Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; : 153786, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785104

RESUMO

BACKGROUND: Lung cancer has become the principal cause of cancer-related deaths. Emodin is a Chinese herb-derived compound extracted from the roots of Rheum officinale that exhibits numerous pharmacological characteristics. Secretory phospholipase A2-IIa (sPLA2-IIa) is overexpressed in cancers and plays an important role in cancer development. PURPOSE: This study aims to investigate the anti-tumor mechanism of emodin in non-small-cell lung cancer (NSCLC). METHODS: MTT assay was applied to detect the sensitivity of emodin to NSCLC cell line. Flow cytometry was used to examine the effect of emodin on cell cycle distribution and evaluate ROS level and apoptosis. Western blot analysis was utilised to examine the expression levels of sPLA2-IIa, PKM2, and AMPK and its downstream pathways induced by emodin. Enzyme inhibition assay was applied to investigate the inhibitory effect of emodin on sPLA2-IIa. The anticancer effect of emodin was also detected using an in vivo model. RESULTS: Emodin significantly inhibited NSCLC proliferation in vivo and in vitro and was relatively less cytotoxic to normal lung cell lines. Most importantly, emodin inhibited the proliferation of KRAS mutant cell lines by decreasing the expression of sPLA2-IIa and NF-κB pathways. Emodin also inhibited mTOR and AKT and activated the AMPK pathway. Furthermore, emodin induced apoptosis, increased the reactive oxygen species (ROS) level, and arrested the cell cycle. CONCLUSION: Emodin exhibited a novel anti-tumor mechanism of inhibiting the proliferation of KRAS mutant cell lines by decreasing the expression levels of sPLA2-IIa and NF-κB pathways. Hence, emodin can potentially serve as a therapeutic target in NSCLC.

2.
Phytomedicine ; : 153831, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34794861

RESUMO

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.

3.
Pharmacol Res ; 171: 105574, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419228

RESUMO

Currently, conventional methods of treating non-small cell lung cancer (NSCLC) have many disadvantages. An alternative effective therapy with minimal adverse reactions is urgently needed. Weijing decoction (WJD), which is a classic ancient Chinese herbal prescription, has been used successfully to treat pulmonary system diseases containing lung cancer in the clinic. However, the key active component and target of Weijing decoction are still unexplored. Therefore, for the first time, our study aims to investigate the pharmacological treatment mechanism of Weijing decoction in treating NSCLC via an integrated model of network pharmacology, metabolomics and biological methods. Network pharmacology results conjectured that Tricin is a main bioactive component in this formula which targets PRKCA to suppress cancer cell growth. Metabolomics analysis demonstrated that sphingosine-1-phosphate, which is regulated by sphingosine kinase 1 and sphingosine kinase 2, is a differential metabolite in plasma between the WJD-treated group and the control group, participating in the sphingolipid signaling. In vitro experiments demonstrated that Tricin had vital effects on the proliferation, pro-apoptosis, migration and colony formation of Lewis lung carcinoma cells. Through a series of validation assays, Tricin inhibited the tumor growth mainly by suppressing PRKCA/SPHK/S1P signaling and antiapoptotic signaling. On the other hand, Weijing formula could inhibit the tumor growth and prolong the survival time. A high dosage of Tricin was much more potent in animal experiments. In conclusion, we confirmed that Weijing formula and its primary active compound Tricin are promising alternative treatments for NSCLC patients.

4.
Cancer Lett ; 515: 36-48, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052328

RESUMO

Upregulated expression of immune checkpoint molecules correlates with exhausted phenotype and impaired function of cytotoxic T cells to evade host immunity. By disrupting the interaction of PD-L1 and PD1, immune checkpoint inhibitors can restore immune system function against cancer cells. Growing evidence have demonstrated apigenin and luteolin, which are flavonoids abundant in common fruits and vegetables, can suppress growth and induce apoptosis of multiple types of cancer cells with their potent anti-inflammatory, antioxidant and anticancer properties. In this study, the effects and underlying mechanisms of luteolin, apigenin, and anti-PD-1 antibody combined with luteolin or apigenin on the PD-L1 expression and anti-tumorigenesis in KRAS-mutant lung cancer were investigated. Luteolin and apigenin significantly inhibited lung cancer cell growth, induced cell apoptosis, and down-regulated the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3. Both luteolin and apigenin showed potent anti-cancer activities in the H358 xenograft and Lewis lung carcinoma model in vivo, and the treatment with monoclonal PD1 antibody enhanced the infiltration of T cells into tumor tissues. Apigenin exhibited anti-tumor activity in Genetically engineered KRASLA2 mice. In conclusion, both apigenin and luteolin significantly suppressed lung cancer with KRAS mutant proliferation, and down-regulated the IFN-γ induced PD-L1 expression. Treatment with the combination of PD-1 blockade and apigenin/luteolin has a synergistic effect and might be a prospective therapeutic strategy for NSCLC with KRAS-mutant.

5.
Pharmacol Res ; 169: 105656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964470

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...