tool was employed to evaluate the quality of included studies. Sensitivity, specificity, the positive and negative likelihood ratio (PLR and NLR), diagnostic odds ratio (DOR), area under the curve (AUC), and 95% confidence interval (CI) were used to evaluate the diagnostic value of 18F-PSMA PET/CT. Stata 17 software was employed for calculation and statistical analyses. RESULTS: A total of eight diagnostic tests including 734 individual samples and 6346 lymph nodes were included in this meta-analysis. At the patient level, the results of each consolidated summary were as follows: sensitivity of 0.57 (95% CI 0.39-0.73), specificity of 0.95 (95% CI 0.92-0.97), PLR of 11.2 (95% CI 6.6-19.0), NLR of 0.46 (95% CI 0.31-0.68), DOR of 25 (95% CI 11-54), and AUC of 0.94 (95% CI 0.92-0.96). At the lesion level, the results of each consolidated summary were as follows: sensitivity of 0.40 (95% CI 0.21-0.62), specificity of 0.99 (95% CI 0.95-1.00), PLR of 40.0 (95% CI 9.1-176.3), NLR of 0.61 (95% CI 0.42-0.87), DOR of 66 (95% CI 14-311), and AUC of 0.86 (95% CI 0.83-0.89). CONCLUSIONS: 18F-PSMA PET/CT showed moderate sensitivity but high specificity in lymph node staging of medium/high-risk PCa. The diagnostic efficacy was almost equivalent to that reported for 68Ga-PSMA PET/CT. REGISTRATION: International Prospective Register of Systematic Reviews (PROSPERO), No. CRD42023391101.
RESUMO
OBJECTIVES: To characterize the evolution and interspecies transfer of plasmids between Klebsiella pneumoniae and Escherichia coli within a single patient. METHODS: Minimum inhibitory concentrations were measured using broth microdilution assays. Conjugation assays, string tests, and Galleria mellonella infection model experiments were also conducted. Whole-genome sequencing was performed on the Illumina and Nanopore platforms. Antimicrobial resistance determinants, insertion sequences, and virulence factors were identified using ABRicate/ResFinder database, ISFinder, and virulence factor database. Wzi and capsular polysaccharide (KL) were typed using Kleborate and Kaptive. Multi-locus sequence typing (ST), replicon typing, and single nucleotide polymorphism analyses were conducted using the BacWGSTdb server. RESULTS: The carbapenem-resistant K. pneumoniae 2111KP was characterized as ST11, wzi64, and KL64, with a positive string test result and a relatively high virulence phenotype. Analysis of the 2111KP genome revealed that blaNDM-1 was located in a 268,400-bp IncFIB/IncHI1B/IncX3 conjugative plasmid (p2111KP-1), regulated by IS26, IS5, and ISKox3. p2111KP-1 was also a rmpA2-associated virulence plasmid with an iutA-iucABCD gene cluster and a IS26-mediated multidrug-resistant fusion plasmid, which contained 8-bp (AGCTGCAC or GGCCTTTG) target site duplications. Segments flanked by IS26 of p2111KP-1 were 99.99% identical to a 49,016-bp E. coli plasmid. CONCLUSIONS: This study provided direct evidence of plasmid fusion via IS26 between two different bacterial species within one patient and revealed the process by which genetic elements conferring carbapenem resistance and virulence were simultaneously transferred between these species. It highlights the need for strategic antibiotic use and rigorous monitoring to prevent the plasmid-mediated fusion and transmission of drug-resistance/virulence factors.